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Alpha peak frequency-based Brainmarker-I as 
a method to stratify to pharmacotherapy and 
brain stimulation treatments in depression

Helena T. S. Voetterl    1,2 , Alexander T. Sack    2,3, Sebastian Olbrich    4, 
Sven Stuiver    5, Renee Rouwhorst6, Amourie Prentice    1,2,7, 
Diego A. Pizzagalli    8,9, Nikita van der Vinne    1,2,7, Jeroen A. van Waarde    5, 
Martin Brunovsky    10,11, Iris van Oostrom12, Ben Reitsma13, Johan Fekkes14, 
Hanneke van Dijk1,2,7,15 & Martijn Arns    1,2,15 

Biomarkers predicting treatment outcome in major depressive disorder 
could enhance clinical improvement. Here this observational and 
prospective accuracy study investigates whether an age- and sex-normalized 
electroencephalography biomarker, based on the individual alpha frequency 
(iAF), can successfully stratify patients to different interventions such as 
repetitive transcranial magnetic stimulation (rTMS) and electroconvulsive 
therapy (ECT). Differential iAF directions were explored for sertraline, as 
well as rTMS (N = 196) and ECT (N = 41). A blinded out-of-sample validation 
(EMBARC; N = 240) replicated the previously found association between 
low iAF and better sertraline response. The subgroup of patients with an iAF 
around 10 Hz had a higher remission rate following 10 Hz rTMS compared with 
the group level, while the high-iAF subgroup had highest remission to 1 Hz 
rTMS and the low-iAF subgroup to ECT. Blinded out-of-sample validations for 
1 Hz (N = 39) and ECT (N = 51) corroborated these findings. The present study 
suggests a clinically a ct io na ble e le ct ro en ce ph al ography biomarker that can 
successfully stratify between various antidepressant treatments.

Major depressive disorder (MDD) is one of the most common and debili-
tating disorders worldwide1. The disorder’s high level of heterogeneity 
(in both symptoms and neurophysiology) complicates adequate treat-
ment prescription, which may limit treatment response2–4. For instance, 
both antidepressant medication and cognitive-behavioral therapy led 

to insufficient symptom relief at the group level when treatment was 
assigned in an arbitrary fashion5, with response rates around 40–50% 
and remission rates around 30–40% (ref. 6).

While targeting the patient’s individual neurophysiology  
(for example, precision psychiatry) seems to be infeasible at present, 
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(that is, the rTMS stimulation frequency) was associated with better 
improvement to 10-Hz left-dorsolateral prefrontal cortex (L-DLPFC) 
rTMS31, which was independently replicated, while no association 
emerged between iAF and outcome of 1-Hz right-DLPFC (R-DLPFC) 
rTMS32. For electroconvulsive therapy (ECT), to our knowledge, iAF 
prediction of treatment outcome is unknown.

In this Article, following these promising findings, we aimed to 
extend Brainmarker-I, developed for ADHD treatment stratification28, 
to treatments for MDD. We decided a priori to conduct statistical 
analyses in line with Voetterl et al.28 and the hypotheses outlined below, 
focusing only on remission as our primary outcome, given its higher 
clinical relevance and to avoid multiple testing. We first conducted a 
blinded out-of-sample validation in the double-blind placebo-con-
trolled Establishing Moderators and Biosignatures of Antidepressant 
Response for Clinical Care (EMBARC) dataset33,34, aiming to replicate 
the previously mentioned sertraline finding and to demonstrate speci-
ficity of iAF-based prediction for sertraline but not placebo. Next, 
biomarker directions were tested for brain stimulation treatments, 
focusing on potential treatment stratification of patients with a diffi-
cult-to-treat depression. An iAF close to 10 Hz was a priori considered 
an indication for 10 Hz L-DLPFC rTMS, based on the above-mentioned 
replicated research31,32. For both 1 Hz and ECT treatment, discovery 
analyses were conducted and all possible directions of effect were 
examined. A potential finding was subsequently validated through 
blinded biomarker-informed prediction of patients’ remission status 
in unseen datasets. Finally, exploratory analyses testing predictive 
value of iAF for psychotherapy, ketamine and bupropion treatment 
were conducted.

Resting-state eyes-closed EEG data were preprocessed for all data-
sets, in line with previous preprocessing35. The iAF was calculated in 
accordance with Voetterl et al.28, and each patient was assigned a decile 
score, with low scores reflecting a slow iAF. Additionally, a synchroni-
zation indicator, denoting an iAF between 9.6 Hz and 10.4 Hz at the F3 
location was implemented (Fig. 1) to mark close proximity to 10 Hz, 
resulting in three distinct biomarker subgroups that were compared 
for the different treatments: synchronization, low deciles (decile score 
1–5 without synchronization range) and high deciles (decile score 6–10 
without synchronization range). Positive predictive values (PPVs) 
indicated the remission rate within each Brainmarker-I subgroup. A 
normalized PPV (nPPV) was calculated to be able to compare remission 
rates that differed between datasets. In short, the respective remission 

an implementable alternative is treatment stratification (for a discus-
sion, see ref. 6), which reduces heterogeneity within a disorder by 
identifying subgroups of patients that preferentially respond to a 
certain treatment, using so-called biomarkers7,8. A nonrandomized, 
open-label study, based on resting-state electroencephalography (EEG) 
biomarkers, prospectively stratified between three antidepressants in 
MDD that resulted in better clinical outcomes relative to treatment-
as-usual7. Importantly, due to its relatively low cost and ease of usage, 
EEG-biomarker stratification is especially suited for widespread imple-
mentation in clinical practice.

Several EEG biomarkers for treatment outcome in MDD have been 
proposed8,9. However, few markers could successfully be replicated. 
In fact, a recent meta-analysis examining EEG markers of treatment 
response in MDD raised doubts about their clinical applicability due 
to publication bias and a lack of cross- and out-of-sample validations10.

One EEG pattern that has shown potential as stratification bio-
marker is the individual alpha peak frequency (iAF), which denotes the 
modal frequency of an individual’s alpha oscillations (7–13 Hz). The 
iAF has been shown to be associated with cognitive performance and 
to be aberrant in various mental disorders. For instance, faster iAF has 
been related to better cognitive performance11–14, while slower iAF has 
been associated with higher symptom severity15,16 and less favorable 
treatment outcome17–19 and has been observed across many disorders 
such as Alzheimer’s disease20, burnout syndrome21, mild cognitive 
impairment22, psychosis23, schizophrenia23,24 and attention-deficit 
hyperactivity disorder (ADHD)25, with this slowing potentially reflect-
ing reduced thalamocortical information transfer.

In patients with ADHD, slower iAF has been related to worse treat-
ment outcome to methylphenidate26 and better treatment outcome 
to multimodal neurofeedback27. Based on these findings, our group 
recently developed Brainmarker-I, which is based on the iAF measured 
during the resting-state EEG. We showed that this biomarker can suc-
cessfully assign patients with ADHD to the individual best out of several 
treatment options, with findings confirmed in blinded-out-of-sample 
validations28. For antidepressant medication (amitriptyline and pirlin-
dole), a slow iAF was shown to be predictive of nonresponse29. However, 
this finding does not generalize across antidepressants, as was shown 
by subsequent studies reporting an association between slow iAF and 
better response to the selective sertraline reuptake inhibitor sertra-
line30. For repetitive transcranial magnetic stimulation (rTMS), a differ-
ent association has been observed. Specifically, an iAF closer to 10 Hz 
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Fig. 1 | Visualization of the Brainmarker-I classification. A filled, pink dot  
on the left denotes either that the patient has low voltage alpha or that their iAF 
falls into the frontal synchronization range (9.6–10.4 Hz) (depicted above).  
The iAF is depicted in Brainmarker-I decile scores from 1 (relatively slow) to  
10 (relatively fast). Low deciles (decile 1–5; blue) indicate stratification to ECT, 
Sync (orange) indicates 10 Hz rTMS treatment stratification, high deciles 
(decile 6–10; burgundy) indicate 1 Hz rTMS treatment. As visualized, the 
synchronization range overlaps with the decile scores, depending on the age 

of the individual (for example, higher deciles overlap more for older age). 
For subgroup assignment, the synchronization range is leading, that is, if an 
individual falls into that range, they are assigned to the synchronization group, 
otherwise the decile score indicates assignment to either low- or high-decile 
subgroup. A simulation for full group stratification was conducted where 
remission was calculated for all datasets combined but including only individuals 
in the respective stratified groups (for example, individuals with a high decile 
score in the 1 Hz rTMS samples). Sync, synchronization marker.
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rate of each dataset was set to 100% and the increase or decrease after 
stratification in relation to these 100% was calculated.

Finally, number-needed-to-treat (NNT) was calculated, which 
demonstrates how many patients need to be treated with the  
treatment recommended by the biomarker to get one more patient to 
remit compared with treating patients with the same active treatments 
but in a random fashion (not informed by the biomarker).

Results
Basic information about the different datasets is provided in Table 1 
and Table 2. Remission rates of each dataset and treatment group are 
summarized in Supplementary Table 1.

Blinded sertraline replication
Results for the EMBARC dataset are visualized in Fig. 2.

Since the aim was to replicate previous findings of low iAF and 
remission to sertraline, the directed hypothesis was that the remission 
rate would be higher in the low-decile subgroup.

At 8 weeks treatment, the low-decile subgroup showed a slightly 
higher remission to sertraline treatment compared with group remis-
sion (nPPV +9%, PPV 45%, NNT 28), which increased to +15% (PPV 83%, 
NNT 9) at 16 weeks. For placebo, no direction of effect was found (nPPV 
+3%) after 8 weeks, or after prolonged treatment at 16 weeks (nPPV −3%).

Brain Stimulation Treatments
Stratification results of the rTMS and ECT analyses are visualized in 
Fig. 3. Full results of analyses in all three biomarker subgroups can be 
found in Supplementary Table 2.

In line with previous evidence31,32, the remission rate in the synchro-
nization subgroup (iAF between 9.6 Hz and 10.4 Hz) in Dataset-2 for 
patients who had received 10 Hz rTMS was increased (nPPV +29%, PPV 
77%, NNT 6) compared with the total group remission rate. Therefore, 
10 Hz rTMS was regarded as first treatment choice for patients with a 
10-Hz synchronous iAF.

Of the different subgroups tested in Dataset-2 in patients who had 
received 1 Hz rTMS treatment, the high-decile group showed the high-
est remission rate with an nPPV of +14% (PPV 60%, NNT 14). A blinded 
out-of-sample validation in the unseen rTMS Dataset-3 confirmed this 
direction of effect with an nPPV of +16% (PPV 50%, NNT 15).

For ECT, the low-decile subgroup in Dataset-4 presented with an 
increased remission rate of +38% (nPPV; PPV 36%, NNT 10) compared 
with the total group remission rate. A blinded out-of-sample validation 
in Dataset-5 corroborated the direction of effect with an nPPV of +18% 
(PPV 72%, NNT 9).

Brain stimulation treatment stratification
Based on prior findings, we conducted a simulation for stratification 
between brain stimulation interventions, calculating the weighted 
average of the PPVs that had previously been determined for  
each treatment.

The percentage of patients falling into the three different sub-
groups across all included rTMS and ECT datasets differed (Discussion). 
For low-decile, synchronization and high-decile subgroup, these were 
47%, 30% and 23%, respectively.

Weighing each PPV in the biomarker-allocated subgroups by these 
percentages, and merging the different treatment samples into one 
dataset led to an increase in remission rate from 53% to 65% (NNT 9), 
an increase of normalized remission rate of +24% over the nonstrati-
fied remission rate.

Exploratory analyses
For psychotherapy Dataset-6, patients in the low-decile subgroup were 
more likely to remit, with an nPPV of +19% (PPV 35%, NNT 15). In the 
ketamine Dataset-7 and in patients of Dataset-1 who received bupro-
prion for 8 weeks, neither low- nor high-decile scores were associated 
with remission (nPPV −2% and nPPV +1% for low deciles, respectively). 
Results are visualized in Supplementary Fig. 1.

Confounding factors analyses
To ascertain the presented findings were not related to differences 
in depression severity, we conducted one-way analyses of variance  
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Fig. 2 | Independent validation of better remission rate to sertraline 
treatment in slow-iAF subgroup in a randomized, double-blind, placebo-
controlled trial. Normalized remission rate in the low-decile subgroup for 
placebo and sertraline treatment arm after 8 or 16 weeks of treatment.

Table 1 | Basic demographic information EMBARC dataset

Treatment 
arm

Sertraline Placebo Sertraline Placebo Sertraline–
bupropion

Time point 
of outcome

Week 8 Week 8 Week 16 Week 16 Week 16

Sample 
size (N)

114 126 57 37 54

Males (%) 37 (32) 49 (39) 20 (35) 16 (43) 17 (31)

Mean age, 
years

35.6 35.3 36.5 34.3 34.3

Basic demographic information for different treatment arms in EMBARC Dataset-1.

Table 2 | Basic demographic information all datasets

Full datasets Dataset-2 Dataset-2 Dataset-3 Dataset-4 Dataset-5 Dataset-6 Dataset-7

10 Hz L-DLPFC rTMS 1 Hz R-DLPFC rTMS 1 Hz R-DLPFC rTMS ECT ECT Psychotherapy Ketamine

Sample size (N) 74 113 39 41 51 156 81

Males (%) 38 (51) 58 (51) 18 (46) 15 (37) 19 (36) 58 (37) 37 (46)

Mean age, years, 
(s.d.)

41.5 (12.2) 44.9 (13.2) 42.4 (16.5) 51 (15.4) 51.2 (12.2) 37.2 (14.1) 43.5 (11.8)

Basic demographic information for all remaining datasets.

http://www.nature.com/natmentalhealth
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between the three biomarker subgroups (low decile without synchro-
nization range, synchronization range, high decile without synchro-
nization range) and baseline depression scores for all main datasets 
separately. There were no significant differences between groups in 
any of the datasets (P > .147).

Discussion
The present study successfully extends the previously introduced 
Brainmarker-I for ADHD to MDD treatment, thereby presenting a 
transdiagnostic and clinically actionable EEG biomarker. Following 
the previous finding of better treatment response to sertraline in 
patients with a low iAF30, we aimed to replicate this direction of effect 
in the randomized, placebo-controlled EMBARC dataset, expecting 
no effect for placebo. In addition to replicating the previously shown 
sertraline effect30 for remission after 8 weeks and 16 weeks of sertraline 
treatment, we demonstrated that this effect is specific to sertraline and 
does not hold for placebo at either of the two timepoints of outcome. 
The increase of remission rate to sertraline at week 8 was small (nPPV 
+9%), probably due to the high placebo remission rate of 29% that did 
not differ from the week-8 sertraline remission rate of 32%. It is known 
that placebo response can be substantial in antidepressant trials36,37 
and a diminished response to the active antidepressant treatment has 
been reported in studies that include a placebo arm38. It is perceivable 
that the sertraline effect at week 8 was diminished by the possibility of 
receiving the inactive compound.

For 10 Hz rTMS treatment, the effect of better clinical response to 
10 Hz rTMS in patients with an iAF closer to 10 Hz had already previously 
been demonstrated31 and replicated32. We quantified this finding by 
determining the Brainmarker-I synchronization subgroup in Dataset-2, 
which showed an increased normalized remission rate of +29% to 10 Hz 
rTMS compared with the group remission rate. This finding has been 
linked to the theory of 10 Hz stimulation entraining the endogenous 
oscillations to the stimulation frequency, with the Arnold tongue model 
predicting better entrainment the closer the stimulation frequency is 
to the endogenous frequency31,39.

For 1 Hz rTMS we explored linear effects in both directions, with 
either low or high decile scores corresponding to remission. Only 
high decile scores were associated with increased remission to 1 Hz 
rTMS (nPPV +14%). This association was successfully replicated in a 
blinded-out-of-sample validation in rTMS Dataset-3 with a 16% higher 

normalized remission rate in the biomarker-identified subgroup. The 
same discovery analyses were repeated for ECT treatment. In ECT 
Dataset-4, the low-decile subgroup presented with a higher normal-
ized remission rate of +38% (PPV 36%) compared to the overall group 
remission rate. We subsequently replicated this direction of effect in a 
blinded, out-of-sample validation in ECT Dataset-5, with an increased 
remission rate of +18% (PPV 72%) in the low-decile subgroup.

Given that a slow iAF might be considered an abnormality in 
the EEG21–24,40,41, this finding is in line with previous results, show-
ing that patients with EEG abnormalities not only responded better 
to bilateral than to unilateral ECT, they also responded better to 
bilateral ECT than the group without abnormalities (77% response 
versus 67%, respectively)42. Although the publication did not spe-
cifically mention slow iAF as one of the assessed abnormalities, our 
findings support the conclusion of better treatment response to 
bilateral ECT in patients with EEG abnormalities since most patients 
in Dataset-4 (74%) and all patients in Dataset-5 received bilateral ECT. 
Future research is needed to examine whether our finding only holds 
for bilateral ECT as suggested by the findings by Malaspina et al.42. 
Interestingly, in a secondary analysis (Supplementary Discussion 1)  
examining the association between side effects to ECT and iAF in 
replication Dataset-5, we found that those patients that Brainmarker-I 
classified as ECT remitters also experienced fewer side effects of any 
kind (mainly memory impairment) with an nPPV of +23% (PPV 44%). 
This is a particularly intriguing finding since ECT side effects are the 
main concern of patients.

Remission rate is generally lower in patients with a lower iAF, 
and this was also the case in our samples which led to lower PPVs  
(as reported in the results). In traditional biomarker research where 
one biomarker predicts treatment success or failure, one might con-
sider these rather low PPVs insufficiently strong for use in clinical 
practice. However, when considering the idea behind stratification, 
we see how even small improvements can be clinically meaningful 
and valuable6. Instead of denying someone a treatment based on 
an unfavorable prediction, the stratification approach assigns indi-
viduals to one of several evidence-based and commonly prescribed 
treatments based on their worst or best chances to remit. This means 
that, compared with the alternative one-size-fits-all approach, no 
harm is done by using stratification (for a more in-depth explana-
tion, see ref. 6).

In this manuscript, we present a stratification solution for difficult-
to-treat depression, based partially on previous findings (for example, 
for 10 Hz) but enhanced by additional recommendations for the best 
treatment option (of several common interventions) for the low- and 
high-decile subgroups.

We, moreover, suggest that Brainmarker-I might have potential to 
inform matched stepped care by suggesting a better chance to remit 
to sertraline as a first-line treatment for patients in the low-decile 
subgroup, and to ECT for the same group after sertraline treatment 
has failed.

When combining all brain stimulation findings and following the 
tested and validated stratification scheme, the already high remis-
sion rate of 53% improved to 65%, an effective increase of 12%, with 
an NNT of 9, which means that nine patients need to be treated with 
the biomarker-recommended treatment to have one more patient 
remit compared with active treatment prescribed in an arbitrary way. 
This NNT is close to the effect of tricyclic antidepressant and SSRI 
monotherapy (minimum NNT 7)43 compared with placebo. This is 
rather impressive, considering that the simulated stratified remission 
rate was not compared with a non-active control treatment but rather 
to active treatment, meaning it reflects the added effect of biomarker-
based stratification.

Since the focus of the present article is treatment stratification, 
associations between iAF and outcomes outside the context of stratifi-
cation were not tested and the presented biomarker was not developed 
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Fig. 3 | Normalized remission rates within subgroups that would be assigned 
to respective treatment according to the biomarker. Orange color indicates 
synchronization subgroup, burgundy indicates high-decile subgroup and blue 
indicates low-decile subgroup.
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in the classical sense, validated on specificity and sensitivity. Instead 
the aim was to determine correlates that help decide between several 
evidence-based treatments, enriching treatment decision with a brain-
based parameter to be considered in the context of other determining 
factors, such as treatment history or contraindications. We acknowl-
edge that treatment prescription is often bound by health care poli-
cies. The biomarker presented here is therefore only meant as a tool 
for the treating physician that aids to inform treatment prescription 
with the final prescription lying with the physician in consultation 
with the patient.

The present manuscript is subject to some limitations. Remis-
sion was evaluated by different depression scales across different 
datasets. However, all remission cutoff criteria used, except for the 
17-item Hamilton Rating Scale for Depression (HRSD-17), were in line 
with the criteria proposed by Riedel et al.44. Similarly, EEG parameters 
and amplifiers differed across collection locations, resulting in a 
total of six different EEG systems included. During preprocessing, 
all data were matched to our own datasets as closely as possible. For 
the purpose of detecting the alpha peak in frontal electrodes, all EEG 
data complied with our requirements. Moreover, consistent findings 
in spite of heterogeneity in acquisition systems highlight the robust-
ness of the biomarker.

The original ECT dataset was small (N = 19) and had an unusually 
low remission rate (26%) compared with standard ECT remission due 
to a highly heterogeneous, comorbid patient profile. However, since 
we successfully replicated our ECT finding in a larger unseen dataset 
with a remission rate considered normal for ECT, we assume that the 
small sample size and low remission rate did not affect our finding.

One noticeable feature of Brainmarker-I is that iAFs are not 
evenly distributed across the three stratification subgroups (Sup-
plementary Table 3). Approximately 40–50% of the patients fall 
into the asynchronous decile 1–5 subgroup while the 10-Hz synchro-
nous and asynchronous higher-decile (6–10) subgroup make up 
the remaining 50–60%. One reason is that an iAF of 9.8 Hz is already 
considered to fall in the upper alpha range, that is, fast alpha45, mak-
ing the synchronization marker (9.6–10.4 Hz) overlap more with the 
higher-decile subgroup.

One limitation linked to the use of an nPPV is that it depends 
on the prevalence of the biomarker in the total group, since a high 
remission rate in the biomarker subgroup will contribute more to 
the total remission rate, the more prevalent that biomarker is in the 
total group.

On the other hand, due to the rather prominent differences in 
remission rate between datasets, mentioning only the PPV in itself 
would also be biased, with a higher remission rate almost automatically 
resulting in a higher PPV.

Lastly, the high heterogeneity between datasets and their clinical 
nature complicated assessing other clinical or cognitive variables. 
Brainmarker-I per definition controls for age and sex, additional analy-
ses showed no differences in baseline severity between subgroups in 
all datasets, and the results were validated in heterogeneous clinical, 
previously unseen datasets, thereby confirming the robustness of the 
biomarker across changing variables. Nonetheless, it cannot be ruled 
out that other factors could have influenced or mediated the presented 
findings. More systematic research is required in the future to examine 
the link between the introduced biomarker and other cognitive and 
clinical factors, and to examine whether adding such variables to the 
biomarker recommendation could potentially improve treatment 
stratification.

Conclusions
We hereby present a clinically actionable transdiagnostic treatment 
stratification EEG biomarker that can successfully assign patient 
subgroups to various ADHD and MDD treatments, and is ready to be 
implemented in clinical practice.

Methods
Data collection and preprocessing
EEGs for Dataset-2, Dataset-3, Dataset-4 and Dataset-6 were recorded 
in a standardized manner in accordance with Brain Resource Ltd.35. 
In short, brain activity was measured from 26 channels of the 10–20 
electrode international system (Fp1, Fp2, F7, F3, Fz, F4, F8, FC3, 
FCz, FC4, T7, C3, Cz, C4, T8, CP3, CPz, CP4, P7, P3, Pz, P4, P8, O1, Oz, 
O2; Quikcap, NuAmps) with a ground at AFz. Measurements con-
sisted of 4-min resting-state recordings (2 min eyes open, 2 min eyes 
closed). Sampling frequency (FS) was 500 Hz, and a low-pass filter 
with an attenuation of 40 dB per decade above 100 Hz was applied 
before digitization. Horizontal and vertical eye movements were 
recorded with electrooculography (EOG) electrodes (VEOG upper 
and lower, HEOG left and right) and skin resistance was kept <10 kΩ 
for all electrodes.

Artifact rejection was performed with a fully automated, custom 
Python package46–49.

In short, bipolar EOG was removed from the EEG signal using 
Gratton50. A band-pass filter between 0.5 Hz and 100 Hz was applied, 
and the notch frequency of 50 Hz was removed. The following artifacts 
were detected and removed: electromyography, sharp channel-jumps 
(up and down), kurtosis, extreme voltage swing, residual eyeblinks, 
electrode bridging and extreme correlations. If more than 66% of 
a channel’s signal was artifactual, it was repaired using a Euclidian 
distance weighted average of at least three neighboring channels. If 
neighboring channels were not available due to artifactual data, the 
channel was removed. Very artifactual data were excluded on the basis 
of visual inspection.

For full details on preprocessing, see van Dijk et al.51. The Python 
code used for processing the EEG and calculating the iAPF is freely 
available for download at https://brainclinics.com/resources/.

Data cleaning and artifact rejection for Datasets-1, -5 and -7 were 
performed in Brain Vision Analyzer version 2.2.0 (Brain Products GmbH) 
by semi-automatic removal of epochs with signal amplitudes >150 mV.

For Dataset-1 (EMBARC)33 different EEG acquisition systems were 
used across different sites, leading to different numbers of electrodes 
(60–128) and FS (250/256). EEGs from all EMBARC locations were 
downsampled to the lowest FS (250 Hz), and electrodes were adjusted 
to match the 26 locations listed above.

ECT Dataset-5 (ref. 52) was treated accordingly, resulting in an FS 
of 200 Hz and 19 channel locations (FC3, FCz, FC4, CP3, CPz, CP4 and 
Oz missing).

Similarly, the ketamine Dataset-7 (ref. 53) combined three dif-
ferent studies with different FS and channel locations. Matching 
them to our data resulted in an FS of 500 Hz in two of the studies and 
250 Hz in one study (25 patients), and either 18 or 19 channel locations  
(FC3, FCz, FC4, CP3, CP4, CPz and either Cz or Oz or both missing).

In line with Voetterl et al.28, the primary outcome measure for all 
datasets was remission—defined as a score of ≤12 on the Beck Depres-
sion Inventory-II (BDI-II; for Dataset-2, Dataset-3 and Dataset-6), ≤7 on 
the HRSD-17 (for Dataset-1 and Dataset-4), ≤2 on the Clinical Global 
Impression ratings (Dataset-5), and ≤7 on the Montgomery–Asberg 
Depression Rating Scale (MADRS, Dataset-7). These were in line with 
remission as defined by Riedel et al.44, except for the HRSD-17 cutoff, 
which was based on the original sertraline study30, as the aim was to 
replicate this finding.

Biomarker development
Brainmarker-I for MDD is based on the same previously reported  
EEG-biomarker for ADHD28. The biomarker was developed in a large 
heterogeneous clinical dataset (TDBRAIN+; N = 4,249). A subset 
of the data, the open-access TDBRAIN dataset (N = 1,274; two dec-
ades brainclinics research archive for insights in neurophysiology), 
is freely available at http://www.brainclinics.com/resources ref. 53 
after login, with all data recorded at Research Institute Brainclinics  

http://www.nature.com/natmentalhealth
https://brainclinics.com/resources/
http://www.brainclinics.com/resources


Nature Mental Health | Volume 1 | December 2023 | 1023–1032 1028

Article https://doi.org/10.1038/s44220-023-00160-7

(Brainclinics Foundation, Nijmegen, the Netherlands). In addition, the 
data are available on the data repository Synapse at ref. 54.

EEG (pre-)processing, as well as conditions and montages 
employed, often differ considerably across studies which can hinder 
replication of findings and thereby implementation of biomarkers in 
clinical practice. In Voetterl et al.28, a standardized processing pipeline 
was developed by making use of a biological ground truth, the matu-
ration (speeding-up) of the iAF during childhood and adolescence.

In short, EEGs without measurable alpha oscillations, so-called 
low-voltage alpha (LVA) EEGs, were identified and excluded from 
further processing since an alpha peak cannot be determined in these 
data. Subsequently, 108 processing parameter permutations, compar-
ing reference montage, condition, segmentation and topographical 
location, were tested against iAF maturation in 1,671 children and 
adolescents aged <18 years. Curve fitting was performed for males 
and females separately to find the mathematical model that most 
closely represented the brain-maturation effect. The permutation 
resulting in the highest correlation between iAF and age was used for 
the subsequent analyses.

Divergence values were calculated for each individual by sub-
tracting from the individual’s iAF the model-predicted iAF for the 
individual’s sex and age, with a negative divergence score reflecting 
an iAF that is slower than the mean at that age and sex. The divergence 
values of the full dataset of >4,000 individuals were sorted and divided 
into ten equal-sized bins that denote the deciles used for assignment 
to the different subgroups later. For a more detailed description of the 
LVA and biomarker discovery, see Supplementary Discussion 2 and 3.

The iAF for all treatment datasets was determined by calculating 
the Fast Fourier Transform of the preprocessed resting-state eyes-
closed EEG data, segmented into 5 s and re-referenced to an average 
reference, based on previous literature28,31.

The highest peak within the frequency range of 7–13 Hz was identi-
fied at the 10–20 EEG system locations F3 and Fz, in line with previous 
predictions28,31,32. Participants with missing clinical data, insufficiently 
clean EEG data and EEGs with LVA were excluded. The resulting values 
were divided into decile scores, according to the cutoff values deter-
mined in the large TDBRAIN+ dataset. Treatment predictions were 
made on the basis of low (decile 1–5) or high deciles (decile 6–10) in 
the Fz electrode. For an example, see Fig. 1.

Additionally, to account for the association between an iAF close 
to 10 Hz and 10 Hz rTMS, a synchronization indicator was introduced, 
which denotes an iAF around the stimulation frequency of 10 Hz at 
the F3 location (Fig. 1). To determine the optimal range for this third 
biomarker subgroup, we tested different cutoff values that were equi-
distant from the 10 Hz frequency. Due to the frequency resolution 
of 0.2 Hz, a result of data segmentation, the possible options were 
restricted.

Ranges tested were 9.4–10.6 (49% of individuals), 9.8–10.2 (22% of 
individuals) and 9.6–10.4 (30% of individuals). The range of 9.6–10.4 Hz 
encompasses approximately a third of the individuals in the dataset and 
therefore resulted in the best ratio of patients falling into this range 
and prediction accuracy.

Since this range overlaps with the low- and high-decile sub-
groups, patients falling into the synchronization range were excluded 
from the low- and high-decile subgroups, to obtain three distinct 
subgroups.

The automated algorithm described in Voetterl et al.28 was used 
to calculate iAF and decile scores for individuals of all datasets (Fig. 1).

Statistics
PPVs indicate the remission rate within the subsample of patients that 
Brainmarker-I would have stratified to the respective treatment. An 
nPPV was calculated to be able to compare predicted remission rates 
of different datasets, using the formula (m

w
− 1) × 100  (m, PPV; w, 

observed sample remission rate). In short, the respective remission 

rate of each dataset was set to 100%, and the increase or decrease after 
stratification in relation to these 100% was calculated.

In addition, NNT was calculated, which determined how many 
patients need to be treated according to Brainmarker-I stratification 
to get one more remitter compared to treating patients with the same 
active treatments but in an arbitrary fashion.

To test whether potential findings could be explained by differ-
ences in depression severity, we conducted one-way analysis of vari-
ance analyses between the 3 biomarker subgroups (low decile without 
synchronization range, synchronization range, high decile without 
synchronization range) and baseline depression scores for all main 
datasets separately. Biomarker calculation was conducted in Python, 
using modules numpy55, pandas49 and scipy47. All other statistical analy-
ses were performed in IBM SPSS Statistics for Macintosh, Version 27.0.

Datasets
Datasets used in this study are shortly described below. Full details of 
the samples can be found in their respective published primary papers. 
Basic information about the different datasets is summarized in Table 1 
and Table 2. All studies were approved by their respective institutional 
review boards (with ethical approval numbers available in the primary 
publications of the studies).

Dataset-1: EMBARC Sertraline
The EMBARC data were precollected data that were specifically 
requested for secondary analyses (for information on ethical approval, 
CONSORT diagrams, study protocol and participant inclusion, we refer 
the reader to the relevant references)33,34. The study was approved by 
the institutional review boards of all study sites (University of Texas 
Southwestern Medical Center, Columbia University/Stony Brook, 
Massachusetts General Hospital, University of Michigan, University 
of Pittsburgh, and McLean Hospital). All participants provided writ-
ten consent for the original study from which the data has been used 
and received financial compensation. Between 29 July 2011 and 15 
December 2015, outpatients were recruited at four sites: Columbia Uni-
versity, New York; Massachusetts General Hospital, Boston; University 
of Michigan, Ann Arbor; and University of Texas Southwestern Medical 
Center, Dallas. A total of 296 participants were randomized to sertraline 
or placebo, administered for 8 weeks, and then assessed for treatment 
response (defined as ≥50% reduction in HRSD-17 scores). The study 
design stipulated responders to remain on the same drug regimen, 
and to switch nonresponders to a different medication (sertraline for 
placebo nonresponders and bupropion for sertraline nonresponders) 
for the next 8 weeks.

We used these data to conduct a blinded out-of-sample validation 
analysis, with the directed hypothesis that patients with a low decile 
score would be more likely to achieve remission to sertraline but not 
placebo. We first inspected the nPPV for sertraline and placebo at the 
primary endpoint (week 8), respectively. As a secondary outcome, we 
calculated nPPVs after prolonged sertraline or placebo administration 
(week 16).

Dataset-2 and Dataset-3: rTMS
Dataset-2 and Dataset-3 are open-label, clinical datasets composed 
of patient data collected at multiple outpatient mental health care 
clinics in the Netherlands (Brainclinics Treatment, neurocare clinic 
Nijmegen, neurocare clinic The Hague, and Psychologenpraktijk Tim-
mers Oosterhout) between May 2007 and November 2016 (Dataset-2) 
and December 2016 and June 2022 (Dataset-3). These studies were not 
reviewed by an independent ethics committee. Each patient provided 
written informed consent for data use before collection of the EEG 
data. In rTMS Dataset-2, 196 patients with MDD received 10 Hz rTMS 
over the L-DLPFC or 1 Hz rTMS over the R-DLPFC (at 120% resting motor 
threshold, 1,500 or 1,200 pulses, respectively) concurrent with psycho-
therapy32. In rTMS Dataset-3, 39 patients received only 1 Hz R-DLPFC 
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stimulation and psychotherapy. All other parameters were the same 
as in rTMS Dataset-2.

Dataset-4 and Dataset-5: ECT
ECT Dataset-4 comprises data from the Study on Neuroimaging pre-
dictors of Outcome in ECT Patients (SNOEP), which was approved by 
Rijnstate Hospital and the medisch-ethische toetsingscommissies 
(METC) Arnhem/Nijmegen. Patients who were referred for ECT treat-
ment at Rijnstate hospital between August 2016 and June 2022 were 
included. All patients provided written consent for the original study 
from which the data have been used before study start. Since these 
data were collected as part of a clinical trajectory, participants did not 
receive financial compensation. Thirty-nine outpatients with MDD 
were treated with ECT, 19 of whom had complete EEG and outcome 
data. Fourteen received bifrontotemporal (BL) stimulation and 5 right 
unilateral (RUL; according to d’Elia56) stimulation with stimulus dose 
relative to seizure threshold (SDRST; that is, 6 times seizure threshold 
(ST) in RUL and 2.5 times ST in BL ECT) and using 0.5 ms pulse width. 
Resting-state EEG data and HRSD-17-score were collected before ECT 
and 2 weeks post-ECT course.

ECT Dataset-5 comprised data of 60 patients who underwent 
ECT treatment at University Hospital Zurich between 2006 and 2015. 
This study was not reviewed by an independent ethics committee. 
All participants provided written consent for the original study from 
which the data have been used. Since these data were collected as part 
of clinical treatment, participants received no financial compensation. 
As part of clinical treatment, patients were treated with 6–12 sessions 
of bifrontal ECT (pulse width 0.5 ms, SDRST 1.5 of ST)52, with outcome 
analyzed by Clinical Global Impression ratings.

Stratification between brain stimulation techniques
Discovery analyses were conducted for brain stimulation techniques 
except for the 10 Hz rTMS prediction since the direction of effect was 
informed on previous findings. Since this finding has already been 
independently replicated32, no blinded out-of-sample validation was 
conducted. Instead, in Dataset-2, remission was predicted in patients 
with an iAF in the synchronization range (iAF between 9.6 and 10.4) 
who had received 10 Hz rTMS.

For 1 Hz and ECT datasets, all possible directions of effect were 
tested, that is, low decile score (1–5) excluding synchronization range, 
synchronization range, and high decile score (6–10) excluding syn-
chronization range. Potential findings were subsequently evaluated 
in blinded, out-of-sample validations in rTMS Dataset-3 and ECT 
Dataset-5.

Lastly, we conducted a simulation for stratification between brain 
stimulation interventions.

Since patients were not evenly distributed across the different 
subgroups (low decile, synchronization and high decile), we first 
determined the percentage of patients that can be expected to be 
stratified to each subgroup based on all our rTMS and ECT datasets. 
Subsequently, we used these percentages to calculate the weighted 
average of the PPVs that were previously determined for each treat-
ment. The resulting PPV and nPPV were the expected remission rate 
and normalized remission rate following stratification to rTMS and 
ECT with Brainmarker-I.

Dataset-6 and Dataset-7: exploratory analyses—
psychotherapy, ketamine and bupropion
Dataset-6 comprised patient data from three outpatient mental health 
care clinics (Synaeda Leeuwaarden Fonteinland, Synaeda Drachten, 
Synaeda Heerenveen), and was therefore not reviewed by an inde-
pendent ethics committee. Each patient provided written informed 
consent for data use before EEG and treatment start. Since these data 
were collected as part of clinical treatment, participants received no 
financial compensation.

Approval for all three ketamine studies used in Dataset-7 was 
obtained from the Ethical committee of Prague Psychiatric Centre/
National Institute of Mental Health, Czech Republic before patient 
enrollment. Outpatients were recruited for study participation at 
Prague Psychiatric Centre, Czech Republic between 2010 and 2022. 
All patients provided written informed consent. No financial compen-
sation was offered (for more information on ethical approval, study 
protocol and participant inclusion, we refer the reader to the relevant 
trial registration and reference53).

Exploratory analyses were performed in Dataset-6 for psycho-
therapy57, in Dataset-7 for ketamine treatment and in Dataset-1 for the 
subgroup of sertraline nonresponders, switched to bupropion (N = 54) 
in accordance with the previous analyses, however, without a guided 
hypothesis. Datasets are described in more detail in Supplementary 
Discussion 4.

Clinical trials
Data from the following trials were used in this study: Establishing 
Moderators and Biosignatures of Antidepressant Response for Clini-
cal Care for Depression (EMBARC58, identifier NCT01407094), QEEG 
Cordance and EEG Connectivity Changes after Administration of Sub-
anesthetic Ketamine Doses in Patients with Depressive Disorder59, The 
Role of mTOR (Mammalian Target of Rapamycin) Signaling Pathway 
in the Antidepressive Effect of Ketamine in Patients with Depressive 
Disorder60 and Clinical and Neurobiological Predictors of Response to 
Ketamine: towards Personalized Treatment of Depression61.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The TDBRAIN EEG data are freely available for download at https://
brainclinics.com/resources/. The EMBARC dataset is available from 
the National Institute of Mental Health Data Archive (https://nda.nih.
gov/edit_collection.html?id=2199). Other data are available from the 
corresponding author on reasonable request. Since these data were 
kindly shared with us by collaborators and due to the provided consent 
by participants of the respective studies, we are not at liberty to make 
these accessible in a repository.

Code availability
The Python code used for processing the EEG and calculating the iAPF 
was custom-made for this study and is freely available for download at 
https://brainclinics.com/resources/.
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