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Bugs as features (part 2): a perspective on 
enriching microbiome–gut–brain axis 
analyses

Thomaz F. S. Bastiaanssen    1,2 , Thomas P. Quinn3,5 & Amy Loughman4,5

The microbiome–gut–brain axis field is multidisciplinary, benefiting from 
the expertise of microbiology, ecology, psychiatry, computational biology, 
and epidemiology among other disciplines. As the field matures and moves 
beyond a basic demonstration of its relevance, it is critical that study design 
and analyses are robust and foster reproducibility. In this companion 
piece to Bugs as features (part 1), we present techniques from adjacent and 
disparate fields to enrich and inform the analysis of microbiome–gut–brain 
axis data. Emerging techniques built specifically for the microbiome–gut–
brain axis are also demonstrated. All of these methods are contextualized to 
inform several common challenges: how do we establish causality; how can 
we integrate data from multiple ’omics techniques; how might we account 
for the dynamicism of host–microbiome interactions? This perspective is 
offered to experienced and emerging microbiome scientists alike to assist 
with these questions and others at the study conception, design, analysis, 
and interpretation stages of research.

The microbiome–gut–brain axis is informed by biological and epis-
temological knowledge from many disciplines, spanning microbiol-
ogy, ecology, psychiatry, and others. Similarly, in its analysis, it is 
strengthened by methods from across the scientific landscape, as 
well as some truly interdisciplinary approaches developed specifi-
cally for the microbiome–gut–brain axis field (Fig. 1).

In part 1, we introduced core concepts and foundations of 
compositional data analysis of the microbiome–gut–brain axis:1,  
ranging from study design and pre-registration of analysis, to  
selecting the most suitable diversity metrics, and the options for 
 functional inference. In part 2, we provide a perspective on how 
to leverage techniques from other disciplines, and provide future 
directions for the microbiome–gut–brain axis field. We hope that 
this mapping of the broader landscape will provide useful naviga-
tion from which the reader may explore original sources as per their 
needs and interests.

One aim of this piece is to provide context for the methods bor-
rowed, adapted, and developed from both adjacent and far-flung fields 
and to aid the reader in appraising their respective strengths and weak-
nesses for microbiome analysis.

As a guiding principle, we believe that the microbiome–gut–brain 
axis field has an imperative to become a more reproducible science and 
to operate from a place of deeper statistical and biological understand-
ing. The techniques described in the following have been carefully 
examined and selected to ensure that they are fit to drive the field 
toward this goal.

Causality, uncertainty and the microbiome
There has been a growing call for experiments that can establish cau-
sality in the microbiome–gut–brain axis field2,3. Causality is a philo-
sophically and statistically contentious term. Granger causality can be 
thought of as a pragmatic approach to estimating causality between 
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and improve use of causal inference methods such as adjusting for 
confounding. There are many occasions where randomized controlled 
trials that would provide stronger evidence of causality are not feasible, 
biologically plausible, or indeed ethical. The complexity of the gastro-
intestinal and microbial environments is certainly difficult to replicate 
completely as interventions in clinical and even preclinical trials.

A directed acyclic graph (DAG8), or causal diagram, is a useful first 
step in making explicit the causal hypotheses and underlying assump-
tions about variables in a study. Creating a DAG serves as a prompt to 
consider, discuss with colleagues, and design analyses. It is best done 
at the conception phase of a study so that it may inform aspects of 
study design, from the timing of data collection to the list of potentially 
confounding variables about which to collect data. We stress here that 
while DAGs are a helpful tool to ask causal questions, they do not nec-
essarily allow the user to quantify causality from cross-sectional data. 
Specialized mechanistic follow-up studies remain the gold standard in 
this regard. In brief, hypothesized relationships between variables are 
represented by arrows between them, pointing from cause to effect. By 
convention, causal diagrams point left to right, with exposure variables 
on the left and outcome variable on the right. Then add any variables 
that causally impact the main exposure of interest, or the outcome, 
using arrows between variables to depict the direction of causality. 
DAGs must be acyclic; that is, variables must not contain feedback 

occurrences A and B. In a nutshell, if knowledge of the occurrence A 
helps predict the occurrence of B, A is said to ‘Granger-cause’ B. How-
ever, in the case of complex systems such as the microbiome, where 
nonlinear dynamics are ubiquitous, Granger causality may not be 
appropriate4. Historically compelling sets of criteria to establish causal-
ity between a microorganism and a disease exist, including Koch’s pos-
tulates5 and the Bradford Hill criteria6. Since these are less applicable to 
the ecosystem approach required for the microbiome–gut–brain axis, 
we will not elaborate on these criteria (but see Box 1, which leverages 
experimental design to interrogate causality). Rather, we provide an 
overview of causality concepts from epidemiology and econometrics 
that have been applied to the microbiome–gut–brain axis, as well as 
some important pitfalls.

Causal inference analysis
Causal inference is commonly the underlying motivation for microbi-
ome–gut–brain axis studies, even when it is not being explicitly tested. 
As outlined by ref. 7, being explicit about the causal motivations of 
(even) an observational analysis “reduces ambiguity in the scientific 
question, errors in the data analysis, and excesses in the interpretation 
of the results”. Rather than avoiding causal language because, as the 
oft-repeated cautionary tale goes, correlation does not mean causa-
tion, Hernán7 suggests that we instead ask clearer causal questions 
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Fig. 1 | Multidisciplinary techniques that enrich the microbiome–gut–brain 
axis field that are discussed in this Perspective. a, Constructing a DAG 
facilitates statistical techniques such as causal inference, and experimental 
procedures such as FMT can be used to interrogate causality and directionality. 
b, Techniques such as multivariate modeling and ordination can be used to 
analyze and interpret large’omics datasets. c, Higher-order patterns within 

microbiome data such as interaction networks, functional modules, ecological 
guilds, and amalgamations, called mesoscale features, are used to ask and answer 
ecologically relevant questions. d, Microbiome time series can be analyzed using 
mixed-effect models. Special cases of time-series microbiome data, such as 
microbial volatility, as well as circadian rhythms can be used to ask and answer 
targeted questions.
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loops; relationships between variables must be depicted as unidirec-
tional. This differs from infographics of gut–brain interactions, which 
are frequently bidirectional as per biological reality. An example DAG 
can be found in Fig. 2a, and we expand on DAG creation in Box 2. This 
DAG was created using the dagitty R library and reflects variables rel-
evant to the previously published schizophrenia dataset9 used in the 
accompanying Rmarkdown script.

Mediation analysis. Mediation analysis is used to investigate whether 
a variable transmits its effect on the outcome through another media-
tor variable10. For example, an effect of diet on host behavior is well 
documented, as are effects of diet on the microbiome11. Similarly, 
the gut microbiome is also known to affect host behavior12. If we were 
to test whether diet could affect host behavior via its effects on the 
microbiome, that would require a mediation analysis. Where mediation 
explains a relationship, there are two main possibilities:

•	 Partial mediation refers to the scenario where there is both a direct 
effect and an indirect (mediation) effect; for example, if diet were 
to both directly affect behavior and indirectly affect behavior by 
modulating the microbiome—which in turn affects behavior.

•	 Complete mediation refers to the scenario where—using the pre-
ceding example again—diet affects only the microbiome, which in 
turn affects behavior, but diet on its own does not directly affect 
behavior.

One recent example of how mediation analysis can be used in 
the microbiome–gut–brain axis field can be found in the context 
of autism, diet, and the microbiome13. The authors convincingly 

showed that alterations in the microbiomes of autistic children can 
be explained by a restricted diet, a common trait in autistic children. 
They concluded that since diet can explain the altered microbiome, 
that altered microbiome does not play a causal role in the occurrence 
of autism. In a letter to Yap et al.13, Morton et al.14 argued that their 
model implicitly assumed the absence of a relationship between diet 
and the microbiome (for example, independence), which is known 
to be untrue. Morton et al.14 argued that a more appropriate model 
would be one where diet affects (1) host phenotype directly and (2) 
the microbiome, which in turn affects phenotype. Essentially, they 
argue that the microbiome acts as a partial mediator in this autism 
example. See Fig. 2c for two miniature DAGs illustrating these two 
scenarios.

Several excellent tools exist to perform mediation analysis. The 
mediation package in R takes standard generalized linear model fits as 
input15. Also see the primer on how to perform a mediation analysis in 
R in the Supplementary Information.

We note that mediation is accompanied by inherently longitudi-
nal assumptions. One presumes that due to the occurrence of some 
exposure at time 1, a mediating variable is affected at time 2, and the 
outcome shift as a result is observed at some point in the future (time 
3). The use of mediation analysis in cross-sectional observational data, 
although common, is not considered best practice16. The reason for 
this is that it presumes that the causal chain being tested is correct and 
precludes an examination of a potential alternative temporal order of 
the variables. This is particularly relevant for variables that are dynamic, 
such as diet, the microbiome, and mental states. So mediation analysis 
in cross-sectional observational studies is correlational and needs to 
be validated in targeted follow-up studies. Some alternative options 

Box 1

Fecal microbiota transplantation
Fecal microbiota transplantation (FMT) involves transferring the 
microbiome from a donor to a recipient host, often after the recipient 
microbiome has been washed out using antibiotics or by inducing 
diarrhea. The idea behind the procedure is to transfer a microbial 
ecosystem, and potentially the influence said ecosystem has on its 
host along with it. FMT has shown promise as a therapy for a wide 
array of disorders86.

FMT is also used as an experimental procedure to investigate 
causality in a preclinical setting. Often in preclinical studies, murine 
models are used as the recipient of human microbiomes. FMT can 
be a useful tool to establish that a phenotype can be transferred by 
the microbiome, implying that the microbiome is a causal factor in 
the development of a phenotype. FMT experiments have been used 
in studies that provide evidence for the microbiome–gut–brain axis, 
including in depression and aging87,88. While FMT can be a powerful 
experimental tool, experimental designs involving FMT are non-trivial 
and have been the subject of valid criticism2. One such criticism is that 
observational and experimental units are often conflated in FMT studies. 
Observational units are the number of recipients, whereas experimental 
units are the number of donors. Essentially, the criticism is that in a 
study where a behavioral phenotype is transferred from a patient donor 
to 20 mouse recipients, the N number is not 20 but rather 1, as there was 
only 1 donor microbiome that transferred the phenotype.

Pooling donor fecal microbiome samples comes with drawbacks 
and should not be considered the default option for several reasons. 
First, pooling masks the inter-donor variance of the microbiome, 
which makes it difficult to trace back and investigate what features 

of the donor microbiome may have caused a phenotype to be 
transferred. Second, pooling produces microbiome compositions 
never found in nature. It is well known that numerous taxa 
display competitive exclusion; that is, they never stably appear 
in the same ecosystem. Pooling can therefore create unstable 
microbial ecosystems, which may end up in distinct compositional 
equilibria in the recipients. The recommendation is therefore 
to power the study on the basis of the number of donors rather 
than number of recipients89. Currently, inter-recipient variance in 
microbiome composition is hard to estimate due to the differences 
in methodology between FMT studies, and we recommend taking 
several recipients per donor to estimate the inter-recipient variance in 
colonization, which may also depend on the donor.

In terms of statistics, we suggest generalized linear mixed models 
to account for inter-donor variance, using donor identity as a random 
effect. These types of models can, for example, be found in the highly 
cited R library lme470.

Strain transmission and engraftment analysis is a relatively new 
field of study with applicability to FMT studies as well as to non-FMT 
horizontal microorganism transmission studies90–93. Confirming 
whether a strain has been transferred from a donor sample—rather 
than simply being very similar but unrelated—requires shotgun 
metagenomics-level resolution, as the 16S rRNA gene alone does not 
allow for this level of precision (but compare recent developments 
in full-length 16S sequencing analysis94). The most recent versions 
of MetaPhlAn95 and StrainPhlAn95 come with a specialized script to 
estimate microbial strain transmission and engraftment alike.
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with fewer data requirements have been trialed through data simula-
tion,17 demonstrating that sequential mediation—when data for the 
exposure, mediator, and outcome are collected only once each, but 
at least longitudinally and in a meaningful temporal sequence—can 
provide adequate sensitivity to identifying the presence of mediation. 
The gold standard is the resource-intensive multilevel longitudinal 
mediation, where variables that represent enduring exposures (such 
as diet) are collected repeatedly, and path coefficients between vari-
ables are allowed to vary across individuals. This may also be ideal for 
contexts in which a large degree of inter-individual variability might 
be expected (such as in host–microbiome studies).

Notably, estimating an indirect effect through mediation analysis 
requires substantially more power than estimating direct effects in 
traditional analysis. For example, one popular method to estimate the 
effect size of a mediation analysis is to multiply the two coefficients 
(exposure to mediator and mediator to outcome), which will always 

yield a smaller absolute coefficient compared to its two component 
coefficients18. Also see Box 3 on power calculations.

Mendelian randomization and the microbiome
In contrast to causal inference, Mendelian randomization is a statisti-
cal method from the field of epidemiology, often used to estimate the 
causal effects of genetic factors on a phenotype in large cohorts.19–21 In 
a nutshell, Mendelian randomization leverages the fact that genotype 
is fixed at conception and therefore takes place before the manifesta-
tion of a phenotype. This, along with other assumptions, allows the 
researcher to assess causality and directionality of the exposure (geno-
type) on the outcome (phenotype).

Recently, Mendelian randomization has been applied to micro-
biome data in the sense that genotype is replaced with microbiome 
metagenomic content. Particular care is therefore necessary. Unlike 
genotype, the microbiome is not fixed at conception but remains in 
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Fig. 2 | An example DAG followed by graphical representations of 
multivariate and mediation analyses using miniature DAGs. a, A DAG 
describes a hypothetical causal pathway, where an arrow from A to B (A → B) 
suggests a causal relationship between A and B. Ideally, the framework of 
constructs and variables is considered before (and thereby informing) data 
collection. Some examples of relevant unobserved variables are shown here in 
gray. Under the assumptions of this DAG and with only three available covariates 
(sex, smoking status, and body mass index), sex and smoking status comprise the 
minimal adjustment set required to estimate the total effect of gut microbiota 
on schizophrenia. b, Table illustrating the relationship between models where 
predictors and responses can be either univariate or multivariate. Predictor 

variables are on the left of each diagram, whereas response variables are on 
the right. Univariate predictor variable to multivariate response variables was 
included for the sake of completion. Practically, a univariate predictor variable 
to multivariate response variables can be approached in the same fashion as 
multivariate predictor variable to a univariate response variable. c, Two DAGs 
illustrating the scenarios from the section on mediation analysis. Diet affects 
the microbiome, and diet affects the brain. Mediation analysis helps us ask and 
answer whether measured associations between the microbiome and the brain 
are spurious (scenario I) or whether the microbiome affects the brain through 
diet (scenario II). BMI, body mass index.
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constant flux throughout life (Time-varying signals). While it makes 
sense to assess the causal effect of host genotype on the microbiome, 
for example, in the case of a host metabolic disorder altering the host 
gut and hence the microbiome22, it seems much less clear whether 
taking the microbial metagenome as a fixed exposure is appropriate.

High-dimensional data science
Microbiome–gut–brain axis experiments tend to yield complex, high-
dimensional datasets. Here, we will discuss techniques to handle these 
types of data and strategies to integrate multiple high-dimensional 
data from the same experiment.

Stratifying and clustering samples
In some cases, it is necessary to stratify data into clusters, distinct sub-
groups based on microbiome signature. Stratification is a common 
method of defining enterotypes, which are large subgroups based on 
microbial taxonomic composition. The precise number of true ente-
rotypes, as well as the best way to define them, is still up for debate 
(although 3–4 enterotypes are often cited23,24). Initial efforts involved 
calculating a Jensen–Shannon dissimilarity matrix and performing 
cluster analysis (clusters here corresponding to enterotypes) using 

the partition around medoids approach25. More recently, studies have 
employed the Dirichlet multinomial mixtures approach, a promising 
technique to estimate enterotypes from the Bayesian school26. In brief, 
the method involves estimating a probability vector for each sample 
and then estimating whether these vectors came from the same source 
(metacommunity, enterotype) or from separate enterotypes. Entero-
types appear to be important constructs because they are related to 
factors such as host health, diet, and exercise, despite some known limi-
tations27. Notably, bacterial load is not easy to estimate using metagen-
omic techniques such as 16S and shotgun (although compare ref. 28) 
but can rather be assessed by pan-bacterial quantitative PCR (qPCR) 
or, most accurately, using flow cytometry. Bacterial load is associated 
with enterotype identity and may bias results23,24,27.

Stratifying samples on the basis of feature abundance is a defensi-
ble approach under some circumstances, for example, when pursuing 
functional groups of microorganisms that might exhibit competitive 
exclusion. However, it is rarely advisable to stratify samples into sub-
groups while in the middle of an analysis or when working with datasets 
comprising only 10s–100s of samples because there are too few sam-
ples for validation. It is especially important to validate data-driven 
stratification, either in a new cohort or in a subsection of withheld data 

Box 2

Constructing a directed acyclic graph
In an illustrative example of the power of interdisciplinary expertise, 
ref. 96 builds on the hybrid field of molecular epidemiology to 
demonstrate the application of causal inference analysis in ’omics, 
with the following phases:

A: Ask specific, detailed research questions. Build a DAG. A DAG 
may be used to identify the hypothesized relationships among the 
exposure (microbiome), outcome (for example, schizophrenia), and 
potentially confounding variables of interest on the basis of prior 
knowledge97. By convention, causal diagrams point left to right, with 
exposure variables on the left and outcome variable on the right. 
Then add any variables that causally impact the main exposure of 
interest, or the outcome, using arrows between variables to depict 
the direction of causality. DAGs must be acyclic; that is, variables 
must not contain feedback loops; relationships between variables 
must be depicted as unidirectional. For DAGs with bidirectional 
relationships, assumptions need to be made as to the dominant 
direction of action in a given model.

B: Test the exposure–outcome association. Run unadjusted 
association analyses between exposure and outcome. This will require 
an operational definition of each. For example, which microbial 
diversity metric will be used? How is schizophrenia assessed? Is the 
exposure–disease association linear or nonlinear in form?

C: Consider other variables. Using the DAG, identify potentially 
confounding variables. This could include any common causes 
of exposure and outcome (for example, cigarette smoking, which 
may affect both the gut microbiome and risk of schizophrenia) and 
include any proxy measures of unmeasured common causes of both 
exposure and outcome (for example, family history of schizophrenia 
as a proxy for unmeasured genetic factors that could impact both 
the gut microbiome and risk of schizophrenia)98. In addition, consider 
technical or processing variables that might affect measurement 
precision, for example, microbiome sequencing batch effects99,100. 

Understanding how each of these causal and non-causal potentially 
confounding variables associate with the exposure and outcome 
will provide information to help assess whether the putative factor is 
a mediator, an antecedent, an instrumental variable (antecedent of 
exposure), or a disease consequence. If so, the putative factor is not 
a confounder and should not be adjusted for. As well as adjusting 
for confounding, one may include disease determinants that are 
independent of outcome101. Too many variables will negatively impact 
power, so is dimension reduction a possibility? Is there collinearity or 
redundancy?

D: Build multivariable models. Consider refining the a priori DAG on 
the basis of the data, adding or removing variables as required, and 
reporting models that are adjusted on the basis of the original DAG, 
updated DAG, and with any additional processing and precision-
enhancing variables that reduce measurement error. While it is 
desirable to investigate all associations manually, DAGitty software102 
does provide identification of ‘minimal adjustment sets,’ which can 
be used to block all non-causal paths, to estimate the total or direct 
effects between exposure and outcome. Non-causal confounders 
such as batch effects do not fit strictly within this tool of causal 
inference but comprise an unwanted source of variance that should 
nonetheless feature in adjusted models103.

E: Evaluate non-causal and causal explanations. Interpret the 
findings of both unadjusted and adjusted models. Consider 
possible biases, such as measurement and selection bias, and other 
explanations of effects such as reverse causality.

We stress here that DAGs are a tool to formulate causal questions; 
specialized mechanistic follow-up experiments remain the gold 
standard to establish causality in the microbiome. For a definitive 
guide on constructing a DAG, we refer the reader to an excellent free 
online course104 informed by the authors of the corresponding text105. 
There is also a useful free online tool102, although in reality DAGs can 
be drawn as a proverbial back-of-napkin sketch almost as effectively.

http://www.nature.com/natmentalhealth


Nature Mental Health | Volume 1 | December 2023 | 939–949 944

Perspective https://doi.org/10.1038/s44220-023-00149-2

that can be used as a validation set. Spurious strata can frequently arise 
from technical or biological artifacts, leading enthusiastic research-
ers on long and fruitless tangents. Clustering algorithms, by design, 
will cluster and can even find seemingly impressive clusters among 
random noise.

Multi-omics integration
The microbiome refers to the collection of microbial genes in a sample. 
While the present work focuses on this type of data, other ’omics also 
exist29–32. Microbial genetic data provide evidence of microorganism 
presence as well as their functional potential.33 Besides metagenomics, 
the three most common types of ’omics data in microbiome–gut–brain 
axis studies are the following:

•	 Metabolomics: the metabolites and small molecules in a sample. 
Mass spectrometry or nuclear magnetic resonance spectroscopy 
are the most common techniques to measure the metabolome. 
Metabolomics can shed light on the functional consequences of 
a given microbiome.

•	 Metatranscriptomics: the sequencing of RNA in a sample. In 
practice, metatranscriptomics can be thought of as RNAseq on 

a microbial community rather than a single organism. Metatran-
scriptomics can tell us about the transcriptional activity of a micro-
bial community. A microorganism may be present and have a 
certain gene, but it may not be transcribing that gene34.

•	 Metaproteomics: the proteins in a sample. Typically, metapro-
teomics relies on specialized mass spectrometry techniques to 
identify proteins and derive their sequences. Metaproteomics 
goes further than metatranscriptomics and tells us whether the 
transcribed genes are translated to proteins.

There are three broad approaches to data integration, treating 
datasets as either univariate or multivariate. The suffixes -variable 
and -variate are often used interchangeably, but they refer to subtly 
but meaningfully distinct concepts35. In short, -variate refers to the 
structural nature of the data, whereas -variable refers to the structure 
and number of variables in the statistical model (also Fig. 2b):

•	 Univariate-univariate: with two separate multivariate datasets, 
one can perform an acceptable analysis using ‘simple’ univariate 
methods by correlating each microbiome feature (for example, 
taxa or gene) with individual features in the other dataset, one at 

Box 3

Power calculations and adjustment for multiple testing
Power calculations can be daunting but are an important part of 
figuring out how many samples per group are required to register 
an effect of a given magnitude. Using power calculations can help 
avoid two undesirable scenarios. First, it saves us from going through 
the trouble of running an experiment that would not be able to find 
any effects that may be present (that is, an underpowered set-up). 
Second, it saves us from collecting more samples than necessary 
to test a hypothesis (that is, an overpowered set-up). This second 
scenario is especially important as part of our ethical commitment 
to avoid excess animal suffering (that is, ‘to Reduce’ as per the 3Rs of 
Animal Welfare), as well as participant burden in human studies.  
Both underpowered and overpowered studies waste precious 
resources.

In the case of feature-wise analyses such as differential abundance 
analysis, microbiome power calculations differ from other power 
calculations for one big reason: microbiome data are highly 
dimensional. Usually, the number of features is larger than the 
sample size. This necessitates an adjustment for multiple testing 
(for example, by Bonferroni’s correction, the Benjamini–Hochberg 
procedure, or Storey’s q value106), which must be accounted for 
as part of the power calculation. This is because without a false 
discovery rate (FDR) correction and instead using just a traditional 
P < 0.05 threshold, approximately 1 in 20 tests would give a 
false positive result, making the P < 0.05 threshold too lenient of 
an evidence threshold for most applications. Unless there is a 
compelling reason not to do so, researchers should always correct for 
multiple testing in microbiome and other high-dimensional datasets. 
Also see ref. 67 for further discussion on differential abundance 
testing. For some adjustments, notably the Benjamini–Hochberg 
procedure and Storey’s q value, the adjustment depends on the 
distribution of P values, which itself depends on the number of true 
positives. Thus, to account for adjustment, one must estimate how 
many features will be differentially abundant between treatment 
groups. This can be difficult to estimate, making it hard to choose the 
effective FDR-adjusted α threshold for the power calculations.

So how to overcome this challenge? At one extreme, we could 
consider what sample size is needed to detect a single differentially 
abundant feature if all other features are unaltered. Let us say only 
1 microorganism out of 100 tested features is actually different. 
(Incidentally, in the case that only one microorganism increases in 
abundance, the counted proportion of all the others in the sample 
would decrease. See the discussion on compositionality in the part 
1 companion piece to this Perspective1.) Then the adjusted P value 
needed to reject the null hypothesis would be 100 times lower than 
the initial α. Thus, to obtain a conservative sample size estimate, one 
should perform a power calculation where the significance threshold 
α is divided by the number of features expected to be tested (not the 
number anticipated to be differentially abundant).

At the other extreme, we could consider what sample size is 
needed to detect a single differentially abundant feature if all features 
differ between groups. In the case that all individual P values are 
lower than the alpha threshold, the Benjamini–Hochberg correction 
will not adjust any of the P values to the point that they no longer are 
under α. Thus, to obtain a liberal sample size estimate, one should 
perform a power calculation where the significance threshold α is not 
adjusted. From these two extreme scenarios, we can formulate 
bounds: for D features, the adjusted α used for power calculations 
should fall between α

D
 and α, depending on the number of features we 

expect to be differentially abundant.
In the latter case, we recommend a heuristic: αadjusted = α ×

M
D  

where D is the total number of features tested, and M is the total 
number of features expected to differ significantly between the 
groups. This adjusted alpha can then be used for power calculations 
as done under ordinary circumstances. Once a study is appropriately 
powered for differential abundance analysis, it seems reasonable to 
assume that, as a rule of thumb, the study is also appropriately 
powered for testing differences in alpha and beta diversity. Although, 
to be safe, we recommend that analysts add the total number of 
planned alpha and beta diversity analyses to D in the preceding 
formula.
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a time. Metrics such as Pearson’s and Spearman’s Rank correla-
tion coefficients are commonly used for this purpose. Both of 
these metrics can be thought of as special cases of a linear model, 
which we particularly recommend as it allows for the inclusion of 
covariates.

•	 Univariate-multivariate: treat one feature from one dataset as a 
dependent variable, and use all features from the other dataset as 
the predictors. By repeating this for each feature, all associations 
between the datasets are described.

•	 Multivariate–multivariate: multivariate regression, such as a 
canonical correlation analysis or redundancy analysis36, to obtain 
a single model that associates all features from one dataset with 
all features from the other dataset. The mixOmics package pro-
vides a user-friendly implementation of multivariate methods 
for microbiome research37,38. Similarly, neural networks or other 
machine learning can be used39–41.

For multivariate–multivariate analysis, one compelling method, 
DIABLO42, extends this approach by comparing association networks 
between phenotypes, focusing on the interactions between two ’omics 
data tests rather than the values within the two individual datasets. 
This permits the discovery of patterns not necessarily visible in either 
of the individual datasets. Note also that it is possible to extend any of 
these approaches to incorporate external information about known 
relationships within the individual dataset or across the two datasets 
(for example, via a gene ontology database). For example, joint pathway 
analysis takes advantage of existing biological knowledge structures by 
mapping two ’omics datasets to the same metabolic pathways and then 
assessing the joint coverage as a readout of pathway enrichment43,44. 
Such knowledge structures could also be leveraged to constrain an 
analysis to include only feature pairs that are canonically able to inter-
act according to the database, thus potentially preserving power by 
avoiding unnecessary hypothesis testing, as exemplified by the anansi 
framework.45 Whatever approach one uses, analysts should take care to 
normalize or transform their data appropriately, especially since cor-
relations can yield spurious results when measured for compositional 
data46,47. As with differential abundance analysis, multiple multivariate 
tests should always be accompanied by an FDR adjustment. When null 
hypothesis testing is not straightforward in multivariate methods, 
permutations or algorithmic validation (for example, cross-validation) 
may be used there instead.

Exploring the mesoscale
Mesoscale features of the microbiome contain information about pat-
terns within parts of a microbiome that can be seen across samples—not 
necessarily its smallest parts (the microscale) or about the whole system 
(the macroscale). Mesoscale analysis focuses on identifying community-
level patterns that define the ecosystem(s). This is useful because phe-
nomena in a microbiome may be more readily explained by aggregated 
patterns in the data rather than by any individual feature. The mesoscale 
is an important object of study in theoretical ecology48. These emerg-
ing techniques derive microbiome mesoscale features. The first three 
make use of external knowledge. The final two are purely data driven:

•	 Ecological guilds: ecological guilds are taxonomically unrelated 
but functionally related clusters of microorganisms that have a 
shared role in the microbiome (for example, occupy a common 
niche). For example, microbial communities across a wide span of 
environments, including soil, the ocean, and the human gut, could 
be assigned to trophic groups on the basis of how they feed on cer-
tain substrates and subsequently pass on metabolites to another 
trophic group49. While ecological guilds are a promising concept 
in microbiome science, to our knowledge there are currently no 
standardized pipelines or databases that can be used to detect 
and compare ecological guilds across cohorts and experiments 

(but compare ref. 50). Such tools would be welcome additions 
to the field51,52.

•	 Functional modules: functional modules are a list of curated meta-
bolic pathways encoding for processes that are related to a specific 
aspect of the microbiome. We will consider two classes of func-
tional modules. Gut–brain modules cover pathways that are related 
to gut–brain communication, such as serotonin degradation and 
histamine synthesis. The complete list of gut–brain modules can 
be accessed as a table in the supplementary files of ref. 53. Gut-–
metabolic modules, from the same group, encompass metabolic 
processes in the microbiome. Changes in gut–metabolic modules 
can indicate a shift in the microbial metabolic environment and 
thereby in the fitness landscape, thus allowing for microorgan-
isms with different metabolic features to thrive. The complete list 
of gut–metabolic modules can be accessed as a table in the sup-
plementary files of the paper that introduced them54. Functional 
modules are especially interpretable and help develop hypotheses 
for future experiments. We note that functional module analysis 
depends on the availability of a functional abundance table (see the 
section on functions in the companion piece of this Perspective1).

•	 Enrichment analysis: differential abundance (DA) analysis is first 
performed on taxa or genes or other ’omics features, and then a 
functional database is used to summarize the DA results. In the 
simplest case, the DA results can be dichotomized into significant 
or non-significant, and functional status can be dichotomized as 
present or absent. For each function, one could perform a Fisher 
exact test (or similar) to test over-enrichment among the signifi-
cant taxa, genes, or features43,55. Gene set enrichment analysis is 
a popular generalization of this concept and is commonplace in 
gene expression analysis55.

•	 Network analysis: network analysis is most often applied to study 
or visualize associations between microbiome features such as 
taxa or genes. This requires some measure of association. The 
Pearson’s correlation is the most popular; however, correlations 
have been shown to yield spurious results when applied to com-
positional data56. For this reason, several alternatives have been 
designed specifically for microbiome data46,57,58 (also see the dis-
cussion on compositionality in the companion piece to this Per-
spective1). These metrics build on a log-ratio transformation that 
makes them more robust to the biases introduced by composition-
ality59, although they can still be prone to false positives60. A recent 
benchmark of 213 single-cell datasets has shown that proportion-
ality has excellent performance for sparse high-dimensional data 
such as those encountered in microbiome research61.

•	 Balance selection and summed log-ratios: balance selection and 
data-driven amalgamation are two new approaches to learning 
mesoscale features directly from the data. In both cases, the moti-
vation is to find mesoscale features that serve as a biomarker to 
predict another variable of interest. These mesoscale features 
are unique in that they are defined explicitly as a ratio between 
groups of taxa, similar to the Firmicutes-to-Bacteroidetes ratio62. 
By using a ratio of taxa, any normalization factors would cancel, 
thus making the method normalization-free. When the groups of 
taxa are summarized by a geometric mean, the resultant mesoscale 
feature is called a balance. When they are summarized by a sum, 
the resultant mesoscale feature is called a summed log-ratio. Soft-
ware tools such as selbal63, balance64, amalgam65, and CoDaCoRe66 
enable analysts to learn mesoscale features in a few lines of code. It 
is customary to validate the reliability of these features by measur-
ing predictive performance in a withheld test set67.

Time-varying signals
While 16S and shotgun sequencing allow only for snapshot measure-
ments of the microbiome, in reality, microbiomes are dynamic ecosys-
tems in constant flux. To account for this, it has become more common 
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for studies to include multiple (repeated) measures of the microbiome. 
However, time-series analysis necessitates special considerations68,69.

Statistical considerations with time-varying data analysis
Time-series data, where the same microbiomes are sampled repeatedly, 
intrinsically break the assumption of independence between sam-
ples that many statistical tests rely on. Mixed-effects models are well 
equipped to handle this type of data, using the resampled microbiome 
as a random effect. The well-documented and widely used lme4 pack-
age in R provides an excellent framework for this70. More-specialized 
microbiome tools such as MaAsLin271 are also available.

A recent study on the temporal variation of the microbiome esti-
mated that inter-individual variation is smaller than intra-individual 
variation72. Taking several microbiome measurements over time may 
therefore be necessary to increase power to detect group differences. 
Another approach to deal with this high intra-individual variation is to 
include microbial variance in the model73. This allows investigation of 
whether microbial variability itself is associated with the phenotype of 
interest. The idea that microbial variance rather than abundance can 
be informative for a phenotype is core to the idea of volatility.

Volatility
The microbiome is a dynamic ecosystem that undergoes constant 
change. The degree of change in the microbiome over time is called 
volatility, which is inversely related to stability. The term was first 
coined during the early days of the Human Microbiome Project in 
the context of instability74 and was soon thereafter used to describe 
the degree of change in the microbiome between two time points75. 
It can be helpful to think of volatility as a change in sample diversity 
(alpha or beta) over time. In a neutral setting, without intervention, a 
higher volatility is generally considered to be associated with negative 
health outcomes76. One way to calculate volatility is to measure the 
beta diversity between two or more time points corresponding to the 
same host. When measuring volatility in this fashion, it is especially 
useful to choose a beta diversity metric that is also a distance (that 
is, follows triangle inequality, such as PhiLR or Aitchison distance) so 
that any comparisons are standardized for all time points. Volatility 
has recently been shown to differ between enterotypes, indicating 
that microbiome composition at least partially explains microbiome 
volatility72. Because sampling depth is known to affect beta diversity 
indices, it may be worth subsampling before volatility analysis77.

Circadian rhythms
Circadian rhythms, or 24-hour biological cycles, are key in maintaining 
physical and mental health78. The microbiome is an example of a biological 
system that displays such a 24-hour cycle79,80. Typically, models that assess 
rhythmicity will make use of a sinusoidal model rather than a conventional 
linear model. Circadian rhythms are a special case of time-varying data as 
there is an implicit assumption that microbial taxa will oscillate around a 
set mean (mesor). Due to the 24-hour period of a circadian rhythm, time 
of sampling becomes an important source of variance and thus a relevant 
covariate even when the researcher is not interested in investigating 
circadian rhythms per se. We recently developed the kronos package in 
R to analyze circadian rhythms in the microbiome81.

Consolidating and looking forward
As the microbiome–gut–brain axis field continues its maturation, we 
shift our priorities away from a basic demonstration of relevance and 
toward formulating and addressing more mechanistic questions. In 
the final section of this Perspective, we briefly look forward to efforts 
to consolidate findings in the field.

Meta-analyses
In a nutshell, meta-analyses incorporate outcomes from numerous 
studies on the same subject to estimate a ‘true effect` on the basis 

of a weighted summary of the component studies. When planning a 
meta-analysis of microbiome–gut–brain axis studies, it is particularly 
important to consider which features to analyze. For example, it may 
be preferable to investigate the role of microbial functions in a disorder 
rather than taxonomy-level data. In addition, due to large inter-study 
heterogeneity in methodology, it may not be appropriate to compare 
reported outcomes from studies at all, and a ‘meta-re-analysis` from 
raw data may be warranted. This again underlines the importance of 
making microbiome data publicly available. We note and applaud the 
burgeoning development of meta-analysis methods for microbiome 
studies such as MMUPHin by ref. 82, which account for the heterogene-
ity in pre-processing that precludes standard meta-analysis tools and 
techniques.83–85 A groundswell of attempts at reproducing previous 
findings and quantitative synthesis of the literature to date will improve 
the robustness of the field, as it has done in others.

Toward enriching microbiome–gut–brain axis research
In this part 2 of our Bugs as features Perspective, we have taken you on 
a tour of both adjacent and far-flung topics to enrich contemporary 
microbiome–gut–brain axis research, from Mendelian randomiza-
tion and mediation analysis to numerous ways to explore microbi-
ome patterns of the mesoscale. In combination with the concepts and 
foundations detailed in part 1, and the corresponding supplementary 
code tutorial, we have described the key considerations for microbi-
ome–gut–brain axis analysis1. In our opinion, establishing causality, 
integrating multi-omics data, and accounting for the dynamic nature 
of the microbiome are key. We hope that this Perspective has assisted 
with confident navigation of the microbial landscape. We trust that the 
increased use of biologically and statistically sound methods such as 
those described here will improve our understanding of the complex 
phenomenon known as the microbiome–gut–brain axis.
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