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Bugs as features (part 1): concepts and 
foundations for the compositional data 
analysis of the microbiome–gut–brain axis

Thomaz F. S. Bastiaanssen    1,2 , Thomas P. Quinn3,5 & Amy Loughman4,5

There has been a growing acknowledgment of the involvement of the gut 
microbiome—the collection of microorganisms that reside in our gut—in 
regulating our mood and behavior. This phenomenon is referred to as the 
microbiome–gut–brain axis. Although our techniques to measure the presence 
and abundance of these microorganisms have been steadily improving, the 
analysis of microbiome data is non-trivial. Here we present a perspective on the 
concepts and foundations of data analysis and interpretation of microbiome 
experiments with a focus on the microbiome–gut–brain axis domain. 
We give an overview of foundational considerations before commencing 
analysis alongside the core microbiome analysis approaches of alpha diversity, 
beta diversity, differential feature abundance and functional inference. 
We emphasize the compositional data analysis paradigm. Furthermore, 
this Perspective features an extensive and heavily annotated microbiome 
analysis in R, as a resource for new and experienced bioinformaticians alike.

Microorganisms can be found in large numbers in almost all environ-
ments, including in and on the human body. The largest collection of 
microorganisms on humans can be found in the gut and is referred 
to as the gut microbiome. According to recent estimates, the human 
gut microbiome typically consists of around 3 × 1013 microorganisms, 
weighing approximately 200 g (ref. 1). In terms of genetic diversity, the 
microbiome outmatches its human host by more than three orders 
of magnitude, and has co-evolved with their eukaryotic hosts2. While 
the gut microbiome typically refers to microorganisms housed in the 
large intestine, there are microbial niches throughout the gastroin-
testinal tract that have relevance for health states, in particular in the 
oral cavity (for example, tongue, plaque, gingival surfaces) and the 
small intestine. For completeness, we use ‘gut microbiome’ or ‘gut 
microbiota’ to encompass any and all microbial communities along 
the gastrointestinal tract.

The microbiome–gut–brain axis
With the advent of high-throughput sequencing, the gut microbiome 
has become a popular subject of investigation, as evidenced by large 

scientific endeavors designed to map the human microbiome to health 
and disease3–7. As part of these efforts, it has become increasingly clear 
that the microbiome is in constant bidirectional communication with 
the host, and that both systems influence each other on multiple levels. 
The bidirectional communication between the microbiome and the 
host brain is referred to as the microbiome–gut–brain axis. There are 
several ways in which this communication occurs, for example, in the 
production of neuroactive compounds and metabolites such as short-
chain fatty acids, modulation of the immune system and direct stimula-
tion of the vagus nerve8. Besides having an important role in gut–brain 
communication during health and homeostasis, the microbiome has 
also been found to be affected by psychotropic medication9,10. In some 
cases, the microbiome can even metabolize psychotropic medication 
such as l-DOPA, which is frequently prescribed for Parkinson’s disease11.

The oral microbiome, typically sampled via saliva, has also 
been reported to associate with depressive states, risk of dementia, 
metabolic health, and cardiovascular disease12–15. Similar to the large 
intestinal microbiome–gut–brain axis, there are numerous routes of 
communication between oral microorganisms and the central nervous 
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rapidly evolving field such as microbiome science, it is appropriate to 
continue hypothesis generation and exploration. However, exploratory 
analyses should be presented as such, and should be clearly distin-
guished from confirmatory hypothesis testing21. Pre-registration may 
include a discussion about the power calculations used to select the 
sample size, which we discuss in the companion piece to this paper25. 
The special case of experimental designs involving fecal microbiota 
transplantation is also discussed there. Also, see ref. 26.

Considering potential confounding factors. A key challenge of micro-
biome research, and in particular observational studies of the human 
microbiome, is delineating the variable of interest from other factors 
that influence the ecosystem. Genetics, ethnicity, early life factors 
such as modes of birth and feeding and stress, habitual diet, environ-
mental exposures, and medication use are just some of the important 
contributors to the human microbiome, and are also often related to 
the outcome of interest9,27–29. These are always worth considering in 
microbiome research, especially in the context of causal inference 
modeling. The most appropriate way to account for these confounding 
factors is highly context-dependent and can be difficult to determine. 
Clearly communicated and reproducible methods are key. We discuss 
three important and related approaches to statistically deal with these 
factors, a process referred to as deconfounding.
•	 Linear modeling. One straightforward and common strategy to 

deal with these factors is to include them as covariates in a statis-
tical model, most frequently a generalized linear model. These 
flexible models can be thought of as more general versions of 
frequently used ‘named’ statistical tests such as the t-test, Pear-
son’s correlation coefficient and analysis of variance. Also see 
the demonstration found in Supplementary Data 1, where we 
demonstrate and discuss including covariates in a linear model. 
Relatedly, one could compare two models—an H0 (null) model just 
including the covariates used as confounders versus an H1 model 
that includes the microbiome feature of interest in addition to 
those covariates—using a log-likelihood test or similar.

Often however, as a wide variety of factors affect both the micro-
biome and the brain side of the microbiome–gut–brain axis, it can be 
unclear how many and which factors to include as covariates.
•	 Stepwise variable selection. Also referred to as stepwise regres-

sion, is often used as a way to statistically determine which fac-
tors to include as covariates in a data-driven manner. In brief, this 
method involves sequentially adding or subtracting covariates 
from a model and recalculating the test statistic, retaining those 
covariates that show statistical significance.

We note here that statistical significance does not determine 
whether a variable is or is not a confounder. Ideally, biological knowl-
edge should inform the inclusion or exclusion of a covariate in a model. 
The biostatistician should always consider the biological interpretation 
of including or excluding a covariate from a statistical model. Practi-
cally, however, this may not always be feasible, especially in highly 
complex biological datasets such as from microbiome science.
•	 Causal inference. A third approach that does require biological 

interpretation. Although not always the stated aim, causal infer-
ence is frequently the underlying motivation for studies of the 
microbiome. Consider psychiatry, for example. We may aim to 
estimate the effects that the gut microbiome has on some param-
eter of brain function, whether it be mood, behavior, cognition or 
a neurodevelopmental indicator. Other valid study aims might 
include description (for example, of the microbiome in people 
experiencing depression) and prediction (for example, can we 
predict who will develop depression based on their microbial fea-
tures); however, causal interpretations are often attributed even 
to these kinds of studies30. In the companion piece to this paper, 

system, including direct translocation of microorganisms via facial 
nerves, the olfactory system and the bloodstream, as well as indi-
rect neuroinflammatory effects via systemic inflammation caused by 
periodontal infection. The small intestine is more difficult to study; 
however, it has established roles in carbohydrate metabolism, bile 
acid deconjugation and micronutrient storage16. It is implicated in 
gastrointestinal pathophysiologies such as environmental enteric 
dysfunction, pouchitis and irritable bowel syndrome (IBS), of relevance 
to the pathophysiology17.

A perspective on microbiome bioinformatics 
analysis
Microbiome analysis is complex, and the discoveries about methods 
and biology alike are evolving constantly. This Perspective aims to 
make microbiome data analysis less daunting by presenting a concise 
description of the key steps involved. Although there are many reason-
able approaches to analysing the microbiome, we set out to provide the 
reader with at least one such approach. Here we present an overview of 
the various methods used to analyze, interpret, and visualize microbi-
ome studies. The text below focuses on high-level concepts, but we also 
include a fully reproducible analysis in Supplementary Data 1, written 
in R Markdown, that takes our readers through a complete analysis of 
microbiome data, starting at the feature table.

This two-part Perspective series and the accompanying Supple-
mentary Data 1 were written with an audience specialized in biological 
psychiatry in mind and many of the examples in this paper reflect this. 
However, we argue that the points discussed here can be applied to 
most, if not all, host–microbiome experiments. An overview of a typical 
microbiome analysis is shown in Fig. 1.

Getting ready for the analysis
Pre-registration
Pre-registration is a main component of reproducible science and is 
becoming a routine practice18–20. We stress here that we are not advocat-
ing for the pre-registration of any and all microbiome studies. Indeed, 
exploratory studies play a crucial role in mapping ‘microbial dark mat-
ter’ and allow for subsequent hypothesis generation. Pre-registration 
involves documenting hypotheses and an analysis plan for a study 
before examining data and running the analysis. It is a practical commit-
ment to avoid ‘fishing’ and the selective presentation of results on the 
basis of significance, and to mitigate against the known cognitive biases 
of human reasoning (for example, confirmation bias)21. In microbiome 
science, where the control of the type 1 error rate is critical, and the 
reproducibility of findings is particularly challenging22, pre-registration 
is especially important. Early indications suggest that the practice 
has reduced publication bias for positive results23, and can therefore 
improve the integrity of published research. Pre-registration tools 
prompt researchers to describe their study and research questions, 
and then generate a date-stamped document that can be published 
with a digital object identifier (DOI) either immediately or after a user-
defined period of embargo (for example, following publication). The 
pre-registration document thus serves as a public record of the planned 
analyses and analytic strategy that can be referenced in resulting publi-
cations to affirm that the findings reflect a hypothesis-driven analysis. 
Pre-processing steps should also be specified a priori where practicable, 
as these will affect downstream results. There are a number of free 
tools and guidelines for pre-registration, including the Open Science 
Framework (osf.io) and As Predicted (aspredicted.org). These are akin 
to clinical trial registration sites, and are suitable for observational and 
experimental studies alike. Guidance as to relevant details to include 
in pre-registration and study design more broadly can be sought from 
emerging consensus checklists such as Strengthening The Organization 
and Reporting of Microbiome Studies (STORMS)24. It is important to 
note that within a pre-registration framework, exploratory and post 
hoc analyses are still entirely valid. Indeed, within a relatively young and 

http://www.nature.com/natmentalhealth
https://osf.io/
https://aspredicted.org/


Nature Mental Health | Volume 1 | December 2023 | 930–938 932

Perspective https://doi.org/10.1038/s44220-023-00148-3

we discuss the five phases of causal inference analysis adapted 
from Ponsonby and present a directed acyclic graph modeled 
on the example from the Zhu et al. dataset expanded on in the 
accompanying demonstration25,31,32.

Even within descriptive or predictive studies, it can be useful to 
examine whether causal features such as dose response or temporality 
exist. Causal questions are frequently implied even in cross-sectional 
and associative human studies, for example, in which the microbiome 
is not being manipulated, and its effect is therefore not being explicitly 
measured. For this reason, causal inference principles have broad 
relevance. Importantly, causal inference is not the same as assigning 
causality based on an observational study; rather, causal inference 
seeks to determine whether the data support a causal hypothesis by 
performing statistical analyses within a causal framework.

The feature table
Although 16S/amplicon and shotgun sequencing differ widely in execu-
tion, the type of data that is obtained tends to converge downstream in 
the analysis. After pre-processing, both 16S- and shotgun-sequencing 
methodologies yield a feature abundance table. A feature abundance 
table shows how many observations (that is, counts) there were for each 

feature (for example, microorganism, function, gene and so on) per 
sample. Some programs and frameworks, such as marker gene-based 
operational taxonomic units (mOTUs) and many shotgun-sequencing 
tools, do not produce count tables but rather (relative) abundance 
tables (total sum scaling (TSS)-transformed). Fortunately, the com-
positional methods discussed in Box 1 are still appropriate in these 
cases. By convention, a feature abundance table should have features 
as columns and samples as rows. Although many software tools assume 
this organization, there are notable exceptions, so it is always worth 
checking the software before proceeding with an analysis. It is tempting 
to directly correspond a count or abundance to a biological instance 
or abundance of a feature in a sample, but owing to biases inherent 
to metagenomic sequencing33–35, raw abundances should be pre- 
processed first, for example, via normalization or log-ratio transfor-
mation. Sometimes counts and abundances are instead expressed as 
compositional data, which we discuss in Box 2. See Supplementary 
Information Sections 1.2 and 1.3 for tools to generate feature tables 
from 16S- and shotgun-sequencing data, respectively.

Rare features and rarefaction
Before the microbiome analysis starts, it is common to filter out fea-
tures by removing them entirely from the feature table. Testing fewer 
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Fig. 1 | Overview of what a typical gut microbiome analysis may look like.  
a, The pre-digital part of the pipeline. Genetic material is isolated and digitized, 
using either 16S rRNA gene or metagenomic shotgun sequencing. b, The 
digitized reads are annotated based on taxonomy and/or function. This process  
is distinct between data from 16S and metagenomic shotgun sequencing.  
In the case of shotgun sequencing, reads can be mapped directly to reference 
genomes, or reads can be assembled to MAGs, which can in turn be annotated  
for taxonomy and functional content. Often, both approaches are employed 
within the same study. c, The features are tallied up into feature tables.  

d, Higher-order structures are identified and derived from the feature table. 
Examples include mesoscale structures such as interaction networks, trophic 
layers, ecological guilds, and functional modules. e, The features of the 
microbiome are assessed statistically. Special attention should be given here to 
controlling the false discovery rate. f, Finally, the findings are interpreted and 
presented for peer review. In tandem with publication, raw data should be made 
available to other researchers by uploading to a repository such as the SRA or 
ENA. For a more in-depth comparison of sequencing protocols, we refer the 
reader to specialized reviews55,56.

http://www.nature.com/natmentalhealth


Nature Mental Health | Volume 1 | December 2023 | 930–938 933

Perspective https://doi.org/10.1038/s44220-023-00148-3

features reduces the magnitude of the false-discovery-rate adjustment 
penalty, which in turn helps to increase the statistical power for the 
remaining tests. Most often, the filtered features represent rare taxa 
or rare genes. Commonly, features that are detected in only a certain 

percentage of samples are removed. This is referred to as prevalence 
filtering. Similarly, features that are detected in only low levels can be 
dropped. This is referred to as abundance filtering. It is worth consider-
ing the underlying reasons why a feature may have low prevalence or 

Box 1

16S rRNA gene/amplicon versus 
shotgun sequencing
Generally speaking, two methods of microbiome sequencing are 
widely used. The first is 16S rRNA gene sequencing, also called 
amplicon sequencing or simply ‘16S’, includes methods where 
an evolutionarily preserved genomic sequence is targeted and 
sequenced. The second is metagenomic shotgun sequencing, 
where all genetic material in a sample is targeted and sequenced.

Although downstream bioinformatics analyses of both types 
of microbiome sequencing techniques converge, the actual 
techniques are distinct57. When deciding whether to perform 16S 
or shotgun sequencing in host–microbiome experiments, broadly 
speaking, it is often preferable to perform shotgun sequencing, as 
the approach allows for higher-resolution analysis and provides 
the researcher with direct information on the genetic content of 
a microbiome sample. Furthermore, shotgun sequencing allows 
for the reconstruction of uncharacterized genomes, enabling 
the researcher to investigate novel microorganisms. Shotgun 
sequencing also enables the user to track a specific microorganism 
through several samples to perform transmission analysis  
(see ref. 58 and the section on fecal microbiota transplantation in 
the companion paper25). We also note here that 16S-sequencing 
results can potentially be biased owing to 16S rRNA gene copy 
number variation. Copy number variation can be thought of as 
a multiplicative (scalar) bias of the estimated relative feature 
abundance. Conveniently, compositional difference between 
samples is invariant to this type of multiplication by a fixed 
vector34,59 (Box 2). Unaccounted copy number variation does, 
however, bias alpha diversity indices (Supplementary Section 2.1).

There are, however, some scenarios where 16S is preferable. 
First, the price of 16S is lower than that of shotgun—although this 
difference is decreasing, and shallow shotgun sequencing has 
been used as a cost-friendly alternative to 16S60. Furthermore, 
because 16S targets only a gene unique to microorganisms 
and has a PCR amplification step, the technique is preferable in 
samples with a low microbial biomass or with a large proportion 
of non-microbial (host) genetic material such as the tumor 
microbiome. Notably, both techniques are biased towards 
detecting specific genetic sequences and thus by extent specific 
microbial taxa61. Such biases are known to occur between 
metagenomic sequencing experiments of the same type, even 
between runs in the same laboratory34,35.

Although wet-lab protocols, including sequencing protocols, are 
outside the scope of this paper, they greatly impact the quality and 
content of the resulting microbiome sequencing data. For instance, 
the microbiome sampling kit itself can contribute a microbiome 
signature to a measurement62. This can be particularly impactful 
in environments with a low microbial biomass. There is an ongoing 
effort to standardize microbiome sequencing protocols, for which 
we refer the reader to specialized reviews55,56.

See Supplementary Sections 1.1, 1.2 and 1.3 for recommendations 
on quality control, pre-processing 16S-sequencing data and 
shotgun-sequencing data to generate feature tables, respectively.

Box 2

Microbiome data are 
compositional
Compositional data refers to a type of data that can be described 
as a set of proportions, percentages, or probabilities, or with a 
constant or arbitrary sum. Rather than the relative abundance 
or sizes of the components, the ratios between components 
hold information in compositional data63. Over the past few 
years, awareness has grown such that microbiome datasets are 
compositional, which, if ignored, can lead to spurious results. 
The field of study of how to deal with compositional data is called 
compositional data analysis (CoDA). There are excellent reviews on 
CoDA in general and how it relates to the microbiome, in particular, 
that we encourage our audience to read41,64,65.

CoDA theory and practice is continually evolving, and a full 
review of the field is beyond the scope of this paper. In this 
Perspective, we recommend, at a minimum, performing a CLR 
or similar transformation (for example, PhILR) on the count data 
before performing statistical analysis or visualizing the data. 
Notably, these log-ratio transformations do not require count 
data as input but could even be performed on expressly relative 
abundance data such as TSS-transformed feature tables. In 
contrast, transformations we expressly recommend against  
here, to account for the effects of compositionality, include  
log-transformations and TSS on their own.

However, there are three notable exceptions.
 • First, alpha diversity should not be done on log-ratio-
transformed data. This is due to the nature of the formulas that 
are used to compute alpha diversity metrics, which all take 
feature abundance as input66 (Fig. 2a).

 • Second, stacked bar plots should be created using counts 
normalized to one or to percentages. This transformation is often 
referred to as TSS. Here, it is worth noting that stacked bar plots 
depict the proportion of observed reads, which is distinct from 
the actual sample (relative) abundance34,35.

 • Third, correlating taxa to each other, for example, as part of a 
network analysis, warrants special attention. This is because 
one of the properties of compositional data is that features are 
inherently negatively correlated. Indeed, Karl Pearson warned 
against applying his namesake Pearson’s correlation coefficient 
on compositional data67. Alternatives are available from the 
propr library68, the SparCC library69 and the SPIEC-EASI library70.
Note that because microbiome count data typically have 

many zeros and the logarithm of a zero is undefined, the zeroes in 
microbiome count data must be addressed. Several reasonable 
solutions have been proposed, but it remains an open question 
as to which among these solutions performs best (although 
compare ref. 71, for one benchmark). In the demonstration found 
in Supplementary Data 1, we employ an approach derived from 
ref. 71, where zeroes are replaced by two-thirds of the lowest non-
zero value. After the CLR transformation, the values of features 
can take on any value (unlike count data, which cannot be 
negative). After transformation, classical statistical approaches 
can be applied as usual.

http://www.nature.com/natmentalhealth
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abundance in your data. Owing to the count-based nature of sequencing 
data, low-abundance features are less likely to reach the limit of detec-
tion and come up as zeroes. It is easy to see how low count abundance, 
perhaps due to low sequencing depth, can artificially increase feature 
variance36. In other words, the absence of evidence is not the evidence 
of absence.

Sometimes, one might wish to filter out features based on other 
metrics, such as variance37,38. However, features should not be filtered 
based on their association with an outcome, as this could bias the test 
statistics and resulting P-value estimates in downstream statistical 
tests. The total number of observations recorded for each sample in a 
feature table depends on the sequencing depth of the assay. Rarefac-
tion is the practice of randomly removing observations from a sample 
until all samples have the same amount of observations. However, it has 
been described as an unnecessary and potentially counterproductive 
measure39. It is more conventional now to address inter-sample differ-
ences in sequencing depth through effective library size normalization 
or log-ratio transformation40,41. One notable exception is diversity 
analysis as discussed below42–44. We argue that, while rarefaction is 

sometimes justifiable and even recommended, rarefaction should not 
be seen as the default approach.

Linking the microbiome to host features
Diversity indices
The microbiome is a complex ecosystem. The analysis and visualiza-
tion of the microbiome can be qualitatively distinct from other high-
throughput sequencing data. Although the data arise from a molecular 
biology assay, several of the statistical approaches used in microbi-
ome analysis originate from other fields, such as ecology. This makes 
microbiome science a clear beneficiary of interdisciplinary research. 
Diversity, as popularized in ecology, is a way to quantify and understand 
variation in microbiome samples. Classically, diversity is separated 
into two main related types: alpha diversity and beta diversity45. Alpha 
diversity refers to the degree of variation within a sample. Beta diversity 
refers to the degree of variation between samples. See Fig. 2 for an 
overview of the different alpha- and beta diversity indices.

We expand on statistical considerations with diversity met-
rics, including applying statistical models to estimate the effects of 
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Fig. 2 | Understanding alpha and beta diversity. a, Alpha diversity metrics are 
related to each other. Commonly used alpha diversity metrics in the microbiome 
field can be classified along two axes. Here we show the Hill number on the 
x axis and whether the index considers phylogeny on the y axis. b, Decision 

tree featuring common beta diversity indices. Some beta diversity indices are 
more suitable depending on the needs of the researcher. This decision tree 
recommends an index based on three common criteria: whether one wants to 
consider abundance, phylogeny and/or true distance.
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variables on diversity, in Supplementary Information Sections 2.1  
and 2.2, respectively.

Alpha diversity. Alpha diversity refers to the degree of complexity 
within a single microbiome sample. Many different but related alpha 
diversity indices exist, but their relation is unclear from their names. 
This can make the underlying principles confusing to understand. It 
is helpful to classify alpha diversity measures along two axes: the Hill 
number (0, 1 or 2) and whether it is phylogenetic (yes or no). Regard-
ing the first axis, alpha diversity measures can be understood as being 
the result of a unifying equation in which a single parameter—called 
the Hill number—acts to vary the meaning of the equation, and thus 
define the alpha diversity measure. Every number gives a different 
alpha diversity metric. In practice, three Hill numbers are most often 
used: 0, 1 and 2. The number 0 defines richness, or how many differ-
ent features a sample has. The number 1 defines evenness, or how 
equally the features in a sample are represented (equivalent to Shan-
non entropy). The number 2 defines Simpson’s index, or the prob-
ability that two features picked at random do not have the same name 
(as a probability, it is bounded by 0 and 1). Regarding the second axis, 
other phylogenetic-diversity measures, such as Faith’s phylogenetic 
diversity, extend alpha diversity by taking into account the coverage 
of all features (for example, bacteria) on a phylogenetic tree. Typi-
cally, the more of the tree that is represented in a sample, the higher 
the diversity. Figure 2a illustrates a classification of several popular 
alpha diversity measures.

Beta diversity. Beta diversity refers to the degree of difference between 
two microbiomes. It is worth appreciating the assumptions and limita-
tions that come with describing the total difference between two com-
plex ecosystems as a single number. There are many ways to measure 
the ‘difference’ between two samples, and each one imparts a unique 
perspective on the data. In principle, one could use any dissimilarity or 
distance measure. Three common difference measures are:

•	 Jaccard’s index. This is a similarity measure that simply describes 
the proportion of unique taxa that are shared between two 
samples, without taking abundance into account. As such, one 
could interpret Jaccard’s index as the fraction of unique taxa (not 
abundances) shared by two samples. If two samples have exactly 
the same microorganism taxa, the Jaccard index will be 1. In the 
case that two samples share no microbe taxa, the Jaccard index 
will be 0. Subtracting Jaccard’s index from 1 makes it the Jaccard  
distance measure.

•	 Euclidean distance. This is the geometric distance derived by 
applying the Pythagorean theorem, using every microorganism 
as a separate dimension. It is computed by taking (the square root 
of) the sum of the squared differences in bacteria abundance. 
As in geometry, the minimum Euclidean distance is 0 while the 
maximum is unbounded. Euclidean distance satisfies the triangle 
inequality, making it useful for certain geometric analyses, such 
as volatility analysis as discussed below. A related measure called 
Aitchison distance is the Euclidean distance between log-ratio-
transformed data. This distance has a favorable property known 
as sub-compositional dominance (that is, the removal of a taxa 
feature will never make two samples appear further apart) and 
is also equivalent to taking the Euclidean distance between all 
pairwise log-ratios40.

•	 Bray–Curtis dissimilarity. This dissimilarity measure is similar to 
Jaccard’s index in that it ranges from 0 to 1, while also being similar 
to Euclidean distance in that it is computed from the differences 
between abundances. Bray–Curtis is calculated by summing the 
difference in abundance between each microbial taxon, and divid-
ing it by the total microbial abundance of the two samples. Thus, 
one could interpret Bray–Curtis as the fraction of abundances 

unshared by two samples (compare with Jaccard distance, which 
is the fraction of unique taxa unshared by two samples).

The three common difference measures listed above make use of 
bacteria presence or abundance without considering the phylogenetic 
relationship between the bacteria. Just as we can make alpha diversity 
phylogenetic, we can do the same with beta diversity.

•	 UniFrac. This distance makes use of phylogenetic information to 
measure the difference between samples. There are (at least) two 
types. The unweighted UniFrac distance considers the branch 
lengths of the phylogenetic tree along with microbial presence, 
and is defined as the sum of branch lengths unshared between the 
samples divided by the sum of branch lengths present in either 
sample. This measure has some analogy to Jaccard distance in 
that an unweighted UniFrac distance of 1 means the two samples 
share no bacteria taxa in common. The weighted UniFrac distance 
further considers microbial abundance, and weighs each branch 
length in the unweighted UniFrac formula by per-sample propor-
tional abundances.

•	 PhILR. This method uses a log-ratio transformation called the iso-
metric log-ratio (ILR) transformation, which uses a phylogenetic 
tree to recast the microbiome variables as a series of log-contrasts 
called ‘balances’46. PhILR offers two weighting options called taxon 
weighting and branch weighting. When both are disabled, the 
PhILR beta diversity is equivalent to Aitchison distance, although 
its use of phylogeny-based coordinates may yield a more interpret-
able ordination of the data. The taxon weighting provides a com-
positionally robust alternative to weighted Jaccard or Bray–Curtis 
measures, while the branch weighting provides a compositionally 
robust alternative to UniFrac measures.

Figure 2b illustrates a decision tree that we as the authors use 
when selecting a beta diversity measure. As with alpha diversity, it is 
sometimes helpful to compare and contrast the results from multiple 
measures of beta diversity.

Differential feature abundance
In a nutshell, differential abundance analysis refers to the practice of 
sequentially testing whether each individual feature (gene, taxon, func-
tion and so on) of a feature table is different based on our phenotypes, 
groups or other metadata. Differential abundance is perhaps one of 
the most popular microbiome analyses. Like alpha and beta diversi-
ties, there are many approaches to measuring differential abundance. 
In some cases, the features are deconfounded first by regressing out 
the selected covariates (that is, taking the residuals of a model fitted 
on the selected covariates; also see ‘Considering potential confound-
ing factors’ section). Most methods follow the same general pattern.

•	 Apply a transformation to correct for variation in sequencing 
depth, compositionality and/or other biases (Box 1).

•	 Perform a univariate statistical test for each taxon as a dependent 
variable with the sample metadata as predictors, for instance, by 
fitting a linear model. This is also a common time to account for 
confounders by including them as covariates.

•	 Adjust the P values for multiple testing, for example, using Bon-
ferroni, Storey’s q value, or Benjamini–Hochberg. We expand on 
multiple testing corrections in the companion piece to this paper25.

Although this pattern is common for differential abundance analy-
sis, many packages and tools exist to assess differential abundance. 
Recently, there has been an effort to compare and contrast these tools47. 
There is a striking heterogeneity in the performance of differential 
abundance tools. We recommend compositional methods combined 
with linear modeling as a safe, consistent and well-understood default 
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approach (Box 1). Note that while most differential abundance software 
do treat taxa as the dependent variables, one could just as well treat taxa 
as the predictors, as routinely done in machine learning applications.

Functions. While differential abundance is most commonly used 
on taxonomic count data, it often makes more biological sense to 
investigate whether any particular functions rather than taxa in the 
microbiome can explain a phenotype. The way in which one gets to 
the functional feature table depends on the type of sequencing. In the 
case of 16S, Piphillin and PICRUSt2 are two options. Both of these tools 
infer what the metagenome of a sample might look like by mapping 16S 
sequences to a functional database (for example, Kyoto Encyclopedia 
of Genes and Genomes (KEGG) or MetaCyc) of marker genes from both 
fully sequenced microbial genomes and metagenome-assembled 
genomes (MAGs), then inferring a functional feature table based on 
the functions present in the reference genomes. In the case of shotgun 
sequencing, there are two main strategies:

•	 If we mapped metagenomic shotgun-sequencing reads to a 
database of reference genomes, the full microbial sequences are 
already available and we only need to identify genes and collate 
them, for example, with the same KEGG or MetaCyc database. 
Tools such Woltka or HUMAnN3 in the biobakery suite are typi-
cally used to generate a functional feature table for shotgun data.

•	 If we rather generate MAGs, genes need to be detected using 
a program such as Prodigal48 or Bakta49 and annotated using a 
database such as eggNOG, KEGG or MetaCyc. For a user-friendly 
end-to-end pipeline to generate and annotate MAGs from 
metagenomic shotgun-sequencing reads, we refer the reader to 
Metagenome-ATLAS50.

Regardless of methodology, functional tables tend to contain a 
large amount of features. Frameworks such as the functional gut–brain 
modules and gut–metabolic modules encompass microbial pathways 
that cover specific functional aspects of the microbiome such as the 
potential to produce neuroactive compounds and to metabolize spe-
cific substrates51,52. These frameworks enable the interrogation of 
specific aspects of the microbiome–gut–brain axis.

Functional inference versus annotation. Typically, functions are said 
to be inferred for 16S and assigned for shotgun sequencing. Strictly 
speaking, there is inference in both cases. However, in comparing 16S 
with shotgun sequencing, 16S functional inference can be thought of as 
a much bigger inferential leap than shotgun. With 16S, we have to first 
guess the entire genomic content based on a single sequence before 
inferring function, rather than inferring function directly from the 
reconstructed or mapped-to genome (as done in shotgun sequenc-
ing). This difference is so large that often inference is said to happen 
only with 16S. In both cases, a functional analysis is constrained by 
the validity and completeness of the functional database used to 
assign functional importance to the taxa or genes. A multitude of 
functional databases is currently available, with KEGG, UniRef90 
and MetaCyc being among the most common general ones. Special-
ized databases, such as those covering antibiotic-resistance genes  
(ARDB and CARD) or carbohydrate metabolism (CAZy) are also avail-
able. These databases all have their own focus and frequently have 
different and sometimes unclear definitions of what a function entails 
and how a sequence is assigned to a function. While many databases 
are largely compatible, converting functional IDs between databases 
often requires some degree of manual curation, to the detriment of 
the field. Like taxonomic databases, functional databases are updated 
frequently and results may be affected as a consequence. Biologically 
speaking, the functional microbiome is known to be more consistent 
between hosts than the taxonomic microbiome, meaning that the 
results of functional analyses might generalize better53. As databases 

expand over time, it is important to report the version number as part 
of the methods.

Beyond the foundations
The design of host–microbiome experiments and the analysis and 
interpretation of the resulting data can be a daunting task. In this Per-
spective, we set out to highlight and explain the foundational concepts 
to enable the reader to navigate and avoid the most common pitfalls. 
We have provided and referenced the tools for the reader to customize 
their own analysis. We do not claim this approach is the only reasonable 
way to perform microbiome analysis, only that it is a reasonable one. 
In general, host–microbiome studies would benefit from reporting a 
characterization of the microbiome data in terms of alpha diversity, 
beta diversity and the general microbial composition using stacked 
bar plots or similar. During the statistical analysis of microbiome data, 
including modeling, correlating, and differential abundance testing, 
it is important to consider the compositional nature of microbiome 
data, for example, by first performing a centered log-ratio (CLR) trans-
formation, and to account for the large number of tests performed, 
for example, by performing the Benjamini–Hochberg procedure. In 
many cases, studies would also benefit from considering the functional 
potential of the microbiome rather than limiting analysis to the level 
of taxonomy.

Microbiome analysis involves techniques and theory from a wide 
array of fields, including molecular biology, genetics, ecology, and 
even mathematical geology. In the case of fields assessing host–micro-
organism interactions, such as the microbiome–gut–brain axis field, 
expertise from additional fields such as immunology, psychology, 
psychiatry, pharmacology, neuroscience, and nutrition becomes an 
additional requirement. In the companion paper, we present multidis-
ciplinary techniques from across these and other fields to enrich and 
extend the microbiome–gut–brain axis field25. Microbiome research 
is resource intensive, and there is a strong imperative to ‘make the 
most’ of collected data via innovative and robust analytic methods. We 
acknowledge the extensive body of knowledge and expertise required 
for comprehensive analysis of the microbiome—including but not 
limited, to the sheer number of specialist software tools needed for pre-
processing and analysis. In this, and the following Perspective piece, 
we strive to assist by showcasing some of these so that the reader and 
microbiome analyst from any scientific background can navigate the 
landscape with greater confidence.

This Perspective piece is not without limitations. We acknowledge 
that no single Perspective can comprehensively cover the entire field 
of microbiome bioinformatics analysis. Indeed, we chose not to cover 
in silico metabolic modeling of the microbiome. We also focus on 
metagenomic analysis of the microbiome, rather than other methods 
to interrogate the microbiome such as metabolomic, metaproteomics, 
or metatranscriptomics.

The microbiome field is currently undergoing a phase of rapid 
growth and development. We anticipate that new tools, databases and 
approaches will slowly replace the current suite. In particular, we antici-
pate a movement towards more longitudinal experimental designs, 
as well as the integration of multiple omics approaches on the same 
microbiome to more clearly capture the metabolic functional capacity 
of the microbiome. For some of these extension topics, please refer to 
the accompanying paper25. In terms of statistical analysis, we encour-
age the ongoing adoption and further development of CoDA-oriented 
methodology. Open, freely available, and well-documented resources 
such as Bioconductor and CRAN are, and will continue to be, essential 
for the development and adoption of new bioinformatics tools and 
pipelines in the microbiome field, as well as the broader scientific com-
munity. Of particular note, we draw attention to the well-curated and 
well-maintained curatedMetagenomicData package on Bioconductor, 
which allows researchers to access large human microbiome datasets 
in feature table form, ready for analysis54.
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Lastly, we highlight that one of the major strengths of science is to 
build on the previous findings of others. Often in the microbiome field, 
a large amount of data is gathered and a broad analysis is performed, 
perhaps linking the microbiome to a host condition. Whenever possi-
ble, raw sequencing data paired with anatomized metadata required to 
reproduce analyses should be made publicly available as it is essential 
for reliable and robust meta-analyses. Indeed, many journals require 
researchers to deposit their raw sequences to nucleotide repositories 
such as the European Nucleotide Archive (ENA), Sequence Read Archive 
(SRA) and the DNA Data Bank of Japan Sequence Read Archive (DRA). 
While these types of large-scale studies with broad hypotheses remain 
valuable to map out the interplay between the microbiome and host, 
we argue that the field is ready to move towards hypothesis-driven 
experiments with the intent to uncover specific mechanisms and even 
tractable aspects of the microbiome to help improve our understand-
ing of both the microbiome and our general health and well-being. 
These types of specific hypothesis should be formed based on observa-
tions from the large-scale exploratory studies and would also benefit 
from having bioinformaticians and biostatisticians present during 
the design stage.

References
1. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the  

number of human and bacteria cells in the body. PLoS Biol. 14, 
e1002533 (2016).

2. Tierney, B. T. et al. The landscape of genetic content in  
the gut and oral human microbiome. Cell Host Microbe 26, 
283–295 (2019).

3. Peterson, J. et al. The NIH Human Microbiome Project. Genome 
Res. 19, 2317–2323 (2009).

4. Claesson, M. J. et al. Gut microbiota composition correlates with 
diet and health in the elderly. Nature 488, 178–184 (2012).

5. Consortium, H. M. P. Structure, function and diversity of the 
healthy human microbiome. Nature 486, 207–14 (2012).

6. Tigchelaar, E. F. et al. Lifelines deep, a prospective, general 
population cohort study in the northern Netherlands: study 
design and baseline characteristics. BMJ Open 5, e006772 (2015).

7. Integrative, H. et al. The Integrative Human Microbiome Project. 
Nature 569, 641–648 (2019).

8. Cryan, J. F. et al. The microbiota–gut–brain axis. Physiol. Rev. 99, 
1877–2013 (2019).

9. Maier, L. et al. Extensive impact of non-antibiotic drugs on human 
gut bacteria. Nature 555, 623–628 (2018).

10. Tomizawa, Y. et al. Effects of psychotropics on the microbiome 
in patients with depression and anxiety: considerations in a 
naturalistic clinical setting. Int. J. Neuropsychopharmacol. 24, 
97–107 (2020).

11. Maini Rekdal, V., Bess, E. N., Bisanz, J. E., Turnbaugh, P. J. & 
Balskus, E. P. Discovery and inhibition of an interspecies gut 
bacterial pathway for levodopa metabolism. Science 364, 
eaau6323 (2019).

12. Scassellati, C. et al. The complex molecular picture of gut and 
oral microbiota–brain-–depression system: what we know and 
what we need to know. Front. Psychiatry 12, 722335 (2021).

13. Simpson, C. A. et al. Oral microbiome composition, but not 
diversity, is associated with adolescent anxiety and depression 
symptoms. Physiol. Behav. 226, 113126 (2020).

14. Sureda, A. et al. Oral microbiota and Alzheimer’s disease: do all 
roads lead to rome? Pharmacol. Res. 151, 104582 (2020).

15. Tonelli, A., Lumngwena, E. N. & Ntusi, N. A. The oral microbiome in 
the pathophysiology of cardiovascular disease. Nat. Rev. Cardiol. 
20, 386–403 (2023).

16. Martinez-Guryn, K. et al. Small intestine microbiota regulate host 
digestive and absorptive adaptive responses to dietary lipids. Cell 
Host Microbe 23, 458–469 (2018).

17. Kastl Jr, A. J., Terry, N. A., Wu, G. D. & Albenberg, L. G. The 
structure and function of the human small intestinal microbiota: 
current understanding and future directions. Cell. Mol. 
Gastroenterol. Hepatol. 9, 33–45 (2020).

18. Kupferschmidt, K. More and more scientists are preregistering 
their studies. Should you. Science Magazine https://doi.org/ 
10.1126/science.aav4786 (2018).

19. Munafó, M. R. et al. A manifesto for reproducible science. Nat. 
Hum. Behav. 1, 0021 (2017).

20. Nosek, B. A., Ebersole, C. R., DeHaven, A. C. & Mellor, D. T.  
The preregistration revolution. Proc. Natl Acad. Sci. USA 115, 
2600–2606 (2018).

21. Wagenmakers, E.-J., Wetzels, R., Borsboom, D., van der Maas, 
H. L. & Kievit, R. A. An agenda for purely confirmatory research. 
Perspect. Psychol. Sci. 7, 632–638 (2012).

22. Schloss, P. D. Identifying and overcoming threats to 
reproducibility, replicability, robustness, and generalizability in 
microbiome research. mBio 9, e00525-18 (2018).

23. Allen, C. & Mehler, D. M. Open science challenges, benefits and 
tips in early career and beyond. PLoS Biol. 17, e3000246 (2019).

24. Mirzayi, C. et al. Reporting guidelines for human microbiome 
research: the STORMS checklist. Nat. Med. 27, 1885–1892 (2021).

25. Bastiaanssen, T. F. S., Quinn, T. P. & Loughman, A. Bugs as features 
(part 2): a perspective on enriching microbiome–gut–brain axis 
analyses. Nat. Ment. Health https://doi.org/10.1038/s44220-023-
00149-2 (2023).

26. Ferdous, T. et al. The rise to power of the microbiome: power 
and sample size calculation for microbiome studies. Mucosal 
Immunol. 15, 1060–1070 (2022).

27. Dong, T. S. & Gupta, A. Influence of early life, diet, and the 
environment on the microbiome. Clin. Gastroenterol. Hepatol. 
17, 231–242 (2019).

28. Wilson, A. S. et al. Diet and the human gut microbiome: an 
international review. Dig. Dis. Sci. 65, 723–740 (2020).

29. Yap, C. X. et al. Autism-related dietary preferences  
mediate autism–gut microbiome associations. Cell 184, 
5916–5931 (2021).

30. Hernán, M. A., Hsu, J. & Healy, B. A second chance to get causal 
inference right: a classification of data science tasks. Chance 32, 
42–49 (2019).

31. Zhu, F. et al. Metagenome-wide association of gut microbiome 
features for schizophrenia. Nat. Commun. 11, 1612 (2020).

32. Ponsonby, A.-L. Reflection on modern methods: building  
causal evidence within high-dimensional molecular 
epidemiological studies of moderate size. Int. J. Epidemiol. 50, 
1016–1029 (2021).

33. Dillies, M.-A. et al. A comprehensive evaluation of normalization 
methods for Illumina high-throughput RNA sequencing data 
analysis. Brief. Bioinform. 14, 671–683 (2013).

34. McLaren, M. R., Willis, A. D. & Callahan, B. J. Consistent and 
correctable bias in metagenomic sequencing experiments.  
eLife 8, e46923 (2019).

35. Nearing, J. T., Comeau, A. M. & Langille, M. G. Identifying biases 
and their potential solutions in human microbiome studies. 
Microbiome 9, 113 (2021).

36. Erb, I. Power transformations of relative count data as a shrinkage 
problem. Inf. Geom. 6, 327–354 (2023).

37. Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. Gene selection for 
cancer classification using support vector machines. Mach. Learn. 
46, 389–422 (2002).

38. Guyon, I. & Elisseeff, A. An introduction to variable and feature 
selection. J. Mach. Learn. Res. 3, 1157–1182 (2003).

39. McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying 
microbiome data is inadmissible. PLoS Comput. Biol. 10, 
e1003531 (2014).

http://www.nature.com/natmentalhealth
https://doi.org/10.1126/science.aav4786
https://doi.org/10.1126/science.aav4786
https://doi.org/10.1038/s44220-023-00149-2
https://doi.org/10.1038/s44220-023-00149-2


Nature Mental Health | Volume 1 | December 2023 | 930–938 938

Perspective https://doi.org/10.1038/s44220-023-00148-3

40. Aitchison, J., Barceló-Vidal, C., Martín-Fernández, J. A. & 
Pawlowsky-Glahn, V. Logratio analysis and compositional 
distance. Math. Geol. 32, 271–275 (2000).

41. Quinn, T. P., Erb, I., Richardson, M. F. & Crowley, T. M. 
Understanding sequencing data as compositions: an outlook and 
review. Bioinformatics 34, 2870–2878 (2018).

42. Hsieh, T. C. & Chao, A. Rarefaction and extrapolation: making 
fair comparison of abundance-sensitive phylogenetic diversity 
among multiple assemblages. Syst. Biol. 66, 100–111 (2017).

43. McKnight, D. T. et al. Methods for normalizing microbiome data: an 
ecological perspective. Methods Ecol. Evol. 10, 389–400 (2019).

44. Willis, A. D. Rarefaction, alpha diversity, and statistics. Front. 
Microbiol. 10, 2407 (2019).

45. Sepkoski, J. J. Alpha, beta, or gamma: where does all the diversity 
go? Paleobiology 14, 221–234 (1988).

46. Silverman, J. D., Washburne, A. D., Mukherjee, S. & David, L. A. 
A phylogenetic transform enhances analysis of compositional 
microbiota data. eLife 6, e21887 (2017).

47. Nearing, J. T. et al. Microbiome differential abundance methods 
produce different results across 38 datasets. Nat. Commun. 13, 
342 (2022).

48. Hyatt, D. et al. Prodigal: prokaryotic gene recognition and 
translation initiation site identification. BMC Bioinform. 11, 119 (2010).

49. Schwengers, O. et al. Bakta: rapid and standardized annotation 
of bacterial genomes via alignment-free sequence identification. 
Microb. Genom. 7, 000685 (2021).

50. Kieser, S., Brown, J., Zdobnov, E. M., Trajkovski, M. & McCue, L. 
A. ATLAS: a snakemake workflow for assembly, annotation, and 
genomic binning of metagenome sequence data. BMC Bioinform. 
21, 257 (2020).

51. Valles-Colomer, M. et al. The neuroactive potential of the human 
gut microbiota in quality of life and depression. Nat. Microbiol. 4, 
623–632 (2019).

52. Vieira-Silva, S. et al. Species–function relationships shape 
ecological properties of the human gut microbiome.  
Nat. Microbiol. 1, 16088 (2016).

53. Mehta, R. S. et al. Stability of the human faecal microbiome in a 
cohort of adult men. Nat. Microbiol. 3, 347–355 (2018).

54. Pasolli, E. et al. Accessible, curated metagenomic data through 
experimenthub. Nat. Methods 14, 1023–1024 (2017).

55. Bharti, R. & Grimm, D. G. Current challenges and best- 
practice protocols for microbiome analysis. Brief. Bioinform. 22, 
178–193 (2019).

56. Szóstak, N. et al. The standardisation of the approach to 
metagenomic human gut analysis: from sample collection to 
microbiome profiling. Sci. Rep. 12, 8470 (2022).

57. Clooney, A. G. et al. Comparing apples and oranges? Next 
generation sequencing and its impact on microbiome analysis. 
PLoS ONE 11, e0148028 (2016).

58. Valles-Colomer, M. et al. The person-to-person transmission 
landscape of the gut and oral microbiomes. Nature 614,  
125–135 (2023).

59. Aitchison, J. On criteria for measures of compositional difference. 
Math. Geol. 24, 365–379 (1992).

60. Hillmann, B. et al. Evaluating the information content of shallow 
shotgun metagenomics. mSystems 3, e00069-18 (2018).

61. Santiago-Rodriguez, T. M. et al. Metagenomic information 
recovery from human stool samples is influenced by sequencing 
depth and profiling method. Genes 11, 1380 (2020).

62. de Goffau, M. C., Charnock-Jones, D. S., Smith, G. & Parkhill, J. 
Batch effects account for the main findings of an in utero human 
intestinal bacterial colonization study. Microbiome 9, 6 (2021).

63. Aitchison, J. The statistical analysis of compositional data. J. R. 
Stat. Soc. Ser. B 44, 139–160 (1982).

64. Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. 
Microbiome datasets are compositional: and this is not optional. 
Front. Microbiol. 8, 2224 (2017).

65. Calle, M. L. Statistical analysis of metagenomics data. Genom. 
Inform. 17, e6 (2019).

66. Hill, M. O. Diversity and evenness: a unifying notation and its 
consequences. Ecology 54, 427–432 (1973).

67. Pearson, K. Mathematical contributions to the theory of 
evolution—on a form of spurious correlation which may arise 
when indices are used in the measurement of organs. Proc. R. 
Soc. Lond. 60, 489–498 (1897).

68. Quinn, T. P., Richardson, M. F., Lovell, D. & Crowley, T. M.  
propr: an R-package for identifying proportionally abundant 
features using compositional data analysis. Sci. Rep. 7,  
16252 (2017).

69. Friedman, J. & Alm, E. J. Inferring correlation networks from 
genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).

70. Kurtz, Z. D. et al. Sparse and compositionally robust inference  
of microbial ecological networks. PLoS Comput. Biol. 11, 
e1004226 (2015).

71. Lubbe, S., Filzmoser, P. & Templ, M. Comparison of zero 
replacement strategies for compositional data with  
large numbers of zeros. Chemometr. Intel. Lab. Syst. 210, 
104248 (2021).

Acknowledgements
We thank A.-L. Ponsonby for her expert comments on directed 
acyclic graphs, D. L. Dahly for his insights on statistical analysis and 
J. F. Cryan for his continued encouragement and excellent advice. 
APC Microbiome Ireland is a research center funded by Science 
Foundation Ireland (SFI), through the Irish Governments’ national 
development plan (grant no. 12/RC/2273_P2).

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s44220-023-00148-3.

Correspondence should be addressed to Thomaz F. S. Bastiaanssen.

Peer review information Nature Mental Health thanks the 
anonymous reviewers for their contribution to the peer review  
of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with 
the author(s) or other rightsholder(s); author self-archiving of the 
accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© Springer Nature America, Inc. 2023

http://www.nature.com/natmentalhealth
https://doi.org/10.1038/s44220-023-00148-3
http://www.nature.com/reprints

	Bugs as features (part 1): concepts and foundations for the compositional data analysis of the microbiome–gut–brain axis
	The microbiome–gut–brain axis
	A perspective on microbiome bioinformatics analysis
	Getting ready for the analysis
	Pre-registration
	Considering potential confounding factors

	The feature table
	16S rRNA gene/amplicon versus shotgun sequencing
	Microbiome data are compositional
	Rare features and rarefaction

	Linking the microbiome to host features
	Diversity indices
	Alpha diversity
	Beta diversity

	Differential feature abundance
	Functions
	Functional inference versus annotation


	Beyond the foundations
	Acknowledgements
	Fig. 1 Overview of what a typical gut microbiome analysis may look like.
	Fig. 2 Understanding alpha and beta diversity.




