Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Randomized trial of ketamine masked by surgical anesthesia in patients with depression

Abstract

Ketamine may have antidepressant properties, but its acute psychoactive effects complicate successful masking in placebo-controlled trials. Here we present a single-center, parallel-arm, triple-masked, randomized, placebo-controlled trial assessing the antidepressant efficacy of intravenous ketamine masked by surgical anesthesia (ClinicalTrials.gov, NCT03861988). Adult patients (N = 40) with major depressive disorder who were scheduled for routine surgery were randomized to a single infusion of ketamine (0.5 mg kg−1) or placebo (saline) during usual anesthesia. All participants, investigators and direct-patient-care staff were masked to treatment allocation. The primary outcome was depression severity measured by the Montgomery–Åsberg Depression Rating Scale at 1, 2 and 3 days post-infusion. After all follow-up visits, participants were asked to guess which intervention they received. A mixed-effects model showed no evidence of effect of treatment assignment on the primary outcome (−5.82, 95% confidence interval −13.3 to 1.64, P = 0.13). Of all participants, 36.8% guessed their treatment assignment correctly; both groups allocated their guesses in similar proportions. In conclusion, a single dose of intravenous ketamine delivered during surgical anesthesia had no greater effect than placebo in acutely reducing the severity of depressive symptoms in adults with major depressive disorder. This trial successfully masked treatment allocation in patients with moderate-to-severe depression using surgical anesthesia. Although this masking strategy is impractical for most placebo-controlled trials, future studies of novel antidepressants with acute psychoactive effects should make efforts to fully mask treatment assignment to minimize participant-expectancy bias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CONSORT flow diagram.
Fig. 2: Depression severity, masking assessment and other outcomes.

Similar content being viewed by others

Data availability

De-identified participant data, data dictionaries, the study protocol and the statistical analysis plan are available at https://osf.io/zdkr8/ (https://doi.org/10.17605/OSF.IO/ZDKR8). All participants have consented to sharing de-identified data with outside entities for scientific research purposes.

Code availability

R code used for data analysis is publicly available at https://osf.io/zdkr8/ (https://doi.org/10.17605/OSF.IO/ZDKR8).

References

  1. Sleigh, J., Harvey, M., Voss, L. & Denny, B. Ketamine—more mechanisms of action than just NMDA blockade. Trends Anaesth. Crit. Care 4, 76–81 (2014).

    Article  Google Scholar 

  2. Bonaventura, J. et al. Pharmacological and behavioral divergence of ketamine enantiomers: implications for abuse liability. Mol. Psychiatry 26, 6704–6722 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Berman, R. M. et al. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 47, 351–354 (2000).

    Article  PubMed  Google Scholar 

  4. McIntyre, R. S. et al. Synthesizing the evidence for ketamine and esketamine in treatment-resistant depression: an international expert opinion on the available evidence and implementation. Am. J. Psychiatry 178, 383–399 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zarate, C. A. et al. A randomized trial of an N-methyl-d-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry 63, 856–864 (2006).

    Article  PubMed  Google Scholar 

  6. Marcantoni, W. S. et al. A systematic review and meta-analysis of the efficacy of intravenous ketamine infusion for treatment resistant depression: January 2009–January 2019. J. Affect. Disord. 277, 831–841 (2020).

    Article  PubMed  Google Scholar 

  7. Butler, M., Jelen, L. & Rucker, J. Expectancy in placebo-controlled trials of psychedelics: if so, so what? Psychopharmacology 239, 3047–3055 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hall, W. D. & Humphreys, K. Is good science leading the way in the therapeutic use of psychedelic drugs? Psychol. Med. 52, 2849–2851 (2022).

    Article  PubMed  Google Scholar 

  9. Aday, J. S. et al. Great expectations: recommendations for improving the methodological rigor of psychedelic clinical trials. Psychopharmacology 239, 1989–2010 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Muthukumaraswamy, S. D., Forsyth, A. & Lumley, T. Blinding and expectancy confounds in psychedelic randomized controlled trials. Expert Rev. Clin. Pharmacol. 14, 1133–1152 (2021).

    Article  PubMed  Google Scholar 

  11. Price, R. B. et al. A novel, brief, fully automated intervention to extend the antidepressant effect of a single ketamine infusion: a randomized clinical trial. Am. J. Psychiatry 179, 959–968 (2022).

    Article  PubMed  Google Scholar 

  12. Horvath, B., Kloesel, B., Todd, M. M., Cole, D. J. & Prielipp, R. C. The evolution, current value, and future of the American Society of Anesthesiologists physical status classification system. Anesthesiology 135, 904–919 (2021).

    Article  PubMed  Google Scholar 

  13. Charlson, M. E., Pompei, P., Ales, K. L. & MacKenzie, C. R. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chronic Dis. 40, 373–383 (1987).

    Article  PubMed  Google Scholar 

  14. Nagele, P. et al. A phase 2 trial of inhaled nitrous oxide for treatment-resistant major depression. Sci. Transl. Med. 13, eabe1376 (2021).

    Article  PubMed  Google Scholar 

  15. Phillips, J. L. et al. Single, repeated, and maintenance ketamine infusions for treatment-resistant depression: a randomized controlled trial. Am. J. Psychiatry 176, 401–409 (2019).

    Article  PubMed  Google Scholar 

  16. Murrough, J. W. et al. Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am. J. Psychiatry 170, 1134–1142 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sos, P. et al. Relationship of ketamine’s antidepressant and psychotomimetic effects in unipolar depression. Neuro Endocrinol. Lett. 34, 287–293. (2013).

  18. Singh, J. B. et al. A double-blind, randomized, placebo-controlled, dose-frequency study of intravenous ketamine in patients with treatment-resistant depression. Am. J. Psychiatry 173, 816–826 (2016).

    Article  PubMed  Google Scholar 

  19. Sanacora, G. et al. A consensus statement on the use of ketamine in the treatment of mood disorders. JAMA Psychiatry 74, 399 (2017).

    Article  PubMed  Google Scholar 

  20. Dore, J. et al. Ketamine assisted psychotherapy (KAP): patient demographics, clinical data and outcomes in three large practices administering ketamine with psychotherapy. J. Psychoactive Drugs 51, 189–198 (2019).

    Article  PubMed  Google Scholar 

  21. Joneborg, I. et al. Active mechanisms of ketamine-assisted psychotherapy: a systematic review. J. Affect. Disord. 315, 105–112 (2022).

    Article  PubMed  Google Scholar 

  22. Nagele, P. et al. Nitrous oxide for treatment-resistant major depression: a proof-of-concept trial. Biol. Psychiatry 78, 10–18 (2015).

    Article  PubMed  Google Scholar 

  23. Mickey, B. J. et al. Propofol for treatment-resistant depression: a pilot study. Int. J. Neuropsychopharmacol. 21, 1079–1089 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Weeks, H. R. et al. Antidepressant and neurocognitive effects of isoflurane anesthesia versus electroconvulsive therapy in refractory depression. PLoS ONE 8, e69809 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. García-Toro, M. et al. Inefficacy of burst-suppression anesthesia in medication-resistant major depression: a controlled trial. J. ECT 17, 284–288 (2001).

    Article  PubMed  Google Scholar 

  26. Kudoh, A., Takahira, Y., Katagai, H. & Takazawa, T. Small-dose ketamine improves the postoperative state of depressed patients. Anesth. Analg. 95, 114–118 (2002).

    Article  PubMed  Google Scholar 

  27. Mashour, G. A. et al. Intraoperative ketamine for prevention of depressive symptoms after major surgery in older adults: an international, multicentre, double-blind, randomised clinical trial. Br. J. Anaesth. 121, 1075–1083 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu, P. et al. Effect of pretreatment of S-ketamine on postoperative depression for breast cancer patients. J. Invest. Surg. 34, 883–888 (2021).

    Article  PubMed  Google Scholar 

  29. Zhou, Y. et al. Ketamine alleviates depressive symptoms in patients undergoing intracranial tumor resection: a randomized controlled trial. Anesth. Analg. 133, 1588–1597 (2021).

    Article  PubMed  Google Scholar 

  30. Guo, J. et al. Efficacy and safety of perioperative application of ketamine on postoperative depression: a meta-analysis of randomized controlled studies. Mol. Psychiatry https://doi.org/10.1038/s41380-023-01945-z (2023).

  31. Jiang, M. et al. Effect of intraoperative application of ketamine on postoperative depressed mood in patients undergoing elective orthopedic surgery. J. Anesth. 30, 232–237 (2016).

    Article  PubMed  Google Scholar 

  32. Wang, J. et al. Effects of a single subanaesthetic dose of ketamine on pain and mood after laparoscopic bariatric surgery: a randomised double-blind placebo controlled study. Eur. J. Anaesthesiol. 36, 16–24 (2019).

    Article  PubMed  Google Scholar 

  33. Liu, P. et al. Effect of pretreatment of S-ketamine on postoperative depression for breast cancer patients. J. Invest. Surg. https://doi.org/10.1080/08941939.2019.1710626 (2020).

  34. Zhang, Z. et al. Intraoperative low-dose S-ketamine reduces depressive symptoms in patients with Crohn’s disease undergoing bowel resection: a randomized controlled trial. J. Clin. Med. 12, 1152 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Aleksandrova, L. R. & Phillips, A. G. Neuroplasticity as a convergent mechanism of ketamine and classical psychedelics. Trends Pharmacol. Sci. 42, 929–942 (2021).

    Article  PubMed  Google Scholar 

  36. Hess, E. M., Riggs, L. M., Michaelides, M. & Gould, T. D. Mechanisms of ketamine and its metabolites as antidepressants. Biochem. Pharmacol. 197, 114892 (2022).

    Article  PubMed  Google Scholar 

  37. Johnston, J. N., Henter, I. D. & Zarate, C. A. The antidepressant actions of ketamine and its enantiomers. Pharmacol. Ther. 246, 108431 (2023).

    Article  PubMed  Google Scholar 

  38. Brown, E. N., Lydic, R. & Schiff, N. D. General anesthesia, sleep, and coma. N. Engl. J. Med. 363, 2638–2650 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Heresco-Levy, U. et al. Controlled trial of d-cycloserine adjuvant therapy for treatment-resistant major depressive disorder. J. Affect. Disord. 93, 239–243 (2006).

    Article  PubMed  Google Scholar 

  40. Zarate, C. A. et al. A double-blind, placebo-controlled study of memantine in the treatment of major depression. Am. J. Psychiatry 163, 153–155 (2006).

    Article  PubMed  Google Scholar 

  41. Wilkinson, S. T. & Sanacora, G. A new generation of antidepressants: an update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. Drug Discov. Today 24, 606–615 (2019).

    Article  PubMed  Google Scholar 

  42. Sanacora, G. et al. Adjunctive lanicemine (AZD6765) in patients with major depressive disorder and history of inadequate response to antidepressants: a randomized, placebo-controlled study. Neuropsychopharmacology 42, 844–853 (2017).

    Article  PubMed  Google Scholar 

  43. Ibrahim, L. et al. Course of improvement in depressive symptoms to a single intravenous infusion of ketamine vs add-on riluzole: results from a 4-week, double-blind, placebo-controlled study. Neuropsychopharmacology 37, 1526–1533 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mathew, S. J., Gueorguieva, R., Brandt, C., Fava, M. & Sanacora, G. A randomized, double-blind, placebo-controlled, sequential parallel comparison design trial of adjunctive riluzole for treatment-resistant major depressive disorder. Neuropsychopharmacology 42, 2567–2574 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vesuna, S. et al. Deep posteromedial cortical rhythm in dissociation. Nature 586, 87–94 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tian, F. et al. Characterizing brain dynamics during ketamine-induced dissociation and subsequent interactions with propofol using human intracranial neurophysiology. Nat. Commun. 14, 1748 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen, X., Shu, S. & Bayliss, D. A. HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J. Neurosci. 29, 600–609 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Anand, A. et al. Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-d-aspartate receptor antagonists. Arch. Gen. Psychiatry 57, 270–276 (2000).

    Article  PubMed  Google Scholar 

  49. Cichon, J. et al. Ketamine triggers a switch in excitatory neuronal activity across neocortex. Nat. Neurosci. 26, 39–52 (2023).

    Article  PubMed  Google Scholar 

  50. Williams, N. R. et al. Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. Am. J. Psychiatry 175, 1205–1215 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hustveit, O., Maurset, A. & Oye, I. Interaction of the chiral forms of ketamine with opioid, phencyclidine, sigma and muscarinic receptors. Pharmacol. Toxicol. 77, 355–359 (1995).

    Article  PubMed  Google Scholar 

  52. Klein, M. E., Chandra, J., Sheriff, S. & Malinow, R. Opioid system is necessary but not sufficient for antidepressive actions of ketamine in rodents. Proc. Natl Acad. Sci. USA 117, 2656–2662 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wulf, H. A., Browne, C. A., Zarate, C. A. & Lucki, I. Mediation of the behavioral effects of ketamine and (2R,6R)-hydroxynorketamine in mice by kappa opioid receptors. Psychopharmacology https://doi.org/10.1007/s00213-022-06118-4 (2022).

  54. Marton, T., Barnes, D. E., Wallace, A. & Woolley, J. D. Concurrent use of buprenorphine, methadone, or naltrexone does not inhibit ketamine’s antidepressant activity. Biol. Psychiatry 85, e75–e76 (2019).

    Article  PubMed  Google Scholar 

  55. Trivedi, M. H. et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am. J. Psychiatry 163, 28–40 (2006).

    Article  PubMed  Google Scholar 

  56. Chen, M.-H. et al. Using classification and regression tree modelling to investigate treatment response to a single low-dose ketamine infusion: post hoc pooled analyses of randomized placebo-controlled and open-label trials. J. Affect. Disord. 281, 865–871 (2021).

    Article  PubMed  Google Scholar 

  57. Pennybaker, S. J., Niciu, M. J., Luckenbaugh, D. A. & Zarate, C. A. Symptomatology and predictors of antidepressant efficacy in extended responders to a single ketamine infusion. J. Affect. Disord. 208, 560–566 (2017).

    Article  PubMed  Google Scholar 

  58. Jesus-Nunes, A. P. et al. Clinical predictors of depressive symptom remission and response after racemic ketamine and esketamine infusion in treatment-resistant depression. Hum. Psychopharmacol. Clin. Exp. 37, e2836 (2022).

    Article  Google Scholar 

  59. Ustun, Y. B. et al. Comparison of ketamine, dexmedetomidine and lidocaine in multimodal analgesia management following sleeve gastrectomy surgery: a randomized double-blind trial. J. Perianesth. Nurs. 37, 820–826 (2022).

    Article  PubMed  Google Scholar 

  60. Seman, M. T. et al. Low-dose ketamine infusion for perioperative pain management in patients undergoing laparoscopic gastric bypass: a prospective randomized controlled trial. Anesthesiol. Res. Pract. 2021, e5520517 (2021).

    Google Scholar 

  61. Moro, E. T. et al. Ketamine does not enhance the quality of recovery following laparoscopic cholecystectomy: a randomized controlled trial. Acta Anaesthesiol. Scand. 61, 740–748 (2017).

    Article  PubMed  Google Scholar 

  62. Ragazzoni, L. et al. Intra-operative low-dose ketamine does not reduce the cost of post-operative pain management after surgery: a randomized controlled trial in a low-income country. Afr. Health Sci. 19, 3127–3135 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mortero, R. F. et al. The effects of small-dose ketamine on propofol sedation: respiration, postoperative mood, perception, cognition, and pain. Anesth. Analg. 92, 1465 (2001).

    Article  PubMed  Google Scholar 

  64. Aubrun, F. et al. Effect of a low-dose ketamine regimen on pain, mood, cognitive function and memory after major gynaecological surgery: a randomized, double-blind, placebo-controlled trial. Eur. J. Anaesthesiol. 25, 97–105 (2008).

    Article  PubMed  Google Scholar 

  65. Lee, C. et al. The effects of a combination of intravenous dexamethasone and ketamine on postoperative mood in patients undergoing laparoscopically assisted-gynecologic surgery. Psychopharmacology 235, 2417–2422 (2018).

    Article  PubMed  Google Scholar 

  66. Irle, E., Peper, M., Wowra, B. & Kunze, S. Mood changes after surgery for tumors of the cerebral cortex. Arch. Neurol. 51, 164–174 (1994).

    Article  PubMed  Google Scholar 

  67. Jenkins, L. M., Drummond, K. J. & Andrewes, D. G. Emotional and personality changes following brain tumour resection. J. Clin. Neurosci. 29, 128–132 (2016).

    Article  PubMed  Google Scholar 

  68. McGirr, A. et al. Adjunctive ketamine in electroconvulsive therapy: updated systematic review and meta-analysis. Br. J. Psychiatry 210, 403–407 (2017).

    Article  PubMed  Google Scholar 

  69. Anderson, I. M. et al. Ketamine augmentation of electroconvulsive therapy to improve neuropsychological and clinical outcomes in depression (Ketamine–ECT): a multicentre, double-blind, randomised, parallel-group, superiority trial. Lancet Psychiatry 4, 365–377 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Vlisides, P. E. et al. Neurophysiologic correlates of ketamine sedation and anesthesia: a high-density electroencephalography study in healthy volunteers. Anesthesiology 127, 58–69 (2017).

    Article  PubMed  Google Scholar 

  71. Rutherford, B. R., Wall, M. M., Glass, A. & Stewart, J. W. The role of patient expectancy in placebo and nocebo effects in antidepressant trials. J. Clin. Psychiatry 75, 1040–1046 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kroenke, K. et al. The PHQ-8 as a measure of current depression in the general population. J. Affect. Disord. 114, 163–173 (2009).

    Article  PubMed  Google Scholar 

  73. Fekadu, A., Donocik, J. G. & Cleare, A. J. Standardisation framework for the Maudsley staging method for treatment resistance in depression. BMC Psychiatry 18, 100 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sheehan, D. V. et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 59, 22–33 (1998). quiz 34-57.

    PubMed  Google Scholar 

  75. Montgomery, S. A. & Åsberg, M. A new depression scale designed to be sensitive to change. Br. J. Psychiatry 134, 382–389 (1979).

    Article  PubMed  Google Scholar 

  76. Zigmond, A. S. & Snaith, R. P. The Hospital Anxiety and Depression Scale. Acta Psychiatr. Scand. 67, 361–370 (1983).

    Article  PubMed  Google Scholar 

  77. Pinto-Meza, A., Serrano-Blanco, A., Peñarrubia, M. T., Blanco, E. & Haro, J. M. Assessing depression in primary care with the PHQ-9: can it be carried out over the telephone? J. Gen. Inter. Med. 20, 738–742 (2005).

    Article  Google Scholar 

  78. Hedman, E. et al. Telephone versus internet administration of self-report measures of social anxiety, depressive symptoms, and insomnia: psychometric evaluation of a method to reduce the impact of missing data. J. Med. Internet Res. 15, e229 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hermens, M. L. et al. Administering the MADRS by telephone or face-to-face: a validity study. Ann. Gen. Psychiatry 5, 3 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kobak, K. A., Williams, J. B. W., Jeglic, E., Salvucci, D. & Sharp, I. R. Face-to-face versus remote administration of the Montgomery–Asberg Depression Rating Scale using videoconference and telephone. Depress. Anxiety 25, 913–919 (2008).

    Article  PubMed  Google Scholar 

  81. Posner, K. et al. The Columbia-Suicide Severity Rating Scale: initial validity and internal consistency findings from three multisite studies with adolescents and adults. Am. J. Psychiatry 168, 1266–1277 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kishimoto, T. et al. Single-dose infusion ketamine and non-ketamine N-methyl-d-aspartate receptor antagonists for unipolar and bipolar depression: a meta-analysis of efficacy, safety and time trajectories. Psychol. Med. 46, 1459–1472 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nierenberg, A. A. & DeCecco, L. M. Definitions of antidepressant treatment response, remission, nonresponse, partial response, and other relevant outcomes: a focus on treatment-resistant depression. J. Clin. Psychiatry 62, 5–9 (2001).

    PubMed  Google Scholar 

  84. Machado, M., Iskedjian, M., Ruiz, I. & Einarson, T. R. Remission, dropouts, and adverse drug reaction rates in major depressive disorder: a meta-analysis of head-to-head trials. Curr. Med. Res. Opin. 22, 1825–1837 (2006).

    Article  PubMed  Google Scholar 

  85. Keller, S. et al. Validity of the brief pain inventory for use in documenting the outcomes of patients with noncancer pain. Clin. J. Pain 20, 309 (2004).

    Article  PubMed  Google Scholar 

  86. Mendoza, T. R. et al. The utility and validity of the modified brief pain inventory in a multiple-dose postoperative analgesic trial. Clin. J. Pain 20, 357 (2004).

    Article  PubMed  Google Scholar 

  87. Opioid Oral Morphine Milligram Equivalent (MME) Conversion Factors (US Department of Health and Human Services; 2021); https://www.hhs.gov/guidance/document/opioid-oral-morphine-milligram-equivalent-mme-conversion-factors-0

  88. Hengartner, M. P. & Plöderl, M. Estimates of the minimal important difference to evaluate the clinical significance of antidepressants in the acute treatment of moderate-to-severe depression. BMJ Evid. Based Med. 27, 69–73 (2022).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant awarded to B.D.H. by the Society for Neuroscience in Anesthesiology and Critical Care. T.R.L. received salary support through a T32 grant from the NIH National Institute on Drug Abuse (3T32DA035165-02S1). The funding bodies supporting this study had no influence on the conduct of the trial, analysis of the data, or reporting of the results. We acknowledge K. Pfaff (medical student, Ohio University Heritage College of Osteopathic Medicine, Athens, OH, USA) and R. Thordstein (Lund University, Lund, Sweden) for assistance with contacting patients and V. Ramachandran (Stanford University School of Medicine, Stanford, CA, USA) for implementing the PHQ-2 survey into the Anesthesia Preoperative Evaluation Clinic electronic workflow at Stanford. Statistical support was provided by Data Studio (Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA), which is supported by the National Center For Advancing Translational Sciences of the National Institutes of Health under award number UL1TR003142. Screening and outcomes data were entered into Stanford REDCap (version 13.4.10), a secure online data-capture platform (http://redcap.stanford.edu) developed and operated by the Stanford Medicine Research IT team. The REDCap platform services at Stanford are subsidized by (1) the Stanford School of Medicine Research Office and (2) the National Center for Research Resources and the National Center for Advancing Translational Sciences, National Institutes of Health, through grant UL1 TR001085.

Author information

Authors and Affiliations

Authors

Contributions

T.R.L. and B.D.H. designed the trial. T.R.L. analyzed the data and wrote the first draft of the paper. A.E.S., J.R.F., R.L.O., C.A.N. and L.J.C. performed the trial and collected the data. L.M.H. and A.F.S. provided content expertise and advice on trial design. The overall trial was overseen by B.D.H. The authors vouch for the accuracy and completeness of the data and for the fidelity of the trial to the protocol.

Corresponding author

Correspondence to Boris D. Heifets.

Ethics declarations

Competing interests

B.D.H. is on the scientific advisory boards of Osmind and Journey Clinical and is a consultant to Clairvoyant Therapeutics and Vine Ventures. A.F.S. has served as a consultant to Alto Neuroscience, ANeurotech, Compass, Magnus, NeuraWell, Parexal, Sage and Signant. He holds equity in Alto Neuroscience, Corcept, Delpor, Madrigal, Magnus, Seattle Genetics, Titan and Xhale. These interests had no role in the present trial. The other authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Gerard Sanacora and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Depression ratings reanalyzed according to patient guess.

On day 14, the final day of patient assessments, patients were asked the following questions: “What treatment do you think you received?” MADRS scores were reanalyzed according to their guess, irrespective of their true group allocation. Mean and standard deviation (SD) MADRS scores are shown using the alternate grouping: “Ketamine”, n = 17; “Placebo”, n = 10; “I don’t know”, n = 11.

Extended Data Table 1 Depression Outcomes
Extended Data Table 2 Average Daily Inpatient Opioid Use

Supplementary information

Supplementary Information

Clinical trial protocols, statistical analysis plans and summary of protocol amendments.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lii, T.R., Smith, A.E., Flohr, J.R. et al. Randomized trial of ketamine masked by surgical anesthesia in patients with depression. Nat. Mental Health 1, 876–886 (2023). https://doi.org/10.1038/s44220-023-00140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00140-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing