Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Environmental neuroscience unravels the pathway from the physical environment to mental health

Abstract

Genes, as well as the environment, are known to affect mental health. However, the effects of the physical environment on mental health are not well understood. The emerging field of environmental neuroscience aims to fill this gap. Here we present an outline of different areas of research that need to be undertaken in this field. These range from identification of the ‘active ingredients’ of the physical environment (for example, terpenes, air pollutants and low-level visual features), the investigation of which human senses are most strongly involved in processing those active ingredients, and a description of the brain-based mechanisms. The long-term goal and potential application of this new research field is to build knowledge for evidence-based urban and landscape planning to foster salutogenic environments that prevent and alleviate mental health problems. The identification of active ingredients may help to preserve our environment in the face of disturbances such as urbanization and climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of the black box between the physical environment and mental health as an outcome.

Similar content being viewed by others

References

  1. Krabbendam, L. et al. Understanding urbanicity: how interdisciplinary methods help to unravel the effects of the city on mental health. Psychol. Med. 51, 1099–1110 (2021).

    Article  PubMed  Google Scholar 

  2. Peen, J., Schoevers, R. A., Beekman, A. T. & Dekker, J. The current status of urban-rural differences in psychiatric disorders. Acta Psychiatr. Scand. 121, 84–93 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. van Os, J., Kenis, G. & Rutten, B. P. The environment and schizophrenia. Nature 468, 203–212 (2010).

    Article  ADS  PubMed  Google Scholar 

  4. Oh, H., Nicholson, H. L. Jr., Koyanagi, A., Jacob, L. & Glass, J. Urban upbringing and psychiatric disorders in the United States: a racial comparison. Int. J. Soc. Psychiatry 67, 307–314 (2021).

    Article  PubMed  Google Scholar 

  5. Vassos, E., Agerbo, E., Mors, O. & Pedersen, C. B. Urban-rural differences in incidence rates of psychiatric disorders in Denmark. Br. J. Psychiatry 208, 435–440 (2016).

    Article  PubMed  Google Scholar 

  6. McCall-Hosenfeld, J. S., Mukherjee, S. & Lehman, E. B. The prevalence and correlates of lifetime psychiatric disorders and trauma exposures in urban and rural settings: results from the national comorbidity survey replication (NCS-R). PLoS One 9, e112416 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  7. Georgi, H. S. et al. Young-old city-dwellers outperform village counterparts in attention and verbal control tasks. Front. Psychol. 10, 1224 (2019).

    Article  Google Scholar 

  8. Robbins, R. N., Scott, T., Joska, J. A. & Gouse, H. Impact of urbanization on cognitive disorders. Curr. Opin. Psychiatry 32, 210–217 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stier, A. J. et al. Evidence and theory for lower rates of depression in larger US urban areas. Proc. Natl Acad. Sci. USA 118, e2022472118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sariaslan, A. et al. Schizophrenia and subsequent neighborhood deprivation: revisiting the social drift hypothesis using population, twin and molecular genetic data. Transl. Psychiatry 6, e796 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Colodro-Conde, L. et al. Association between population density and genetic risk for schizophrenia. JAMA Psychiatry 75, 901–910 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Paksarian, D. et al. The role of genetic liability in the association of urbanicity at birth and during upbringing with schizophrenia in Denmark. Psychol. Med. 48, 305–314 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Alcock, I., White, M. P., Wheeler, B. W., Fleming, L. E. & Depledge, M. H. Longitudinal effects on mental health of moving to greener and less green urban areas. Environ. Sci. Technol. 48, 1247–1255 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Kühn, S. et al. Urban green is more than the absence of city: structural and functional neural basis of urbanicity and green space in the neighbourhood of older adults. Landsc. Urban Plan. https://doi.org/10.1016/j.landurbplan.2021.104196 (2021).

  15. Thomas, T. et al. Social prescribing of nature therapy for adults with mental illness living in the community: a scoping review of peer-reviewed international evidence. Front. Psychol. 13, 1041675 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Frumkin, H. et al. Nature contact and human health: a research agenda. Environ. Health Perspect. 125, 075001 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bratman, G. N. et al. Nature and mental health: an ecosystem service perspective. Sci. Adv. 5, eaax0903 (2019).

  18. Berman, M. G., Kardan, O., Kotabe, H. P., Nusbaum, H. C. & London, S. E. The promise of environmental neuroscience. Nat. Hum. Behav. 3, 414–417 (2019).

    Article  PubMed  Google Scholar 

  19. Berman, M. G., Stier, A. J. & Akcelik, G. N. Environmental neuroscience. Am. Psychol. 74, 1039–1052 (2019).

    Article  PubMed  Google Scholar 

  20. Grilli, G. & Sacchelli, S. Health benefits derived from forest: a review. Int. J. Environ. Res. Public Health 17, 6125 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Takemura, Y. et al. Effects of green color exposure on stress, anxiety and pain during peripheral intravenous cannulation in dental patients requiring sedation. Int. J. Environ. Res. Public Health 18, 15939 (2021).

    Article  Google Scholar 

  22. Taylor, R. The potential of biophilic fractal designs to promote health and performance: a review of experiments and applications. Sustainability https://doi.org/10.3390/su13020823 (2021).

  23. Hagerhall, C. M. et al. Investigations of human EEG response to viewing fractal patterns. Perception 37, 1488–1494 (2008).

    Article  PubMed  Google Scholar 

  24. Berman, M. G. et al. The perception of naturalness correlates with low-level visual features of environmental scenes. PLoS ONE 9, e114572 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. Schertz, K. E. et al. A thought in the park: the influence of naturalness and low-level visual features on expressed thoughts. Cognition 174, 82–93 (2018).

    Article  PubMed  Google Scholar 

  26. Antonelli, M. et al. Forest volatile organic compounds and their effects on human health: a state-of-the-art review. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph17186506 (2020).

  27. Stobbe, E., Sundermann, J., Ascone, L. & Kuhn, S. Birdsongs alleviate anxiety and paranoia in healthy participants. Sci. Rep. 12, 16414 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Della Vecchia, A., Mucci, F., Pozza, A. & Marazziti, D. Negative air ions in neuropsychiatric disorders. Curr. Med. Chem. 28, 2521–2539 (2021).

    Article  PubMed  Google Scholar 

  29. Mostajeran, F., Krzikawski, J., Steinicke, F. & Kuhn, S. Effects of exposure to immersive videos and photo slideshows of forest and urban environments. Sci. Rep. 11, 3994 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Annerstedt, M. et al. Inducing physiological stress recovery with sounds of nature in a virtual reality forest—results from a pilot study. Physiol. Behav. 118, 240–250 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Beute, F. et al. Types and Characteristics of Urban and Peri-urban Green Spaces Having an Impact on Human Mental Health and Wellbeing. Report prepared by an EKLIPSE Expert Working Group (UK Centre for Ecology & Hydrology, 2020).

  32. Olszewska-Guizzo, A., Sia, A. & Escoffier, N. Revised Contemplative Landscape Model (CLM): a reliable and valid evaluation tool for mental health-promoting urban green spaces. Urban For. Urban Green 86, 128016 (2023).

    Article  Google Scholar 

  33. Newbury, J. B. et al. Association of air pollution exposure with psychotic experiences during adolescence. JAMA Psychiatry 76, 614–623 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gascon, M. et al. Long-term exposure to residential green and blue spaces and anxiety and depression in adults: a cross-sectional study. Environ. Res. 162, 231–239 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Gong, Y., Palmer, S., Gallacher, J., Marsden, T. & Fone, D. A systematic review of the relationship between objective measurements of the urban environment and psychological distress. Environ. Int. 96, 48–57 (2016).

    Article  PubMed  Google Scholar 

  36. Greenwald, A. G., McGhee, D. E. & Schwartz, J. L. K. Measuring individual differences in implicit cognition: the implicit association test. J. Pers. Soc. Psychol. 74, 1464–1480 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Rinck, M. & Becker, E. S. Approach and avoidance in fear of spiders. J. Behav. Ther. Exp. Psychiatry 38, 105–120 (2007).

    Article  PubMed  Google Scholar 

  38. Schiebel, T., Gallinat, J. & Kühn, S. Testing the Biophilia theory: automatic approach tendencies towards nature. J. Environ. Psychol. https://doi.org/10.1016/j.jenvp.2021.101725 (2022).

  39. Wilson, E. Biophilia: The Human Bond with Other Species (Harvard Univ. Press, 1984).

  40. Egner, L. E., Sutterlin, S. & Calogiuri, G. Proposing a framework for the restorative effects of nature through conditioning: conditioned restoration theory. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph17186792 (2020).

  41. Haga, A., Halin, N., Holmgren, M. & Sorqvist, P. Psychological restoration can depend on stimulus-source attribution: a challenge for the evolutionary account? Front. Psychol. 7, 1831 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Shepherd, A. M., Laurens, K. R., Matheson, S. L., Carr, V. J. & Green, M. J. Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia. Neurosci. Biobehav. Rev. 36, 1342–1356 (2012).

    Article  PubMed  Google Scholar 

  43. Dadvand, P. et al. The association between lifelong greenspace exposure and 3-dimensional brain magnetic resonance imaging in Barcelona schoolchildren. Environ. Health Perspect. 126, 027012 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kühn, S. et al. Brain structure and habitat: do the brains of our children tell us where they have been brought up? Neuroimage 222, 117225 (2020).

    Article  PubMed  Google Scholar 

  45. Kaplan, R. & Kaplan, S. The Experience of Nature. A Psychological Perspective (Cambridge Univ. Press, 1989).

  46. Ulrich, R. S. et al. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 11, 201–230 (1991).

    Article  Google Scholar 

  47. Pessoa, L. On the relationship between emotion and cognition. Nat. Rev. Neurosci. 9, 148–158 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Jo, H., Song, C. & Miyazaki, Y. Physiological benefits of viewing Nature: a systematic review of indoor experiments. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph16234739 (2019).

  49. Haluza, D., Schonbauer, R. & Cervinka, R. Green perspectives for public health: a narrative review on the physiological effects of experiencing outdoor nature. Int. J. Environ. Res. Public Health 11, 5445–5461 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Valtchanov, D. Exploring the Restorative Effects of Nature: Testing a Proposed Visuospatial Theory. PhD thesis, Univ. of Waterloo (2013).

  51. Kühn, S. & Gallinat, J. The neural correlates of subjective pleasantness. Neuroimage 61, 289–294 (2012).

    Article  PubMed  Google Scholar 

  52. Yue, X., Vessel, E. A. & Biederman, I. The neural basis of scene preferences. Neuroreport 18, 525–529 (2007).

    Article  PubMed  Google Scholar 

  53. Joye, Y., Köster, M., Lange, F., Fischer, M. & Moors, A. A goal-discrepancy account of restorative nature experiences. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/u5mte (2023).

  54. Lederbogen, F. et al. City living and urban upbringing affect neural social stress processing in humans. Nature 474, 498–501 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Phelps, E. A. & LeDoux, J. E. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48, 175–187 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Pedersen, C. B. & Mortensen, P. B. Evidence of a dose-response relationship between urbanicity during upbringing and schizophrenia risk. Arch. Gen. Psychiatry 58, 1039–1046 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Haddad, L. et al. Brain structure correlates of urban upbringing, an environmental risk factor for schizophrenia. Schizophr. Bull. 41, 115–122 (2015).

    Article  PubMed  Google Scholar 

  58. Besteher, B., Gaser, C., Spalthoff, R. & Nenadic, I. Associations between urban upbringing and cortical thickness and gyrification. J. Psychiatr. Res. 95, 114–120 (2017).

    Article  PubMed  Google Scholar 

  59. Lammeyer, S., Dietsche, B., Dannlowski, U., Kircher, T. & Krug, A. Evidence of brain network aberration in healthy subjects with urban upbringing - a multimodal DTI and VBM study. Schizophr. Res. 208, 133–137 (2019).

    Article  PubMed  Google Scholar 

  60. Kühn, S. et al. In search of features that constitute an ‘enriched environment’ in humans: associations between geographical properties and brain structure. Sci. Rep. 7, 11920 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  61. Kardan, O. et al. Neighborhood air pollution is negatively associated with neurocognitive maturation in early adolescence. Preprint at BioRxiv https://doi.org/10.1101/2023.04.28.538763 (2023).

  62. Bratman, G. N., Hamilton, J. P., Hahn, K. S., Daily, G. C. & Gross, J. J. Nature experience reduces rumination and subgenual prefrontal cortex activation. Proc. Natl Acad. Sci. USA 112, 8567–8572 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sudimac, S., Sale, V. & Kuhn, S. How nature nurtures: amygdala activity decreases as the result of a one-hour walk in nature. Mol. Psychiatry 27, 4446–4452 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sudimac, S. & Kühn, S. A one-hour walk in nature reduces amygdala activity in women, but not in men. Front. Psychol. 13, 931905 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Filevich, E. et al. Day2day: investigating daily variability of magnetic resonance imaging measures over half a year. BMC Neurosci. 18, 65 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kühn, S. et al. Spend time outdoors for your brain—an in-depth longitudinal MRI study. World J. Biol. Psychiatry 23, 201–207 (2022).

    Article  PubMed  Google Scholar 

  67. Grassini, S., Segurini, G. V. & Koivisto, M. Watching nature videos promotes physiological restoration: evidence from the modulation of alpha waves in electroencephalography. Front. Psychol. https://doi.org/10.3389/fpsyg.2022.871143 (2022).

  68. Olszewska-Guizzo, A. et al. Therapeutic garden with contemplative features induces desirable changes in mood and brain activity in depressed adults. Front. Psychiatry 13, 757056 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Norwood, M. F. et al. Brain activity, underlying mood and the environment: a systematic review. J. Environ. Psychol. https://doi.org/10.1016/j.jenvp.2019.101321 (2019).

  70. Kim, G. W. et al. Functional neuroanatomy associated with natural and urban scenic views in the human brain: 3.0T functional MR imaging. Korean J. Radiol. 11, 507–513 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kühn, S., Forlim, C. G., Lender, A., Wirtz, J. & Gallinat, J. Brain functional connectivity differs when viewing pictures from natural and built environments using fMRI resting state analysis. Sci. Rep. 11, 4110 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  72. Frissen, A. et al. No evidence of association between childhood urban environment and cortical thinning in psychotic disorder. PLoS ONE 12, e0166651 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Crossley, N. A. et al. Structural brain abnormalities in schizophrenia in adverse environments: examining the effect of poverty and violence in six Latin American cities. Br. J. Psychiatry 218, 112–118 (2021).

    Article  PubMed  Google Scholar 

  74. Lemmers-Jansen, I. L., Fett, A. J., van Os, J., Veltman, D. J. & Krabbendam, L. Trust and the city: linking urban upbringing to neural mechanisms of trust in psychosis. Aust. N. Z. J. Psychiatry 54, 138–149 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

S.K. was funded by the Max Planck Society and the European Union (ERC-2022-CoG-BrainScape-101086188). Views and opinions expressed are, however, those of the authors only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency (ERCEA). Neither the European Union nor the granting authority can be held responsible for them.

Author information

Authors and Affiliations

Authors

Contributions

S.K. conceived and wrote the first draft. J.G. revised this draft.

Corresponding author

Correspondence to Simone Kühn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Agnieszka Olszewska-Guizzo and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kühn, S., Gallinat, J. Environmental neuroscience unravels the pathway from the physical environment to mental health. Nat. Mental Health 2, 263–269 (2024). https://doi.org/10.1038/s44220-023-00137-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00137-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing