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The brain structure, immunometabolic 
and genetic mechanisms underlying the 
association between lifestyle and depression

Yujie Zhao1,2,3,12, Liu Yang1,12, Barbara J. Sahakian    1,4,5, Christelle Langley    4,5, 
Wei Zhang1,2,3, Kevin Kuo1, Zeyu Li1,2,3, Yihan Gan1, Yuzhu Li1,2,3, Yang Zhao6, 
Jintai Yu    1 , Jianfeng Feng    1,2,3,7,8,9,10  & Wei Cheng    1,2,3,7,11 

Lifestyle factors have been acknowledged to be modifiable targets that can 
be used to counter the increasing prevalence of depression. This study aims 
to investigate combining an extensive range of lifestyle factors, including 
alcohol consumption, diet, physical activity, sleep, smoking, sedentary 
behavior and social connection, that contribute to depression, and examine 
the underlying neurobiological mechanisms. Over nine years of follow-
up, a multivariate Cox model was utilized on 287,282 participants from 
UK Biobank to demonstrate the protective roles of seven lifestyle factors 
and combined lifestyle score on depression. Combining genetic risk and 
lifestyle category in 197,344 participants, we found that a healthy lifestyle 
decreased the risk of depression across a population with varied genetic 
risk. Mendelian randomization confirmed the causal relationship between 
lifestyle and depression. A broad range of brain regions and peripheral 
biomarkers were related to lifestyle, including the pallidum, the precentral 
cortex, triglycerides and C-reactive protein. Structural equation modeling 
on 18,244 participants revealed underlying neurobiological mechanisms 
involving lifestyle, brain s tr uc tu re, i mm un om et abolic function, genetics 
and depression. Together, our findings suggest that adherence to a healthy 
lifestyle could aid in the prevention of depression.

The rising prevalence of major depressive disorder (MDD) is imposing a 
substantial burden on public health worldwide1–3. The factors affecting 
the onset of depression are complicated and involve both behavioral 
and biological factors. Therefore, to prevent the onset of depression, 

comprehensive strategies are needed to explore the risk factors and 
mechanisms so as to explain all aspects of the pathophysiology of 
depression. A recent meta-review assessed the evidence regarding 
how multiple lifestyle factors impact the risk and treatment outcomes 
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participants, 1.25% were categorized as following an unfavorable life-
style (scores in the range 0–1), 38.90% followed an intermediate lifestyle 
(scores of 2–4), and 59.85% followed a favorable lifestyle (scores of 5–7). 
Of the 287,282 participants, 12,916 had an onset of depression during 
a median follow-up of 9.01 years. The demographic characteristics of 
the participants and the distribution of lifestyle factors are provided 
in Table 1. The PRSs for depression from 197,344 participants were 
normally distributed (Supplementary Fig. 5) and categorized into 
three levels, low (25.09%), intermediate (49.97%) and high (24.94%). 
Brain structural imaging data were collected in 2014 and contained 
T1-weighted structural magnetic resonance imaging (MRI) results from 
32,839 participants, which were used in the correlation analysis. Blood 
chemistry and cell count indicators from ~480,000 participants and 
NMR metabolic biomarkers from ~120,000 participants were collected 
at baseline. The sample size of each biomarker used in the correlation 
analyses is presented in Supplementary Tables 18 and 19. We also used 
data from 448,849 participants who had completed a Patient Health 
Questionnaire-4 (PHQ-4, collected from 2006–2010) score. Combin-
ing the data of lifestyle score, PRS, immunometabolic markers, brain 
structural imaging and depression, the final analysis included 18,244 
participants for estimation of the structural equation model. Extended 
Data Fig. 1 shows the research guidelines for the study. Supplementary 
Fig. 1 and Supplementary Table 4 present the sample size utilized in 
each analysis.

Survival analyses on the association between lifestyle and 
depression
Multivariable Cox proportional hazard regression models were used 
to examine the association between lifestyle and depression. In terms 
of lifestyle factors, each showed a significant association with depres-
sion independently. For each factor, the healthy category showed a 
lower risk of depression as compared with the unhealthy category. 
Specifically, the results showed that moderate alcohol consumption 
decreased the risk of depression by 11% (hazard ratio (HR) of 0.89 (95% 
CI, 0.85–0.92)), healthy diet decreased the risk of depression by 6% 
(0.94, 0.90–0.97), regular physical activity decreased the risk of depres-
sion by 14% (0.86, 0.83–0.90), never smoking decreased the risk of 
depression by 20% (0.80, 0.78–0.83), healthy sleep decreased the risk 
of depression by 22% (0.78, 0.75–0.81), low-to-moderate sedentary 
behavior decreased the risk of depression by 13% (0.87, 0.84–0.90), 
and frequent social connection decreased the risk of depression by 18% 
(0.82, 0.78–0.86). For the lifestyle class, compared with the unfavorable 
lifestyle, intermediate and favorable lifestyle were associated with 41% 
(0.59, 0.53–0.65) and 57% (0.43, 0.38–0.47) lower risk of depression, 
respectively. When all factors were combined, the HRs for depression 
for participants with a lifestyle score of 1, 2, 3, 4, 5, 6 and 7 compared to 
those with a score of 0 were 0.83 (95% CI, 0.62–1.11), 0.61 (0.46–0.80), 
0.53 (0.40–0.70), 0.45 (0.34–0.59), 0.39 (0.30–0.52), 0.33 (0.25–0.43) 
and 0.28 (0.21–0.37), respectively (Fig. 1). When treated as quantitative 
variable, each one-point increment in healthy lifestyle score was associ-
ated with an HR of 0.85 (95% CI, 0.84–0.86) (Supplementary Table 5).

Combining effect of genetic risk and lifestyle on depression
Risk of depression was reduced monotonically across PRS classes, and 
the HR values for depression in participants with intermediate and low 
PRS compared to those with high PRS were 0.87 (95% CI, 0.83–0.91) 
and 0.75 (95% CI, 0.71–0.80) (Supplementary Table 8). We also found a 
monotonically decreasing trend of depression risk across increasingly 
favorable lifestyle class when controlling for the genetic risk group 
(Supplementary Table 10). When combining genetic risk and lifestyle 
classes, with participants with high genetic risk and unfavorable life-
style as the reference group, participants with low genetic risk and 
favorable lifestyle showed the greatest reduction in depression risk, 
(HR, 0.36 (95% CI, 0.28–0.46); Fig. 2). However, there was no significant 
interaction between PRS and lifestyle score associated with risk of 

across a range of mental health disorders, including depression, and 
discussed the potentially shared neurobiological pathways4. In con-
trast to previous studies, which focused on investigating a specific 
aspect of lifestyle in the prevention of depression and its associated 
genetic and neurobiological mechanisms5–10, we incorporate a wide 
range of lifestyle factors, including alcohol consumption, smoking 
habits, physical activity, diet, circadian habits, sedentary behavior 
and social connection. Research has revealed that, when exercising, 
muscles secrete myokines, which contribute to the regulation of hip-
pocampal function, improving mood symptoms11. It has also been 
found that overeating and a sedentary lifestyle may increase the risk 
of depression by suppressing adaptive cellular stress responses12. Cir-
cadian disruption is associated with an increased risk of depression 
resulting from insufficient sleep and the disturbance of melatonin13. 
Smoking and alcohol dependence are associated with lesions in brain 
circuits14,15, and reduced social connection is known to impact meta-
bolic and brain health status, which is associated with depression16. By 
integrating a number of lifestyle factors into a comprehensive score 
and systematically revealing its relationship with incident depression 
and the underlying mechanisms, we aim to provide an effective strategy 
for reducing the risk of depression.

Compelling evidence has indicated that the genetic architecture 
of psychiatric risk is complex and is dominated by multiple contrib-
uting factors17, so we also aim to investigate the combined effect of 
stratified polygenic-risk score (PRS) and lifestyle conferring risk for 
depression. To understand the neurobiological mechanisms by which 
genetic variation increases risk, the previous literature considered the 
brain as the intermediate phenotype affected by risk gene variants to 
further elucidate the mechanistic aspects of brain function implicated 
in psychiatric disease17. Genetic studies have also revealed the contribu-
tions of genetic variation in innate immune mechanisms for diseases18. 
Therefore, we further comprehensively investigate the intermediate 
neurobiological processes influenced by genetic variation underlying 
the association between lifestyle and depression.

We hypothesized that adherence to a healthy lifestyle would con-
tribute to reducing the risk of depression across a population with 
different genetic profiles. We also hypothesized that there would be 
multiple shared neurobiological mechanisms modulated by genetic 
variants underlying the association of lifestyle with depression. There-
fore, our study aims to examine the composite lifestyle risk for depres-
sion and its underlying neurobiological mechanisms. We made use of 
the UK Biobank (UKB), a large prospective cohort, with information 
on behavioral, brain imaging, biochemistry and genetic measures. 
The present study has three objectives. The first is to investigate the 
composite lifestyle impact for depression risk and the combining effect 
of polygenetic and lifestyle conferring risk for depression. Second, we 
aim to perform a correlation analysis to estimate the relationships of 
lifestyle with brain structural imaging, blood cells, biochemistry and 
metabolic markers to unravel how lifestyle factors regulate neurobio-
logical processes. Because brain morphology alteration and disrup-
tion of immunometabolic systems have been linked to depression in 
previous studies, our third aim is to construct a structural equation 
model (SEM) to elucidate the relationships between lifestyle, PRS, brain 
structure, immunometabolic function and depression.

Results
Population characteristics
We utilized UKB data from a total of 502,409 participants to perform 
survival analysis and correlation analysis and to construct a structural 
equation model. For survival analyses we retrieved 287,282 individu-
als (mean age 57.52 years, 50.70% female) who had participated in the 
assessment of lifestyle factors at baseline (2006–2010) and had link-
age to clinical diagnosis records. The numbers of participants falling 
into healthy or unhealthy lifestyles for each factor are listed in Table 1.  
The mean score for the seven lifestyles is 4.75 (s.d. = 1.36). Among the 
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Table 1 | Baseline characteristics of participants

Number of participants (%)a

Characteristics Depression No depression Total

(n = 12,916) (n = 274,366) (n = 287,282)

Age, mean (s.d.) 56.57 (8.21) 57.57 (7.87) 57.52 (7.89)

Sex

 Female 7,624 (59.03%) 138,023 (50.31%) 145,647 (50.70%)

 Male 5,292 (40.97%) 136,343 (49.69%) 141,635 (49.30%)

BMI, mean (s.d.)b 28.16 (5.22) 27.43 (4.62) 27.46 (4.65)

SES, mean (s.d.)c −0.79 (3.27) −1.46 (2.98) −1.43 (3.00)

Education leveld

 College degree 3,334 (25.81%) 89,243 (32.53%) 89,243 (32.53%)

 A level 1,350 (10.45%) 30,210 (11.01%) 30,210 (11.01%)

 O level 2,837 (21.97%) 58,774 (21.42%) 58,774 (21.42%)

 CSE 865 (6.70%) 13,970 (5.09%) 13,970 (5.09%)

 NVQ 945 (7.32%) 18,995 (6.92%) 18,995 (6.92%)

 Professional qualification 698 (5.40%) 14,875 (5.42%) 14,875 (5.42%)

 Others 2,767 (21.42%) 46,292 (16.87%) 46,292 (16.87%)

 Missing value 120 (0.93%) 2,007 (0.73%) 2,007 (0.73%)

Lifestyle factor

 Alcohol

 Unhealthy alcohol consumption 4,238 (32.81%) 72,657 (26.48%) 76,895 (26.77%)

 Moderate alcohol consumption 8,678 (67.19%) 201,709 (73.52%) 210,387 (73.34%)

Diet

 Unhealthy diet 5,334 (41.30%) 105,165 (38.33%) 110,499 (38.46%)

 Healthy diet 7,582 (58.70%) 169,201 (61.67%) 176,783 (61.54%)

Physical activity

 Unhealthy physical activity 3,391 (26.25%) 57,588 (20.99%) 60,979 (21.23%)

 Regular physical activity 9,525 (73.75%) 216,778 (79.01%) 226,303 (78.77%)

Smoking

 Current and previous smoking 7,018 (54.34%) 130,515 (47.57%) 137,533 (47.87%)

 Never smoking 5,898 (45.66%) 143,851 (52.43%) 149,749 (52.13%)

Sleep

 Unhealthy sleep 4,395 (34.03%) 71,603 (26.10%) 75,998 (26.45%)

 Healthy sleep 8,521 (65.97%) 202,763 (73.90%) 211,284 (73.55%)

Sedentary behavior

 High sedentary behavior 7,203 (55.77%) 138,889 (50.62%) 146,092 (50.85%)

 Low-to-moderate sedentary behavior 5,713 (44.23%) 135,477 (49.38%) 141,190 (49.15%)

Social connection

 Infrequent social connection 2,165 (16.76%) 35,624 (12.98%) 37,789 (13.15%)

 Frequent social connection 10,751 (83.24%) 238,742 (87.02%) 249,493 (86.85%)

Lifestyle class

 Unfavorable [0–1] 366 (2.83%) 3,226 (1.18%) 3,592 (1.25%)

 Intermediate [2–4] 6,160 (47.69%) 105,595 (38.49%) 111,755 (38.90%)

 Favorable [5–7] 6,390 (49.47%) 165,545 (60.34%) 171,935 (59.85%)

Lifestyle score

 0 53 (0.41%) 358 (0.13%) 411 (0.14%)

 1 313 (2.42%) 2,868 (1.05%) 3,181 (1.11%)

 2 928 (7.19%) 11,918 (4.34%) 12,846 (4.47%)

 3 2,087 (16.16%) 32,587 (11.88%) 34,674 (12.07%)
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depression (Pinteraction = 0.41), indicating that lifestyle may not be sub-
stantially altered by the genetic risk for depression, and lifestyle has a 
strong protective role across different levels of polygenetic risk popu-
lation. By further performing comparisons among the eight groups 
except the reference group using permutation tests, we found that 
participants with high genetic risk but favorable lifestyle had a lower 
risk of depression than those with intermediate or low genetic risk 
but unfavorable lifestyle (intermediate genetic risk, P = 3.0 × 10−4; low 
genetic risk, P = 5.8 × 10−3) and those with intermediate genetic risk and 
intermediate lifestyle (P = 1.1 × 10−2) (Supplementary Table 9). Partici-
pants with intermediate genetic risk and favorable lifestyle also showed 
lower risk of depression than those with low genetic risk and adherence 
to unfavorable and intermediate lifestyles (unfavorable, P = 2.9 × 10−3; 
intermediate, P = 2.1 × 10−2; Supplementary Table 9). The results also 
elucidated that favorable lifestyle would mitigate the genetic vulner-
abilities of depression in population with different levels of polygenetic 
risk and safeguard the high-risk population against depression.

Mendelian randomization evidence for the association 
between lifestyle and depression
Mendelian randomization (MR) analysis showed a protective causal 
relationship between lifestyle and depression. By utilizing genetic 
variants as proxies, the results from the inverse variance weighted 
(IVW) method found that per one-point increment in lifestyle score 
was associated with 35% reduced risk of depression (odds ratio (OR), 
0.65; 95% CI, 0.55–0.76; P = 1.0 × 10−7; Fig. 3). Model-based sensitivity 
analyses showed that the estimates were similar in size in the simple 
median method (0.63, 0.50–0.80; P = 1.8 × 10−4), weighted median 
method (0.65, 0.51–0.83; P = 4.7 × 10−4) and weighted mode method 
(0.52, 0.31–0.90; P = 2.6 × 10−2), illustrating the robustness of the causal 
relationship. Scatter plots of lifestyle and depression risk association 
for the instruments are presented in Fig. 3a, with colored lines repre-
senting the slopes of different regression analyses. MR estimates for 
the effects of single-nucleotide polymorphisms (SNPs) associated with 
lifestyle on depression risk are presented in a forest plot in Supplemen-
tary Fig. 13. Sensitivity analyses also examined the reverse causality and 
showed significant results (0.85, 0.78–0.92; P = 5.9 × 10−5) with the IVW 
method (Supplementary Fig. 14), potentially indicating a bidirectional 
causal relationship between lifestyle and depression.

Association of lifestyle with brain volume and peripheral 
markers
The correlations between lifestyle and brain structures are in line with 
expectations that higher lifestyle scores are associated with larger 
brain volumes (for example, in cortical structures such as the superior 

prefrontal cortex, orbitofrontal cortex, precentral cortex and insula, 
and subcortical structures including the pallidum, thalamus, amyg-
dala and hippocampus; Fig. 4a). The full results for the correlation 
between each lifestyle factor and brain structure volumes are listed in 
Supplementary Table 14. We also found that these brain structures are 
negatively associated with depression symptoms assessed by PHQ-4 
(including the precentral, orbitofrontal and middle temporal cortexes, 
the thalamus, hippocampus and putamen; Supplementary Fig. 16 and 
Supplementary Table 16). We used the lifestyle and depression scores 
assessed at the neuroimaging visit timepoint (2014+) to calculate the 
correlation with brain volumes and obtained similar results (Supple-
mentary Figs. 15 and 17 and Supplementary Tables 15 and 17). The spatial 
correlation between lifestyle and depression-associated brain maps at 
the neuroimaging visit was −0.52 (P = 5.4 × 10−7; Supplementary Fig. 18), 
which supports the consistency of the relationship of brain structural 
volumes and lifestyle and depression.

For the peripheral markers, 48 blood markers and 130 metabolic 
markers passed the significance threshold after Bonferroni adjust-
ment (Fig. 4b). The r values for each marker are presented in Fig. 4b. 
We found that C-reactive protein (r = −0.065, P < 1.0 × 10−295) and tri-
glycerides (r = −0.075, P < 1.0 × 10−295) were the most significant of 
the blood biochemistry markers, and neutrophil count (r = −0.106, 
P < 1.0 × 10−295) and leukocyte count (r = −0.094, P < 1.0 × 10−295) were the 
most significant among the blood cells. In terms of metabolic markers, 
the degree of unsaturation (r = 0.153, P < 1.0 × 10−295) and glycoprotein 
acetyls (r = −0.109, P = 1.1 × 10−240) were the most significant markers 
positively and negatively correlated with lifestyle, respectively. Full 
results are presented in Supplementary Tables 18 and 19.

Structure equation model
We employed a structural equation model to analyze the relationship 
between lifestyle, PRS, brain structure, immunometabolic function and 
depression in 18,244 participants, further revealing the neurobiological 
mechanisms underlying the association between lifestyle and depres-
sion. First, confirmatory factor analyses were used to examine the latent 
variables in the structural equation model, including depression, brain 
structure and immunometabolic function. The left superior frontal 
cortex in cortical volume and left insula in subcortical volume were the 
most significant markers to predict the latent variable brain structure 
(both β = 0.58; P < 0.001). C-reactive protein, triglycerides, glycated 
hemoglobin (HbA1c) and glucose were the four significant markers 
predicting the latent variable immunometabolic function (β = 0.06, 
0.09, 0.86 and 0.55, respectively; P < 0.001). The latent variable depres-
sion was represented by the combined four PHQ items (β = 0.81, 0.75, 
0.59 and 0.51, respectively; P < 0.001). The loading coefficients for 

Number of participants (%)a

Characteristics Depression No depression Total

(n = 12,916) (n = 274,366) (n = 287,282)

 4 3,145 (24.35%) 61,090 (22.27%) 64,235 (22.36%)

 5 3,416 (26.45%) 78,254 (28.52%) 81,670 (28.43%)

 6 2,240 (17.34%) 62,611 (22.82%) 64,851 (22.57%)

 7 734 (5.68%) 24,680 (9.00%) 25,414 (8.85%)

Genetic risk categorye

 Low 1,863 (21.28%) 47,660 (25.27%) 49,523 (25.09%)

 Intermediate 4,353 (49.71%) 94,258 (49.98%) 98,611 (49.97%)

 High 2,540 (29.01%) 46,670 (24.75%) 49,210 (24.94%)
aPercentages may not sum to 100 because of rounding. bBMI, body mass index. cSES, socioeconomic status (measured by Townsend deprivation index). dClassification of education level  
is defined according to UKB Field ID 6138. Missing values were imputed using the mean value. eGenetic risk category is classified based on PRS as high (highest quintile), intermediate  
(2–4 quintile) and low (lowest quintile).

Table 1 (continued) | Baseline characteristics of participants
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each marker to the corresponding latent variables are shown adjacent 
to the model panel in Fig. 5.

Next, we input the prepared latent variables into the structural 
equation model to estimate the path coefficients. We tested all hypo-
thetical paths in the model (Fig. 5). Lifestyle was a significant predictor 
of depression (β = −0.157, P < 1.0 × 10−20), immunometabolic function 
(β = −0.043, P = 4.7 × 10−7) and brain structure (β = 0.038, P = 2.9 × 10−6). 
PRS (β = 0.036, P = 1.5 × 10−5), brain structure (β = −0.023, P = 1.2 × 10−2) 
and immunometabolic function (β = 0.020, P = 3.5 × 10−2) were also 
significant predictors of depression. PRS was a significant predictor 
of lifestyle (β = −0.022, P = 3.5 × 10−3) and immunometabolic function 
(β = 0.018, P = 3.4 × 10−2). All paths represented significant associa-
tions and passed the false discovery rate (FDR) correction except for 
the association between brain structure and PRS, and the association 
between brain structure and immunometabolic function.

Sensitivity analyses
The main survival analyses results, including the association of life-
style factors, classes and scores with depression risk, were also con-
firmed in the sensitivity analyses across three subtypes of depression, 
including single depressive episode, recurrent depressive disorder 
and treatment-resistant depression (TRD). For lifestyle factors, 
healthy sleep was still the greatest factor in reducing the risk of a 
single depressive episode (HR, 0.78 (95% CI, 0.75–0.81)) and TRD (HR, 
0.64 (95% CI, 0.58–0.71)) (Supplementary Figs. 6 and 8). However, for 
recurrent depressive disorder, frequent social connection reduced 
the risk most (HR, 0.61 (95% CI, 0.51–0.72)) (Supplementary Fig. 7). 
To further explore the risk of depression according to previous and 
current smoking status, with never smoking as the reference group, 
we found a significant monotonically increasing risk of depression in 
the previous–never smoking comparison and current–never smoking 

P value
Hazard ratio 

(95% CI)
No. of cases/total 
no. of participantsPredictor

Lifestyle factor

3.17 × 10–100.89 (0.85–0.92)8,678/210,387 (4.12%) Moderate alcohol consumption

6.41 × 10–40.94 (0.90–0.97)7,582/76,783 (4.29%)Healthy diet

1.93 × 10–130.86 (0.83–0.90)9,525/226,303 (4.21%)Regular physical activity

1.01 × 10–330.80 (0.78–0.83)5,898/149,749 (3.94%)Never smoking

2.45 × 10–410.78 (0.75–0.81)8,521/211,284 (4.03%)Healthy sleep

4.26 × 10–150.87 (0.84–0.90)5,713/141,190 (4.05%)
Low-to-moderate 

sedentary behavior

4.16 × 10–170.82 (0.78–0.86)10,751/249,493 (4.31%)Frequent social connection

Lifestyle class 

1 (reference)366/3,592 (10.19%)Unfavorable [0–1]

7.40 × 10–230.59 (0.53–0.65)6,160/11,755 (5.51%)Intermediate [2–4]

6.63 × 10–550.43 (0.38–0.47)6,390/171,935 (3.72%)Favorable [5–7]

Lifestyle score 

1 (reference)53/411 (12.90%)0

0.210.83 (0.62–1.11)313/3181 (9.84%)1

4.39 × 10–40.61 (0.46–0.80)928/12,846 (7.22%)2

5.43 × 10–60.53 (0.40–0.70)2,087/34,674 (6.02%)3

7.40 × 10–90.45 (0.34–0.59)3,145/64,235 (4.90%)4

2.04 × 10–110.39 (0.30–0.52)3,416/81,670 (4.18%)5

2.13 × 10–150.33 (0.25–0.43)2,240/4,851 (3.45%)6

5.60 × 10–190.28 (0.21–0.37)734/25,414 (2.89%)7

Hazard ratio (95% CI)
0.6 0.7 0.8 0.9 1.0 1.1

Hazard ratio (95% CI)
0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Hazard ratio (95% CI)
0.2 0.40.3 0.5 0.6 0.7 0.8 0.9 1.0 1.21.1

Fig. 1 | The association of lifestyle factor, class and score with depression risk. 
We utilized participants (n = 287,282) from UKB with completed lifestyle factor 
assessments in the survival analyses. The upper panel presents the association of 
lifestyle factors with depression. The bottom panel presents the association of a 
per-one-point increment in healthy lifestyle score with depression. The middle 
panel presents the association between each class of lifestyle and depression, 

with each lifestyle score reclassified into three classes (favorable scoring 5 to 7, 
intermediate scoring 2 to 4 and unfavorable scoring 0 to 1). All these models were 
adjusted for age, sex, Townsend deprivation index, BMI and education level. Two-
sided unadjusted association P values from multivariate Cox models are given. 
Data are presented as mean values ± s.e.m. The widths of the lines extending from 
the center points represent 95% CI.
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comparison across the three subtypes (Supplementary Table 6). The 
consistent monotonical reduction of depression risk across lifestyle 
classes was also found in each subtype of depression (Supplemen-
tary Figs. 6–8). In addition, the favorable lifestyle class with a larger 
sample size as the reference group also showed similar significant 
results (Supplementary Table 7). In terms of the combining lifestyle 
score, each one-point increment in the healthy lifestyle score was 
associated with an HR of 0.85 (95% CI, 0.84–0.86) for a single depres-
sive episode, 0.82 (95% CI, 0.78–0.87) for recurrent depressive dis-
order and 0.81 (95% CI, 0.78–0.84) for TRD (Supplementary Table 5). 

Additionally, similar patterns of depression risk according to genetic 
risk category were found in the three subtypes of depression (Sup-
plementary Table 8). For the three subtypes of depression, we also 
confirmed a monotonical association of decreasing depression risk 
across increasing lifestyle class when the comparison was restricted 
to the same genetic risk group (Supplementary Tables 11–13).  
Similarly, the risk of depression in the three subtypes was not altered 
by the interaction of genetics and lifestyle, indicating that adher-
ence to a healthy lifestyle would attenuate genetic risk across the 
different PRS groups.

P valueHazard ratio 
(95% CI)

No. of cases/total 
no. of participantsPredictor

High PRS

1 (reference)72/690 (10.43%)Unfavorable [0–1]

1.10 × 10–30.67 (0.53–0.85)1,247/19,638 (6.35%)Intermediate [2–4]

2.66 × 10–90.48 (0.38–0.61)1,221/28,882 (4.23%)Favorable [5–7]

Intermediate PRS

1.01 (0.75–1.35) 0.97115/1,129 (10.19%)Unfavorable [0–1]

5.58 × 10–60.58 (0.46–0.73)2,033/37,854 (5.37%)Intermediate [2–4]

1.26 × 10–120.42 (0.34–0.54)2,205/59,628 (3.70%)Favorable [5–7]

Low PRS

1.05 (0.74–1.50) 0.7852/495 (10.51%)Unfavorable [0–1]

4.56 × 10–80.51 (0.40–0.65)855/18,223 (4.69%)Intermediate [2–4]

1.56 × 10–160.36 (0.28–0.46)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

956/30,805 (3.10%)

Hazard ratio (95% CI)

Favorable [5–7]

Fig. 2 | Risk of depression according to genetic risk and lifestyle. We utilized 
197,344 participants with both PRS and lifestyle scores in the analyses. The results 
were adjusted for age, sex, Townsend deprivation index, BMI and education level. 
Two-sided unadjusted association P values from multivariate Cox models are 

given. Individuals with high risk for depression and unfavorable lifestyle were 
used as the reference category. Data are presented as mean values ± s.e.m.  
The widths of the lines extending from the center points represent 95% CI.
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Fig. 3 | MR plots for the relationship between lifestyle and depression.  
a, Scatter plot of SNP effects on lifestyle versus depression, with the slope of 
each line corresponding to the estimated MR effect per method. The data are 
expressed as raw β values with 95% CI values. b, Model-based sensitivity analyses 
from four methods (n = 26 SNPs). The effect estimates represent the odds ratio 

for depression per one-point increment in healthy lifestyle score. Data are 
presented as mean values ± s.e.m. The width of the lines extending from the 
center point represent the 95% CI. Two-sided unadjusted association P values 
from four models are given.
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Two possible structural equation models were additionally esti-
mated to account for multiple directionalities among the latent vari-
ables. The first model supported the reverse effect of depression on 
lifestyle (Supplementary Fig. 19) and the second model validated the 
mediation mechanism of immunometabolic function and brain struc-
ture underlying the path from depression to lifestyle (Supplementary 
Fig. 20). The two additional models further provide evidence for a 
bidirectional and multifactorial relationship between lifestyle and 
depression.

Discussion
In the current study we have integrated multimodal data to investigate 
the association of lifestyle with depression. We identified the protec-
tive roles of seven lifestyle factors and the monotonical reduction of 

depression risk across lifestyle classes and scores. The findings regard-
ing the combining effect of lifestyle and polygenic risk on depression 
revealed that favorable lifestyle plays a strongly protective role in the 
prevention of depression across a population with different polygenetic 
risk. MR analysis added convincing causal evidence of a bidirectional 
relationship between lifestyle and depression. In addition, we also 
found that changes in brain volume and peripheral biological mark-
ers are associated with lifestyle score, which implies that lifestyle is 
an important phenotype reflecting both brain and physical health 
status. Furthermore, structural equation modeling was performed 
to demonstrate the coherent mediating pathway involving genetics, 
lifestyle, brain structure, immunometabolic function and depression, 
supporting the existing hypothesis of a multifactorial pathogenesis 
in depression.
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Fig. 4 | Association of lifestyle with brain structure and peripheral markers. 
a, A total of 32,839 participants were utilized in the correlation analyses between 
lifestyle and brain structural imaging. Significant associations between lifestyle 
scores and brain volumes were adjusted for age, sex, BMI, Townsend deprivation 
index, education levels, neuroimaging scanning sites and estimated total 
intracranial volume after FDR correction (α = 0.05). b, Associations of lifestyle 
with peripheral markers, adjusted for age, sex, BMI, Townsend deprivation 

index and education level. As the different biomarkers have different sample 
sizes, we list the sample size corresponding to each specific biomarker in the full 
correlation results tables (Supplementary Tables 18 and 19). The height, color 
and size of each data point indicate the Pearson correlation value (r) between the 
lifestyle score and one marker. The horizontal dashed line denotes the positive 
and negative correlation boundary. NS, not significant. HDL High-Density 
Lipoprotein, VLDL Very-Low-Density Lipoprotein.
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Previous studies identifying the relationship between single life-
style factors and depression found that lack of social connection19, 
higher sedentary behavior levels20, failure to engage in physical activi-
ties21,22, smoking23,24 and an unhealthy diet25 are associated with an 
increased risk of depression. Similar to previous studies showing that 
the relationships between depression and sleep duration26,27 or alcohol 
consumption are U-shaped28, we also found that light-to-moderate 
drinking and 7–9-h sleep duration were optimal to reduce the risk of 
depression. Among all these protective risk factors, having optimal 
sleep showed the greatest risk reduction for depression, including a 
single depressive episode and treatment-resistant depression. These 
findings are consistent with previous evidence showing improvements 
in depressive symptoms following non-pharmacological insomnia-spe-
cific treatment29. As for recurrent depressive disorder, frequent social 
connection was the most protective factor, indicating the benefits of 
social activity prescription in helping patients better manage their 
depressive conditions30. By incorporating multidimensional factors, 
our study shows the impact of a broad spectrum of lifestyle factors on 
depression as well as an approximate comparison between the impacts 
of these separate factors while controlling for their interaction.

To further determine a generalized effect of incorporated life-
style index on depression, we combined the seven lifestyle factors 
and stratified participants into unhealthy, intermediate and favora-
ble lifestyle classes31,32. In addition, we also conducted analyses of 
combined lifestyle and genetic risk classes, aiming to better compare 
depression risk for individuals with different levels of lifestyles and 
polygenetic risk profiles. Our findings of an overall monotonic asso-
ciation with an increasing genetic risk and an unfavorable lifestyle and 

a non-significant gene-by-lifestyle interaction are consistent with a 
previous study33 that revealed that adherence to a healthy lifestyle 
may lower the risk of depression, regardless of the genetic risk. These 
results indicate that a healthy lifestyle plays a significantly strong pro-
tective role in any polygenetic risk population. They further highlight 
the importance of adjusting to a healthy lifestyle to reduce the risk  
of depression.

The potential mechanism by which lifestyle factors impact depres-
sion risk is complex and multifactorial, involving genetic, behavioral 
and neurobiological aspects. A previous study found that the impacts 
of unfavorable lifestyle factors on dysregulated pathways are associ-
ated with depression, and involve neurotransmitter processes and 
immuno-inflammatory measures34. Another review has also suggested 
that the contribution of genetic variation to the mechanistic aspects 
of brain function is implicated in psychiatric disorders17. Our study 
employed a structural equation model to investigate the precise mecha-
nisms by which lifestyle, brain structure, immunometabolic function 
and genetic risk affect depression. We found that the pathway from 
lifestyle to immunometabolic function is significant. Previous research 
has associated life stress exposures with indicators of adverse glycemic 
measures, deterioration of immune function and the accelerated accu-
mulation of age-associated molecular and cellular damage35. Studies 
have reported that poor physical activity and sleep restriction result 
in dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis36,37. 
Dietary habits are related to the levels of specific metabolites present 
in plasma38,39. Social status, which may affect stress levels, influences 
the immune system at multiple levels and alters signaling pathways in 
response to infection40. The influence of immunometabolic factors on 
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Fig. 5 | Structural equation model. A total of 18,244 participants were 
utilized in structural equation model analyses. Standardized coefficients 
are shown. Lifestyle was a significant predictor of depression (β = −0.157, 
P < 1.0 × 10−20), immunometabolic function (β = −0.043, P = 4.7 × 10−7) and 
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except for the association between brain structure and PRS, and the association 
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estimated in the model and are shown adjacent to the model panel, respectively. 
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depression is noteworthy and consistent with previous investigations. 
A previous study reported that immunometabolic dysregulation is 
also critical in the pathophysiology of depression41. Increased inflam-
mation and disrupted energy-regulating neuroendocrine signaling 
(for example, leptin and insulin) in depressed patients have also been 
found42, suggesting that a dysfunctional molecular condition in the 
neuroimmune system is potentially the cause of the exacerbation of 
depression symptoms.

Altered brain morphology is another plausible mechanism under-
lying the association of lifestyle with depression. Specifically in our 
results, higher lifestyle scores are correlated with a larger volume of 
the orbitofrontal cortex and the medial prefrontal cortex, which might 
suggest improved cognitive control and emotion regulation43,44. It is 
noted that the posterior lateral and medial orbitofrontal cortex and 
medial prefrontal cortex have shown gray-matter volumetric reduc-
tions and functional impairment in patients with mood disorders44. 
For specific aspects of lifestyle, previous research has demonstrated 
that amygdala neurons play a pivotal role in mediating social behav-
iors45 and that the acquisition of knowledge through social networks 
is associated with activation of the lateral prefrontal cortex and medial 
prefrontal cortex46. Consumption of an unhealthy diet and addiction 
to smoking may lead to encephalopathy and focal brain damage, which 
are associated with depression symptoms24,47. Adequate sleep also 
promotes synaptic plasticity mechanisms in the hippocampus that 
optimize emotional responses to future behavioral stressors48. Lack 
of physical activity and excessive consumption of alcohol may lead 
to oxidative stress, neuroadaptive changes and differences in brain 
structure and function49,50, which are associated with mental health 
disorders. The findings described above support our results regard-
ing the lifestyle-related brain structures and validate the modulatory 
role of brain function in the association between lifestyle and depres-
sion. However, in the context of the SEM framework, the association 
between the brain and immunometabolic function was not significant, 
although the brain–immune interaction has previously been suggested 
as a biological basis for major depressive disorder51,52. We supposed 
that the two strongly significant paths between brain measures and 
immunometabolic function with depression may attenuate the effect 
of brain–immune interaction in the comprehensive mathematical 
model. Further studies could examine an experimental and clinical 
approach to precisely test the molecular and cellular mechanisms of 
the brain–immune interaction associated with depression.

In addition, we further considered the bidirectional and multi-
factorial relationship between lifestyle and depression. The reversed 
MR result revealed the bidirectional causal effect of depression on 
lifestyle. We also added two possible SEMs to respectively explain 
the reversed directionality of depression on lifestyle and the media-
tion mechanism of immunometabolic function and brain structure 
mechanisms underlying the path from depression to lifestyle. The 
findings of the two models are aligned with previous evidence indicat-
ing that major depressive disorder is linked to an unhealthy lifestyle, 
characterized by insomnia or hypersomnia, psychomotor agitation 
or retardation, and fluctuations in appetite53. Additionally, individu-
als with depression were also accompanied by a change of motivation 
to socialize and decreased social participation in life54. Depressed 
patients also exhibit signs of immune activation, including elevated 
levels of proinflammatory cytokines, C-reactive protein and cortisol, 
which may interact with the HPA axis and sympathetic nervous system, 
leading to a disruption of circadian rhythms55, changes in appetite56, 
motor abnormalities57 and stress58. Another study utilizing functional 
MRI revealed that depression-related increases in appetite are associ-
ated with hyperactivation of the mesocorticolimbic reward circuitry, 
and depression-related appetite loss is linked to hypoactivation of 
insular regions59.

Furthermore, we also found that the impact of lifestyle on depres-
sion is notably higher than any other significant relationship in the 

SEM, with an effect size ranging from three- to tenfold. The effect sizes 
of our results are similar to those of previous studies33,60 and this could 
be attributed to a variety of reasons. First, in the SEM, we noted that the 
impact of comprehensive lifestyle on depression is notably higher due 
to the combined effect of multiple mechanisms. Previous studies have 
identified that single lifestyle factors may influence the prevalence of 
depression through diverse genetic and biological pathways, as seen 
in the case of sleep. Sleep not only impacts the HPA axis, hippocampal 
oscillations and sympathetic nervous system36, but also changes the 
levels of proinflammatory cytokines, C-reactive protein and cortisol 
levels in the peripheral immune system55. Furthermore, immunometa-
bolic markers in peripheral systems may be modulated by a negative 
feedback mechanism to ensure the stability of the environment in 
the body and the maintenance of immune homeostasis61. As for brain 
structural imaging, the association between brain structure or function 
and complex cognitive or mental health phenotypes may be limited 
by small sample sizes, which may potentially have been too small to 
capture reproducible brain–behavioral phenotype associations62. 
Therefore, there may be a mild effect of immunometabolic and brain 
markers on depression symptoms. It is also worth noting that previous 
studies have also shown that the HR of lifestyle on depression is more 
significant than those of genetic factors33. Importantly, environmental 
factors, such as lifestyle, can be modified, in contrast to genetic factors.

There are three main strengths of the present study. First, it uti-
lizes the large UKB cohort and investigates the association of mul-
tidimensional lifestyle factors with depression and the underlying 
neurobiological mechanisms involving brain structural imaging and 
biochemical, metabolic and genetic data. The use of large sample sizes 
guarantees the precise estimation of effect sizes. We conducted an 
exploratory analysis to identify broad phenotypes of brain structures 
and peripheral systems associated with lifestyle. Because the dataset 
is longitudinal, we also considered the time difference for behavioral 
and neuroimaging data collection and added additional analyses to 
examine the consistency over time. Second, we define a healthy lifestyle 
based on validated national guidelines and previous studies, which 
guarantees a standard lifestyle criterion for populations. In addition, 
our findings regarding the combined effect of genetic and lifestyle 
factors on depression highlights that adherence to a favorable lifestyle 
is beneficial for populations with different genetic vulnerabilities. 
Although our findings address the risk of depression and how it can be 
mitigated by a healthy lifestyle, it is likely that maintaining a healthy 
lifestyle would be beneficial for those with depression. Finally, we 
performed structural equation modeling to specify multifactorial 
interplayed processes and potential mechanisms underlying this asso-
ciation, including lifestyle, genetics, brain structure, immunometabolic 
function and depression.

Our study has several limitations. First, lifestyle was assessed 
by subjective self-report questionnaires, which might be prone to 
measurement error. In future, objective measures, such as accelerom-
eter-based ones, could be used. However, due to time limitations and 
the availability of technology, these are often not feasible for use in 
large-scale populations. In this study, the use of actigraphy data would 
result in a relatively smaller sample size and an inadequate follow-up 
time, which would limit our statistical model. As for outcomes, we 
used the date of depression diagnosis, which is a typical procedure 
for Cox model estimation, but does not take into account the time 
lapsing between the first onset of an episode and being diagnosed. 
Second, our results should be further validated in an independently 
ascertained population. Our study is limited due to the selection bias 
of the UKB cohort, as the participants are relatively healthier than the 
general population. There are limited data on ethnic minorities. We also 
acknowledge that the large number of variables collected by the UKB 
can make it difficult to identify and control for all potential confound-
ing factors, which may have biased our observational results. Future 
research utilizing longitudinal brain imaging and peripheral markers 
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would provide a comprehensive illustration of the changing associa-
tion pattern during the aging process. Third, we have acknowledged 
the incongruity of the stratification methods employed in lifestyle 
and PRS categorization according to previously published studies. 
Although the categories were not established based on a uniformly 
validated standard, we characterized better comparisons for the risk 
of depression between participants distributed in different lifestyle 
and genetic risk levels. The outcomes of categorized and continuous 
lifestyle scores were generally consistent, with an increase in lifestyle 
score being associated with a lower risk of depression, which confirms 
the robustness of our results. Finally, we used the PHQ-4 score as an 
assessment of depression symptoms to estimate the SEM, instead of 
the depression diagnosis, considering that the diagnosis of depres-
sion is a binary variable, and the dates were distributed over a longer 
period ranging from 2006 to 2021. We additionally employed an inde-
pendent t-test on the PHQ-4 score between the diagnosed-depression 
group and the non-depression group and found a significant difference 
(t = 52.589, P < 2.2 × 10−16), so we suggest that the continuous PHQ-4 
score better reflects the depressive status. The limited number of 
participants with a diagnosis of depression would result in a smaller 
sample size (310 with onset depression in a total of 13,324 participants 
with completed multimodal data used in the SEM), which would limit 
the accuracy of the model estimation. Future research could utilize 
clinical diagnostic records and larger sample sizes of patients with a 
diagnosis of depression.

In conclusion, the present study has confirmed a causal protective 
relationship between multiple dimensional lifestyle factors and the 
risk of depression. Adherence to a healthy lifestyle would aid in the 
prevention of depression across a population with different genetic risk 
profiles. A structural equation model was used to reveal the underly-
ing neurobiological mechanisms involving lifestyle, brain structures, 
immunometabolic function, genetics and depression. Our results 
highlight the importance of promoting a comprehensive healthy life-
style for depression intervention.

Methods
Study population
The UK Biobank (UKB) is a prospective cohort that recruited more 
than 500,000 participants aged 37–73 years who attended one of 22 
assessment centers between 2006 and 201063. The UKB has received 
approval from the National Information Governance Board for Health 
and Social Care and the National Health Service North West Centre for 
Research Ethics Committee (ref. 11/NW/0382). All participants provided 
informed consent through electronic signature. The data utilized in the 
analyses contains demographic and behavioral assessments, depres-
sion diagnoses, brain structural imaging, blood biochemistry markers, 
blood cell counts and NMR metabolic markers.

Lifestyle factors and healthy lifestyle score
We constructed a lifestyle score for 394,053 participants based on 
seven factors—smoking, physical activity, alcohol consumption, diet, 
sleep duration, sedentary behavior and social connection—that were 
assessed at baseline using a touchscreen questionnaire32. Full details for 
each factor, corresponding questionnaires and national guidelines are 
listed in Supplementary Table 3. Participants scored one point for the 
healthy category of each factor based on national recommendations. 
According to the quit smoking guidelines from the National Health 
Service (NHS) and National Institute for Health and Care Excellence 
(NICE) 2015 quality standard on ‘Smoking: reducing and preventing 
tobacco use’, never smoking was classified as the healthy category31,64, 
and current and previous smoking were considered as the unhealthy 
category. Physical activity was assessed using the International Physi-
cal Activity Questionnaire-Short Form (IPAQ-SF)65. Regular physical 
activity was defined as meeting the American Heart Association rec-
ommendations and World Health Organization guidelines (at least 

150 min of moderate activity or 75 min of vigorous activity per week (or 
an equivalent combination) or engaging in moderate physical activity 
at least five days a week or vigorous activity once a week (more than 
10 min))66,67. Due to the U-shaped relationship between alcohol con-
sumption and depression risk28, moderate alcohol consumption was 
defined as never drink or 0–14 g per day for women and 0–28 g per day 
for men, with the maximum limit reflecting US Dietary Guidelines for 
Americans (DGA)68,69. Following the DGA70–72 and recommendations on 
dietary priorities for cardiometabolic health68, healthy diet was based 
on an appropriate consumption of at least four of seven food groups 
including fruits, vegetables, fish, processed meats, unprocessed red 
meats, whole grains and refined grains, with specific cutoff criteria as 
listed in Supplementary Table 3. In accordance with the NHS, the Ameri-
can Academy of Sleep Medicine (AASM) and the Sleep Research Soci-
ety (SRS) recommendation73, sleep duration of 7–9 h was considered 
healthy. According to the WHO guidelines66 and previously published 
literature32, screen-based sedentary behavior was estimated according 
to the Global Physical Activity Questionnaire (GPAQ)74 as the sum of self-
reported hours spent watching TV and using a computer (not including 
using a computer at work) during a typical day, with 0–4 h reclassi-
fied as low-to-moderate and healthy. Social connection was assessed 
according to the social isolation index75. The index sums up the fol-
lowing three items: number of people in the household (one point was 
given for living alone), frequency of friend/family visits (one point was 
given for answering about once a month, once every few months, never 
or almost never, or no friends or family outside household), and par-
ticipation in leisure/social activity (one point was given for answering 
none)75. Individuals were defined as least isolated when scoring 0, mod-
erately isolated when scoring 1 and most isolated when scoring 2 or 375.  
Participants who were least and moderately isolated were defined as 
healthy with frequent social connection32,75. The lifestyle score ranged 
from 0 to 7, with a higher score indicating adherence to a healthier life-
style31. The lifestyle score was subsequently categorized as favorable 
(5 to 7 lifestyle factors), intermediate (2 to 4) and unfavorable (0 to 1) 
for further analyses31,32.

Depression diagnoses
Depression diagnoses were ascertained using hospital inpatient records 
from Hospital Episode Statistics for England, Scottish Morbidity Record 
data for Scotland and Patient Episode Database for Wales. Additional 
cases were detected through linkage to death register data from the 
National Health Service Digital, National Health Service Central Register 
and National Records of Scotland. Diagnoses were recorded according 
to the International Classification of Diseases (ICD-10) system codes, 
including depressive episode (F32.0-9) and recurrent depressive disor-
der (F33.0-9). Depression diagnoses were also retrieved from primary 
care data using read codes (version 2 (Read v2) and version 3 (CTV3 
or Read v3)), which are presented in Supplementary Table 1. We inte-
grated the data from hospital inpatient, primary care and death register 
sources, while those from self-report only were excluded. The date of 
diagnosis was defined as the earliest date recorded.

Structural MRI data
Quality-controlled T1-weighted neuroimaging data (n = 39,932) were 
measured at the UKB assessment center. The scanner was a standard 
Siemens Skyra 3T system with a standard Siemens 32-channel RF receive 
head coil. The details of image acquisition are provided on the UKB 
website (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367). T1 
images were processed with FreeSurfer. Surface templates were used 
to extract imaging-derived phenotypes, referred to as atlas regions’ 
surface volume76. Subcortical regions were extracted via FreeSurfer’s 
aseg tool77. FreeSurfer aparc (category ID 192) and the aseg (category 
ID 190) atlas corresponding to 68 cortical regions76 and 14 subcortical 
regions77 were used in this study. We used the Qoala-T approach to 
check the FreeSurfer outputs and excluded those that failed to pass 
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quality control from the FreeSurfer imaging-derived phenotypes. By 
merging data with the lifestyle score, we used 32,839 brain structural 
imaging data for correlation analyses.

Peripheral markers
Blood biochemistry (category ID 17518) and blood count (category ID 
100081) data were taken from ~480,000 participants at the baseline 
assessment (2006–2010). The biomarker assay quality procedures are 
provided in an open-source document (https://biobank.ndph.ox.ac.uk/
showcase/ukb/docs/biomarker_issues.pdf). Beckman Coulter LH750 
instruments were used to analyze the blood count samples, which were 
collected in 4 ml of ethylenediaminetetraacetic acid (EDTA) vacutain-
ers. More information about the hematology analysis is provided at 
https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/haematology.pdf. 
Thirty blood biochemistry markers and 31 blood cell counts were avail-
able from these two UKB categories. The study used 59 markers from 61, 
excluding nucleated red cell count and percentage because the count 
or percentage of the majority (>90%) was 0. We then categorized the 
blood biochemistry markers as ‘liver function’, ‘renal function’, ‘endo-
crine’, ‘immunometabolic’ or ‘bone and joint’ according to previous 
literature78. Blood count was categorized as ‘white blood cell’, ‘red blood 
cell’ or ‘platelet’. More details are provided in Supplementary Table 18.

Metabolic markers were measured in randomly selected EDTA 
plasma samples using an NMR-based metabolic biomarker profiling 
platform, which included ~120,000 UKB participants at the baseline 
assessment. The process for assessing the metabolic markers is avail-
able at https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=220. The 
NMR metabolomics (category ID 220) included 249 metabolic markers 
(168 directly measured and 81 ratios of these). We used 168 directly 
measured metabolic markers and categorized metabolic markers as 
‘amino acids’, ‘apolipoproteins’, ‘lipoprotein particle sizes’, ‘lipoprotein 
particle concentrations’, ‘fatty acids’, ‘triglycerides’, ‘phospholipids’, 
‘cholesteryl esters’, ‘free cholesterol’, ‘cholesterol’, ‘other lipids’, ‘total 
lipids’, ‘ketone bodies’, ‘glycolysis-related metabolites’, ‘fluid balance’ 
and ‘inflammation’. More details are available in Supplementary Table 19.

PRS for depression
The computation of PRSs for individuals required two distinct datasets. 
The first dataset, consisting of individual-level genotype data, was 
obtained from all 502,409 participants in UKB v3 imputation. Detailed 
genotyping and quality control procedures are available in a previous 
publication79. We excluded SNPs with call rates of <95%, minor allele 
frequency of <0.1%, deviation from the Hardy–Weinberg equilibrium 
with P < 1 × 10−10 and selected subjects with British ancestry that had 
no more than ten putative third-degree relatives in the kinship table. 
Finally, we obtained 8,239,652 SNPs from 337,151 participants.

The second dataset was a meta-analysis of large-scale genome-
wide association (GWAS) results for depression80, which included 
9,874,289 total SNPs from 480,359 individuals (135,458 cases and 
344,901 controls). After excluding data from the 23andMe (75,607 cases 
and 231,747 controls, restricted by privacy) and UKB (14,260 cases and 
15,480 controls) to avoid sample overlap with the UKB genotype data, 
this collective GWAS encompassed 6,435,918 variants from 143,265 
individuals (45,591 cases and 97,674 controls).

We utilized PRSice-2 (http://www.prsice.info) to calculated the 
PRS for depression. First, SNPs were clumped with a cutoff of r2 = 0.1 
in a 250-kb window81. Second, the P thresholds were set at P < 0.0005, 
P < 0.001, P < 0.005, P < 0.01, P < 0.05, P < 0.1, P < 0.5 and P < 1 (ref. 82), 
and we finally used PRS (P < 0.05) for further analyses. The PRS was 
then categorized into low (lowest quintile), intermediate (quintiles 2 
to 4) and high (highest quintile) risk levels31,32. We also used the original 
GWAS, excluding samples from 23andMe to calculate the PRS, which 
included 5,401,556 variants and 173,005 individuals (59,851 cases and 
113,154 controls), and found a high correlation between the two PRSs 
(r = 0.512, P < 1.0 × 10−295).

Covariates
The data for covariates were collected at baseline. All models were 
adjusted for age at baseline (field ID 21022), sex (field ID 31), Townsend 
deprivation index (field ID 189, referring to an area-based measure of 
socioeconomic deprivation), BMI (field ID 21001) and education level 
(field ID 6138). Association analyses involving brain structural imag-
ing data were additionally adjusted neuroimaging scanning sites and 
estimated total intracranial volume. Association analyses involving 
genetic data additionally corrected for the top 20 ancestry principal 
components. The detailed covariates utilized in each statistical analysis 
are presented in Supplementary Fig. 2.

Statistical analyses
Cox proportional hazard regression model. Cox proportional hazard 
regression models were utilized to examine the association of lifestyle 
categories, genetic risk categories and the combination of genetic and 
lifestyle categories (nine categories using low genetic risk and favora-
ble lifestyle as reference) with time to depression. The missing data of 
covariates were imputed by their mean value. The proportion of miss-
ing data is presented in Supplementary Table 2. HRs and corresponding 
95% CIs were calculated in complete-case analyses. Participants were 
considered at risk for depression from baseline (2006–2010) and fol-
lowed up until the date of first diagnosis, death, loss to follow-up or last 
date with available information (April 2021), whichever came first. The 
proportional hazards assumption was assessed using the Schoenfeld 
residuals method83 and satisfied.

Association of lifestyle scores with brain volume and peripheral 
markers. To identify the mediating role of brain structural imaging and  
peripheral markers underlying the association between lifestyle and 
depression, we conducted an exploratory Pearson correlation analysis of 
lifestyle at baseline with these neurobiological phenotypes. FDR correc-
tion was conducted for multiple comparisons (Supplementary Table 14).  
Considering the time difference from baseline (2006–2010) to imaging 
visit timepoint (2014+), we also calculated correlation analyses between 
brain volumes and lifestyle scores assessed at the imaging visit (Sup-
plementary Table 15). Depression scores at the two timepoints were 
also correlated with brain volumes (Supplementary Tables 16 and 17).  
Both lifestyle and depression score at the two collected timepoints were 
similar and highly correlated (lifestyle, r = 0.85, P = 1.2 × 10−23; depres-
sion, r = 0.85, P = 3.2 × 10−24). Therefore, lifestyle and depression did not 
change to a great extent. We further calculated the spatial correlation 
to compare the similarity of lifestyle and depression-related brain maps 
at baseline and imaging visit (Supplementary Fig. 18).

The associations of lifestyle at baseline with peripheral markers 
were also tested, with Bonferroni correction conducted for multiple 
comparisons (Supplementary Tables 18 and 19).

Mendelian randomization. We further investigated the possible causal 
relationship between lifestyle and depression using bidirectional two-
sample MR analysis, which employs genetic variants as the instrumental 
variables to estimate the corresponding causal effect size.

For lifestyle, we performed GWAS on lifestyle scores. The genotype 
data were the same as used in the PRS calculation (including 8,239,652 
SNPs from 337,151 participants). We used PLINK 2.0 (https://www.cog-
genomics.org/plink/2.0/) for the calculation, adjusting for age, sex 
and the first 20 ancestry principal components. For depression, we 
also used the meta-analysis of depression GWAS80 and excluded the 
participants from UKB and 23andMe to avoid sample overlap, which 
was consistent with the PRS calculation.

Two-sample MR analyses used four methods—IVW, weighted 
median, simple median and weighted mode—implemented in the  
R package TwoSampleMR (https://mrcieu.github.io/TwoSampleMR/). 
The genetic instruments were selected with P < 1 × 10−7 and we removed 
correlated SNPs (r2 > 0.01, kb < 1,000) to avoid linkage-disequilibrium. 
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Cochran’s Q statistics was used to assess the heterogeneity of IVW, 
and radial MR was used to remove the SNPs contributing the most 
heterogeneity. After removing two SNPs with significant heterogene-
ity (rs4930349, PIVW.Q = 3.4 × 10−2; rs66994942, PIVW.Q = 4.2 × 10−3), we 
performed the heterogeneity test again by using Q statistics and the 
Mendelian Randomization-Pleiotropy Residual Sum and Outlier (MR-
PRESSO) test. No further heterogeneity was observed (PIVW.Q = 0.26). 
The MR-Egger method was used and found no sign of pleiotropy  
(Ppleiotropy = 0.52). In the main MR analysis, we utilized 26 SNPs and pri-
oritized the models using the fixed-effect IVW method, because no 
pleiotropy and heterogeneity effects were observed. For sensitivity 
analyses, we performed the simple median method, weighted median 
and weighted mode methods to ensure the robustness of the IVW 
result. We also assessed the reverse causality by testing the effect of 
depression genetic liability (using the same P value and clumping 
threshold) on lifestyle similarly. Finally, we created scatter and forest 
plots to visually inspect the data for a strong influence by single variants  
(Fig. 4 and Supplementary Figs. 13 and 14).

Structural equation model. A structural equation model was esti-
mated for participants with lifestyle scores, depression scores, brain 
structural imaging, PRS and immunometabolic markers (implemented 
in the R package lavaan 0.8). Three latent variables were estimated 
using confirmatory factor analysis. The latent variable representing 
depression was estimated using four PHQ-4 items. The latent vari-
able of immunometabolic function was calculated from the first four 
significant markers correlated with lifestyle score. Finally, the latent 
variable for brain structures was derived from the first 20 cortical and 
subcortical brain volumes significantly correlated with lifestyle score. 
These three latent variables were investigated to determine the direc-
tional dependencies with PRS and lifestyle via path modeling. Before 
inputting into the model, we normalized the PRS, lifestyle score and 
each sub-score of the latent variables, respectively, to maintain the 
same scale. FDR corrections were conducted to adjust the P values 
accounting for multiple comparisons of all paths.

Sensitivity analyses. In the sensitivity analyses, we further tested 
the association of lifestyle with risk of three depression subtypes: 
single depressive episode, recurrent depressive disorder and TRD. 
The ICD-10 defines ‘depressive episode’ as F32.0-9, indicating a 
singular occurrence, and ‘recurrent depressive disorder’ as F33.0-9.  
The data were also retrieved from primary care by utilizing Read 
codes (Supplementary Table 1). According to the treatment records 
in the primary care prescriptions table (gp_scripts, UKB Field ID 
42039), antidepressant use was gathered utilizing British National 
Formulary codes 0403010 (tricyclic and related antidepressant 
drugs), 0403020 (monoamine oxidase inhibitors), 0403030 (selec-
tive serotonin reuptake inhibitors) and 0403040 (other antide-
pressant drugs). TRD was defined by at least two switches between 
antidepressant drugs, each prescribed for at least six weeks84, as 
well as having partially distinct genetic85 and clinical-demographic 
characteristics86 compared with non-TRD. As such, TRD should be 
considered as a unique subtype of depression87–89. Non-response 
after the second medication switch was confirmed for subjects con-
sidered treatment-resistant.

Due to the limited sample size scoring 0 and 1 in recurrent depres-
sive disorder and TRD, we combining 0 and 1 as the reference group 
(Supplementary Figs. 7 and 8). Considering the difference between 
previous smokers and current smokers, we further calculated the risk of 
depression according to different smoking statuses with never smoking 
as reference (Supplementary Table 6). Regarding the small reference 
group issue, we also used favorable lifestyle class with a larger sample 
size as reference (Supplementary Table 7). In addition, we calculated 
depression risk according to genetic and lifestyle across three subtypes 
of depression (Supplementary Figs. 9–11).

Considering the change of depression symptoms during the 
follow-up period from baseline to imaging visit, we selected two 
groups based on the PHQ-4 classifying criterion90. One group was 
severely depressed at baseline (PHQ-4 ≥ 9) and recovered at imaging 
visit (PHQ-4 ≥ 6); this was labeled the recovered group (n = 538). The 
other group was suffering persistent symptoms over time (PHQ-4 ≥ 9, 
whether at baseline or imaging visit); this was labeled the persistent 
group (n = 809). To investigate whether the change in depression 
symptoms would impact the association between depression and brain 
volumes, we utilized an independent-sample t-test to examine the 
difference in brain volumes between the two groups. We found there 
were only two significant brain volumes (left middle temporal and right 
insula), both with P = 0.04, but neither survived the FDR correction 
(Supplementary Table 20). We also considered whether antidepressant 
treatment would impact the association between depression and brain 
volumes in these two groups. In the recovered group, we further classi-
fied the treated-recovered group (n = 132) and not-treated-recovered 
group (n = 451) based on antidepressant use. We found there were 
only two significant brain volumes (right cuneus and right posterior 
cingulate), with P = 0.03 and 0.01, but neither survived the FDR cor-
rection (Supplementary Table 21). In the persistent group, we also 
classified the treated-persistent group (n = 251) and the not-treated-
persistent group (n = 558) based on antidepressant use. We found that 
there was only one significant brain volume (right accumbens area),  
with P = 0.03, but it did not survive FDR correction (Supplementary 
Table 22). As such, we suggest that the time difference between base-
line and imaging visit did not substantially influence the correlation 
between depression and brain structure.

Finally, we estimated two possible SEMs accounting for multiple 
directionalities among the latent variables. In the first model, we 
changed the direction from depression to lifestyle and kept the other 
paths’ direction unchanged to test the reversed effect (Supplemen-
tary Fig. 19). In the second model, we further examined the media-
tion mechanism of immunometabolic function and brain structure 
underlying the path from depression to lifestyle, by changing the 
directions between depression and immunometabolic function, 
depression and brain structure, immunometabolic function and 
lifestyle, and brain structure and lifestyle based on possible model 1 
(Supplementary Fig. 20). Both of these possible models were fitted 
under the same procedures as the original model and provided an 
improved interpretation of our results.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this Article.

Data availability
Access to individual-level UK Biobank data (phenotypic, neuroimaging 
and genotype) is available to bona fide researchers through application 
to the UK Biobank website (https://www.ukbiobank.ac.uk). Additional 
information about registration for access to the data is available at 
http://www.ukbiobank.ac.uk/register-apply/. Use of UK Biobank data 
was performed under application no. 19542. Summary statistics from 
previous GWAS of depression that were used in this study are publicly 
available through the Psychiatric Genomics Consortium (Psychiatric 
Genomics Consortium, PGC, unc.edu) and can be downloaded from 
https://pgc.unc.edu/for-researchers/download-results/ (doi 10.6084/
m9.figshare.21655784; PubMed 29700475; file daner_pgc_mdd_meta_
w2_no23andMe_rmUKBB.gz)

Code availability
The code used for survival analyses is an adaptation of the R pack-
age survival (https://github.com/therneau/survival) and has been 
made available through the GitHub repository: https://github.com/
yjzhao1004/lifestyle_depression. GWAS analyses were conducted 
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by using PLINK 2.0 (https://www.cog-genomics.org/plink/2.0/). We 
utilized PRSice-2 (https://choishingwan.github.io/PRSice/) to con-
duct PRS analysis. Two sample MR analyses was performed using the  
R package TwoSampleMR (https://mrcieu.github.io/TwoSampleMR/) 
and RadialMR (https://github.com/WSpiller/RadialMR/). SEM was 
constructed using the R package lavaan 0.8 (https://lavaan.ugent.be).  
All analyses that were run in R were run in R v.4.2.1 (https://www. 
r-project.org).

References
1. Winter, N. R. et al. Quantifying deviations of brain structure and 

function in major depressive disorder across neuroimaging 
modalities. JAMA Psychiat. 79, 879–888 (2022).

2. Friedrich, M. J. Depression is the leading cause of disability 
around the world. JAMA 317, 1517 (2017).

3. Collins, P. Y. et al. Grand challenges in global mental health. 
Nature 475, 27–30 (2011).

4. Firth, J. et al. A meta‐review of ‘lifestyle psychiatry’: the role of 
exercise, smoking, diet and sleep in the prevention and treatment 
of mental disorders. World Psychiatry 19, 360–380 (2020).

5. Moore, T. M., Hauser, R. M., Depp, C. A. & Eyler, L. T. Rethinking the 
impact of genetic risk for depression: an analysis of population-
subgroup differences in a large electronic health record dataset. 
Front. Psychiatry 8, 46 (2017).

6. Peyrot, W. J. et al. Does childhood trauma moderate polygenic risk  
for depression? A meta-analysis of 5,765 subjects from the psychia-
tric genomics consortium. Biol. Psychiatry 84, 138–147 (2018).

7. Jacka, F. N. et al. A randomised controlled trial of dietary 
improvement for adults with major depression (the ‘SMILES’ trial). 
BMC Med. 15, 23 (2017).

8. Opel, N. et al. Preventing the onset of major depressive disorder: 
a meta-analytic review of psychological interventions. Int. J. 
Methods Psychiatr. Res. 29, e1830 (2020).

9. Opel, N. et al. Mediation of the influence of childhood 
maltreatment on depression relapse by cortical structure: a 
2-year longitudinal observational study. Lancet Psychiatry 6, 
318–326 (2019).

10. Sarris, J. et al. Multiple lifestyle factors and depressed mood: 
a cross-sectional and longitudinal analysis of the UK Biobank 
(N = 84,860). BMC Med. 18, 354 (2020).

11. Pedersen, B. K. Physical activity and muscle-brain crosstalk. Nat. 
Rev. Endocrinol. 15, 383–392 (2019).

12. Mattson, M. P. Energy intake and exercise as determinants of brain 
health and vulnerability to injury and disease. Cell Metab. 16, 
706–722 (2012).

13. Al-Massadi, O. et al. Multifaceted actions of melanin-concentrating 
hormone on mammalian energy homeostasis. Nat. Rev. Endocrinol. 
17, 745–755 (2021).

14. Joutsa, J. et al. Brain lesions disrupting addiction map to a 
common human brain circuit. Nat. Med. 28, 1249–1255 (2022).

15. Mavromatis, L. A. et al. Association between brain structure and 
alcohol use behaviors in adults: a Mendelian randomization and 
multiomics study. JAMA Psychiat. 79, 869–878 (2022).

16. Hari, R. & Kujala, M. V. Brain basis of human social interaction: 
from concepts to brain imaging. Physiol. Rev. 89, 453–479 (2009).

17. Meyer-Lindenberg, A. & Weinberger, D. R. Intermediate 
phenotypes and genetic mechanisms of psychiatric disorders. 
Nat. Rev. Neurosci. 7, 818–827 (2006).

18. Gregersen, P. K. & Behrens, T. W. Genetics of autoimmune 
diseases—disorders of immune homeostasis. Nat. Rev. Genet. 7, 
917–928 (2006).

19. Holt-Lunstad, J. Social connection as a public health issue: the 
evidence and a systemic framework for prioritizing the ‘social’ 
in social determinants of health. Annu. Rev. Public Health 43, 
193–213 (2022).

20. Huang, Y. et al. Sedentary behaviors and risk of depression:  
a meta-analysis of prospective studies. Transl. Psychiatry 10,  
26 (2020).

21. Schuch, F. B. et al. Physical activity and incident depression: a 
meta-analysis of prospective cohort studies. Am. J. Psychiatry 175, 
631–648 (2018).

22. Schuch, F. et al. Physical activity and sedentary behavior in 
people with major depressive disorder: a systematic review and 
meta-analysis. J. Affect. Disord. 210, 139–150 (2017).

23. Bjørngaard, J. H. et al. The causal role of smoking in anxiety and 
depression: a Mendelian randomization analysis of the HUNT 
study. Psychol. Med. 43, 711–719 (2013).

24. Tidey, J. W. & Miller, M. E. Smoking cessation and reduction in 
people with chronic mental illness. BMJ 351, h4065 (2015).

25. Lassale, C. et al. Healthy dietary indices and risk of depressive 
outcomes: a systematic review and meta-analysis of 
observational studies. Mol. Psychiatry 24, 965–986 (2019).

26. Zhai, L., Zhang, H. & Zhang, D. Sleep duration and depression 
among adults: a meta-analysis of prospective studies: Research 
Article: sleep duration and depression. Depress. Anxiety 32, 
664–670 (2015).

27. Li, Y. et al. The brain structure and genetic mechanisms 
underlying the nonlinear association between sleep  
duration, cognition and mental health. Nat. Aging 2,  
425–437 (2022).

28. Almeida, O. P., Hankey, G. J., Yeap, B. B., Golledge, J. & Flicker, L.  
The triangular association of ADH1B genetic polymorphism, 
alcohol consumption and the risk of depression in older men. 
Mol. Psychiatry 19, 995–1000 (2014).

29. Li, L., Wu, C., Gan, Y., Qu, X. & Lu, Z. Insomnia and the risk of 
depression: a meta-analysis of prospective cohort studies.  
BMC Psychiatry 16, 375 (2016).

30. Drinkwater, C., Wildman, J. & Moffatt, S. Social prescribing.  
BMJ 364, l1285 (2019).

31. Lourida, I. et al. Association of lifestyle and genetic risk with 
incidence of dementia. JAMA 322, 430–437 (2019).

32. Wang, B. et al. Association of combined healthy lifestyle 
factors with incident dementia in patients with Type 2 Diabetes. 
Neurology 99, e2336–e2345 (2022).

33. Cao, Z. et al. Polygenic risk score, healthy lifestyles  
and risk of incident depression. Transl. Psychiatry 11,  
189 (2021).

34. Lopresti, A. L., Hood, S. D. & Drummond, P. D. A review of lifestyle 
factors that contribute to important pathways associated with 
major depression: diet, sleep and exercise. J. Affect. Disord. 148, 
12–27 (2013).

35. Kivimäki, M., Bartolomucci, A. & Kawachi, I. The multiple roles  
of life stress in metabolic disorders. Nat. Rev. Endocrinol. 19,  
10–27 (2023).

36. Meerlo, P., Koehl, M., Van Der Borght, K. & Turek, F. W. Sleep 
restriction alters the hypothalamic-pituitary-adrenal response to 
stress: sleep restriction and HPA axis reactivity. J. Neuroendocrinol. 
14, 397–402 (2002).

37. Martikainen, S. et al. Higher levels of physical activity are 
associated with lower hypothalamic-pituitary-adrenocortical axis 
reactivity to psychosocial stress in children. J. Clin. Endocrinol. 
Metab. 98, E619–E627 (2013).

38. Bar, N. et al. A reference map of potential determinants for the 
human serum metabolome. Nature 588, 135–140 (2020).

39. Chen, L. et al. Influence of the microbiome, diet and genetics  
on inter-individual variation in the human plasma metabolome. 
Nat. Med. 28, 2333–2343 (2022).

40. Snyder-Mackler, N. et al. Social status alters immune regulation 
and response to infection in macaques. Science 354, 1041–1045 
(2016).

http://www.nature.com/natmentalhealth
https://www.cog-genomics.org/plink/2.0/
https://choishingwan.github.io/PRSice/
https://mrcieu.github.io/TwoSampleMR/
https://github.com/WSpiller/RadialMR/
https://lavaan.ugent.be
https://www.r-project.org
https://www.r-project.org


Nature Mental Health | Volume 1 | October 2023 | 736–750 749

Article https://doi.org/10.1038/s44220-023-00120-1

41. Penninx, B. W., Milaneschi, Y., Lamers, F. & Vogelzangs, N. 
Understanding the somatic consequences of depression: 
biological mechanisms and the role of depression symptom 
profile. BMC Med. 11, 129 (2013).

42. Milaneschi, Y., Lamers, F., Berk, M. & Penninx, B. W. J. H. 
Depression heterogeneity and its biological underpinnings: 
toward immunometabolic depression. Biol. Psychiatry 88, 
369–380 (2020).

43. MacFall, J. R., Payne, M. E., Provenzale, J. E. & Krishnan, K. R. R.  
Medial orbital frontal lesions in late-onset depression. Biol. 
Psychiatry 49, 803–806 (2001).

44. Drevets, W. C. Orbitofrontal cortex function and structure in 
depression. Ann. N.Y. Acad. Sci. 1121, 499–527 (2007).

45. Wei, J.-A. et al. Amygdala neural ensemble mediates mouse social 
investigation behaviors. Natl Sci. Rev. 10, nwac179 (2023).

46. Jiang, Y., Mi, Q. & Zhu, L. Neurocomputational mechanism of real-
time distributed learning on social networks. Nat. Neurosci. 26, 
506–516 (2023).

47. Hadjihambi, A. et al. Partial MCT1 invalidation protects against 
diet-induced non-alcoholic fatty liver disease and the associated 
brain dysfunction. J. Hepatol. 78, 180–190 (2023).

48. Aime, M. et al. Paradoxical somatodendritic decoupling supports 
cortical plasticity during REM sleep. Science 376, 724–730 (2022).

49. Gozal, D., Nair, D. & Goldbart, A. D. Physical activity attenuates 
intermittent hypoxia-induced spatial learning deficits and 
oxidative stress. Am. J. Respir. Crit. Care Med. 182, 104–112 (2010).

50. MacKillop, J. et al. Hazardous drinking and alcohol use disorders. 
Nat. Rev. Dis. Primers 8, 80 (2022).

51. Branchi, I. et al. Brain-immune crosstalk in the treatment of major 
depressive disorder. Eur. Neuropsychopharmacol. 45, 89–107 (2021).

52. Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W. & 
Kelley, K. W. From inflammation to sickness and depression: when 
the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 
46–56 (2008).

53. Baxter, L. C. Appetite changes in depression. Am. J. Psychiatry 173, 
317–318 (2016).

54. Segrin, C. Social skills deficits associated with depression.  
Clin. Psychol. Rev. 20, 379–403 (2000).

55. Keller, J. et al. Cortisol circadian rhythm alterations in psychotic 
major depression. Biol. Psychiatry 60, 275–281 (2006).

56. Andréasson, A., Arborelius, L., Erlanson-Albertsson, C. & 
Lekander, M. A putative role for cytokines in the impaired appetite 
in depression. Brain Behav. Immun. 21, 147–152 (2007).

57. Damme, K., Park, J. S., Walther, S., Shankman, S. & Mittal, V. 
Depression and motor abnormalities across development, symptom 
dimensions and familial risk. Biol. Psychiatry 89, S297–S298 (2021).

58. Plackett, B. The vicious cycle of depression and obesity. Nature 
608, S42–S43 (2022).

59. Simmons, W. K. et al. Depression-related increases and 
decreases in appetite: dissociable patterns of aberrant activity 
in reward and interoceptive neurocircuitry. Am. J. Psychiatry 173, 
418–428 (2016).

60. Bittner, N. et al. Combining lifestyle risks to disentangle brain 
structure and functional connectivity differences in older adults. 
Nat. Commun. 10, 621 (2019).

61. Mueller, D. L. Tuning the immune system: competing positive and 
negative feedback loops. Nat. Immunol. 4, 210–211 (2003).

62. Marek, S. et al. Reproducible brain-wide association studies 
require thousands of individuals. Nature 603, 654–660 (2022).

63. Palmer, L. J. UK Biobank: bank on it. Lancet 369, 1980–1982 (2007).
64. Smoking: Reducing and Preventing Tobacco Use (NICE, 2015); 

https://www.nice.org.uk/guidance/qs82
65. Lee, P. H., Macfarlane, D. J., Lam, T. & Stewart, S. M. Validity of the 

International Physical Activity Questionnaire Short Form (IPAQ-SF): 
a systematic review. Int. J. Behav. Nutr. Phys. Act. 8, 115 (2011).

66. WHO Guidelines on Physical Activity and Sedentary Behaviour 
(World Health Organization, 2020).

67. Lloyd-Jones, D. M. et al. Defining and setting national goals for 
cardiovascular health promotion and disease reduction: the 
American Heart Association’s strategic impact goal through 2020 
and beyond. Circulation 121, 586–613 (2010).

68. Mozaffarian, D. Dietary and policy priorities for cardiovascular 
disease, diabetes and obesity: a comprehensive review. 
Circulation 133, 187–225 (2016).

69. Phillips, J. A. Dietary Guidelines for Americans, 2020–2025. 
Workplace Health Saf. 69, 395–395 (2021).

70. Taylor, E. N., Fung, T. T. & Curhan, G. C. DASH-style diet associates 
with reduced risk for kidney stones. J. Am. Soc. Nephrol. 20, 
2253–2259 (2009).

71. Fung, T. T. et al. Adherence to a DASH-style diet and risk of 
coronary heart disease and stroke in women. Arch. Intern. Med. 
168, 713–720 (2008).

72. Rai, S. K. et al. The Dietary Approaches to Stop Hypertension 
(DASH) diet, western diet, and risk of gout in men: prospective 
cohort study. BMJ 357, j1794 (2017).

73. Watson, N. F. et al. Recommended amount of sleep for a  
healthy adult: a joint consensus statement of the American 
Academy of Sleep Medicine and Sleep Research Society. Sleep 
38, 843–844 (2015).

74. Herrmann, S. D., Heumann, K. J., Der Ananian, C. A. &  
Ainsworth, B. E. Validity and reliability of the Global Physical 
Activity Questionnaire (GPAQ). Meas. Phys. Educ. Exerc. Sci. 17, 
221–235 (2013).

75. Smith, R. W. et al. Social isolation and risk of heart disease and 
stroke: analysis of two large UK prospective studies. Lancet Public 
Health 6, e232–e239 (2021).

76. Desikan, R. S. et al. An automated labeling system for subdividing 
the human cerebral cortex on MRI scans into gyral based regions 
of interest. NeuroImage 31, 968–980 (2006).

77. Fischl, B. et al. Whole brain segmentation. Neuron 33,  
341–355 (2002).

78. Wainberg, M. et al. Clinical laboratory tests and five-year 
incidence of major depressive disorder: a prospective  
cohort study of 433,890 participants from the UK Biobank. 
Transl. Psychiatry 11, 380 (2021).

79. Bycroft, C. et al. The UK Biobank resource with deep phenotyping 
and genomic data. Nature 562, 203–209 (2018).

80. Wray et al. Genome-wide association analyses identify 44 risk 
variants and refine the genetic architecture of major depression. 
Nat. Genet. 50, 668–681 (2018).

81. Vilhjálmsson, B. J. et al. Modeling linkage disequilibrium 
increases accuracy of polygenic risk scores. Am. J. Hum. Genet. 
97, 576–592 (2015).

82. Major Depressive Disorder Working Group of the Psychiatric 
Genomics Consortium A phenome-wide association and 
Mendelian Randomisation study of polygenic risk for depression 
in UK Biobank. Nat. Commun. 11, 2301 (2020).

83. Schoenfeld, D. Partial residuals for the proportional hazards 
regression model. Biometrika 69, 239–241 (1982).

84. Gaynes, B. N. et al. Defining treatment‐resistant depression. 
Depress. Anxiety 37, 134–145 (2020).

85. Fabbri, C. et al. Genetic and clinical characteristics of treatment-
resistant depression using primary care records in two UK 
cohorts. Mol. Psychiatry 26, 3363–3373 (2021).

86. Fava, M. Diagnosis and definition of treatment-resistant 
depression. Biol. Psychiatry 53, 649–659 (2003).

87. Fagiolini, A. & Kupfer, D. J. Is treatment-resistant depression a unique 
subtype of depression? Biol. Psychiatry 53, 640–648 (2003).

88. Malhi, G. S. & Byrow, Y. Is treatment-resistant depression a useful 
concept? Evid. Based Ment. Health 19, 1–3 (2016).

http://www.nature.com/natmentalhealth
https://www.nice.org.uk/guidance/qs82


Nature Mental Health | Volume 1 | October 2023 | 736–750 750

Article https://doi.org/10.1038/s44220-023-00120-1

89. Yang, L. et al. Depression, depression treatments, and risk 
of incident dementia: a prospective cohort study of 354,313 
participants. Biol. Psychiatry 93, 802–809 (2023).

90. Stanhope, J. Patient Health Questionnaire-4. Occup. Med. 66, 
760–761 (2016).

Acknowledgements
This study used the UK Biobank Resource under application no. 
19542. We thank all participants and researchers from the UK 
Biobank. The study was supported by grants from the National 
Natural Science Foundation of China (nos. 82071997 and 82071201), 
Science and Technology Innovation 2030 Major Projects 
(2022ZD0211600), the National Key R&D Program of China (nos. 
2018YFC1312900 and 2019YFA0709502), Shanghai Municipal 
Science and Technology Major Project (no. 2018SHZDZX01), 
Shanghai Rising-Star Program (21QA1408700), 111 Project (B18015) 
and Zhangjiang Lab, Tianqiao and Chrissy Chen Institute, the State 
Key Laboratory of Neurobiology and Frontiers Center for Brain 
Science of the Ministry of Education, Shanghai Center for Brain 
Science and Brain-Inspired Technology, Fudan University.

Author contributions
W.C., J.F. and J.Y. proposed the study. Yujie Zhao and L.Y. analyzed  
the data. W.C., J.F., J.Y., Yang Zhao and B.J.S. contributed to 
interpretation of results. Yujie Zhao and L.Y. drafted the manuscript. 
B.J.S., C.L., Yang Zhao and W.C. edited the manuscript. Yujie Zhao, 
L.Y., J.Y., W.Z., K.K., Z.L., Y.G., Y.L., Yang Zhao and W.C. contributed 
to visualization. All authors considered how to analyze the data and 
approved the manuscript.

Competing interests
The authors declare no competing interests.

Ethics statement
The UK Biobank has ethical approval by the National Research Ethics 
Service (ref. 11/NW/0382).

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s44220-023-00120-1.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s44220-023-00120-1.

Correspondence and requests for materials should be addressed to 
Jintai Yu, Jianfeng Feng or Wei Cheng.

Peer review information Nature Mental Health thanks Mark Kvarta, 
Femke Lamers, Oleg Medvedev and Tiina Paunio for their contribution 
to the peer review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023, corrected publication 2023

http://www.nature.com/natmentalhealth
https://doi.org/10.1038/s44220-023-00120-1
https://doi.org/10.1038/s44220-023-00120-1
https://doi.org/10.1038/s44220-023-00120-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Mental Health

Article https://doi.org/10.1038/s44220-023-00120-1

Extended Data Fig. 1 | Guideline of the study. Top left, UK Biobank data used 
in the study including lifestyle factors, depression diagnoses, brain structural 
imaging, peripheral markers and genomics. Bottom left, cox model specifying the 
depression risk according to lifestyle and genetics and mendelian randomization 
specifying the causal relationship between lifestyle and depression. Top right,  

association between lifestyle and brain imaging, peripheral markers. Bottom right, 
structural equation model specifying the potential mechanisms underlying the 
associations between lifestyle, PRS, brain structure, immunometabolic function 
and depression.
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