Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Time spent on social media among the least influential factors in adolescent mental health: preliminary results from a panel network analysis



There is growing concern about the role of social media use in the documented increase of adolescent mental health difficulties. However, the current evidence remains complex and inconclusive. While increasing research on this area of work has allowed for notable progress, the impact of social media use within the complex systems of adolescent mental health and development is yet to be examined. The current study addresses this conceptual and methodological oversight by applying a panel network analysis to explore the role of social media on key interacting systems of mental health, wellbeing and social life of 12,041 UK adolescents. Here we find that, across time, estimated time spent interacting with social media predicts concentration problems in female participants. However, of the factors included in the current network, social media use is one of the least influential factors of adolescent mental health, with others (for example, bullying, lack of family support and school work dissatisfaction) exhibiting stronger associations. Our findings provide an important exploratory first step in mapping out complex relationships between social media use and key developmental systems and highlight the need for social policy initiatives that focus on the home and school environment to foster resilience.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual network model.
Fig. 2: Temporal networks.
Fig. 3: Contemporaneous networks.
Fig. 4: The expected influence.
Fig. 5: The statistical network panel model.

Data availability

The Understanding Society cohort data66 used in this study are available through the UK Data Service and can be accessed at Researchers who would like to use Understanding Society need to register with the UK Data Service before being allowed to apply for or download datasets. M.P. accessed the data.

Code availability

The code used in the current study is publicly available at


  1. Neal, J. W. & Neal, Z. P. Nested or networked? Future directions for ecological systems theory. Soc. Dev. 22, 722–737 (2013).

    Google Scholar 

  2. Navarro, J. L. & Tudge, J. R. H. Technologizing Bronfenbrenner: neo-ecological theory. Curr. Psychol. (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fried, E. I. & Robinaugh, D. J. Systems all the way down: embracing complexity in mental health research. BMC Med. 18, 205 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Borsboom, D. & Cramer, A. O. Network analysis: an integrative approach to the structure of psychopathology. Ann. Rev. Clin. Psychol. 9, 91–121 (2013).

    Article  Google Scholar 

  5. Collishaw, S. Annual research review: secular trends in child and adolescent mental health. J. Child Psychol. Psychiatry 56, 370–393 (2015).

    Article  PubMed  Google Scholar 

  6. Orben, A. The Sisyphean cycle of technology panics. Perspect. Psychol. Sci. 15, 1143–1157 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Orben, A., Przybylski, A. K., Blakemore, S. J. & Kievit, R. A. Windows of developmental sensitivity to social media. Nat. Commun. 13, 1649 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Valkenburg, P. M., Meier, A. & Beyens, I. Social media use and its impact on adolescent mental health: an umbrella review of the evidence. Curr. Opin. Psychol. 44, 58–68 (2022).

    Article  PubMed  Google Scholar 

  9. Orben, A., Dienlin, T. & Przybylski, A. K. Social media’s enduring effect on adolescent life satisfaction. Proc. Natl Acad. Sci. USA 116, 10226–10228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aalbers, G., McNally, R. J., Heeren, A., de Wit, S. & Fried, E. I. Social media and depression symptoms: a network perspective. J. Exp. Psychol. Gen. 148, 1454–1462 (2019).

    Article  PubMed  Google Scholar 

  11. Booker, C. L., Kelly, Y. J. & Sacker, A. Gender differences in the associations between age trends of social media interaction and well-being among 10–15 year olds in the UK. BMC Public Health 18, 321 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. World Health Organization. Constitution of the World Health Organization; (1946).

  13. Schønning, V., Hjetland, G. J., Aarø, L. E. & Skogen, J. C. Social media use and mental health and well-being among adolescents—a scoping review. Front. Psychol. (2020).

  14. Black, L., Panayiotou, M. & Humphrey, N. Measuring general mental health in early-mid adolescence: a systematic meta-review of content and psychometrics. JCPP Adv. (2022).

  15. Black, L., Panayiotou, M. & Humphrey, N. Internalizing symptoms, well-being, and correlates in adolescence: a multiverse exploration via cross-lagged panel network models. Dev. Psychopathol. 34, 1–15 (2021).

    Google Scholar 

  16. Patton, G. C. et al. Our future: a Lancet commission on adolescent health and wellbeing. Lancet 387, 2423–2478 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Masten, A. S., Lucke, C. M., Nelson, K. M. & Stallworthy, I. C. Resilience in development and psychopathology: multisystem perspectives. Annu. Rev. Clin. Psychol. 17, 521–549 (2021).

    Article  PubMed  Google Scholar 

  18. Höltge, J., Theron, L. & Ungar, M. A multisystemic perspective on the temporal interplay between adolescent depression and resilience-supporting individual and social resources. J. Affect. Disord. 297, 225–232 (2022).

    Article  PubMed  Google Scholar 

  19. Guessoum, S. B. et al. Adolescent psychiatric disorders during the COVID-19 pandemic and lockdown. Psychiatry Res. 291, 113264 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Long, E., Zucca, C. & Sweeting, H. School climate, peer relationships, and adolescent mental health: a social ecological perspective. Youth Soc. 53, 1400–1415 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fried, E. I. & Nesse, R. M. Depression sum-scores don’t add up: why analyzing specific depression symptoms is essential. BMC Med. 13, 72 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rhemtulla, M., van Bork, R. & Borsboom, D. Worse than measurement error: consequences of inappropriate latent variable measurement models. Psychol. Methods 25, 30–45 (2020).

    Article  PubMed  Google Scholar 

  23. Clifton, J. D. W. Managing validity versus reliability trade-offs in scale-building decisions. Psychol. Methods 25, 259–270 (2020).

    Article  PubMed  Google Scholar 

  24. Fried, E. I., Nesse, R. M., Zivin, K., Guille, C. & Sen, S. Depression is more than the sum score of its parts: individual DSM symptoms have different risk factors. Psychol. Med. 44, 2067–2076 (2014).

    Article  PubMed  Google Scholar 

  25. Epskamp, S. Psychometric network models from time-series and panel data. Psychometrika 75, 206–231 (2020).

    Article  Google Scholar 

  26. Borsboom, D. A network theory of mental disorders. World Psychiatry 16, 5–13 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wysocki, A., Rhemtulla, M., van Bork, R. & Cramer, A. O. J. Cross-lagged network models. Preprint at PsyArxiv (2022).

  28. Bringmann, L. F. et al. Psychopathological networks: theory, methods and practice. Behav. Res. Ther. 149, 104011 (2022).

    Article  PubMed  Google Scholar 

  29. Boer, M., Stevens, G., Finkenauer, C. & van den Eijnden, R. Attention deficit hyperactivity disorder-symptoms, social media use intensity, and social media use problems in adolescents: investigating directionality. Child Dev. 91, e853–e865 (2020).

    Article  PubMed  Google Scholar 

  30. Robinaugh, D. J., Millner, A. J. & McNally, R. J. Identifying highly influential nodes in the complicated grief network. J. Abnorm. Psychol. 125, 747–757 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pfeifer, J. H. & Allen, N. B. Puberty initiates cascading relationships between neurodevelopmental, social, and internalizing processes across adolescence. Biol. Psychiatry 89, 99–108 (2021).

    Article  PubMed  Google Scholar 

  32. Campbell, O. L. K., Bann, D. & Patalay, P. The gender gap in adolescent mental health: a cross-national investigation of 566,829 adolescents across 73 countries. SSM Popul. Health 13, 100742 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wild, B. et al. A graphical vector autoregressive modelling approach to the analysis of electronic diary data. BMC Med. Res. Methodol. 10, 28 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. University of Essex, Institute for Social and Economic Research. Understanding Society: Waves 1–10, 2009–2019 and Harmonised BHPS: Waves 1–18, 1991–2009 [data collection] 13th edn. SN: 6614 (UK Data Service, 2020).

  35. Burger, J. et al. Reporting standards for psychological network analyses in cross-sectional data. Psychol. Methods (2022).

    Article  PubMed  Google Scholar 

  36. Borsboom, D. et al. Network analysis of multivariate data in psychological science. Nat. Rev. Methods Primers 1, 58 (2021).

    Article  Google Scholar 

  37. Fried, E. I., Papanikolaou, F. & Epskamp, S. Mental health and social contact during the COVID-19 pandemic: an ecological momentary assessment study. Clin. Psychol. Sci. 10, 340–354 (2021).

    Article  Google Scholar 

  38. Xie, J.-Q., Rost, D. H., Wang, F.-X., Wang, J.-L. & Monk, R. L. The association between excessive social media use and distraction: an eye movement tracking study. Inf. Manag. 58, 103415 (2021).

    Article  Google Scholar 

  39. Goodman, R. Psychometric properties of the Strengths and Difficulties Questionnaire. J. Am. Acad. Child Adolesc. Psychiatry 40, 1337–1345 (2001).

    Article  PubMed  Google Scholar 

  40. Fried, E. I. The 52 symptoms of major depression: lack of content overlap among seven common depression scales. J. Affect. Disord. 208, 191–197 (2017).

    Article  PubMed  Google Scholar 

  41. Leonhardt, M. & Overå, S. Are there differences in video gaming and use of social media among boys and girls?—A mixed methods approach. Int. J. Environ. Res. Public Health 18, 6085 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Oncioiu, S. I. et al. Mental health comorbidities following peer victimization across childhood and adolescence: a 20-year longitudinal study. Psychol. Med. (2021).

  43. Olweus, D. & Limber, S. P. Some problems with cyberbullying research. Curr. Opin. Psychol. 19, 139–143 (2018).

    Article  PubMed  Google Scholar 

  44. Mulder, J. D. & Hamaker, E. L. Three extensions of the random intercept cross-lagged panel model. Struct. Equ. Modeling 28, 638–648 (2020).

    Article  Google Scholar 

  45. Marsh, H. W., Pekrun, R. & Lüdtke, O. Directional ordering of self-concept, school grades, and standardized tests over five years: new tripartite models juxtaposing within- and between-person perspectives. Ed. Psychol. Rev. 34, 2697–2744 (2022).

    Article  Google Scholar 

  46. Laukka, E. J., Dykiert, D., Allerhand, M., Starr, J. M. & Deary, I. J. Effects of between-person differences and within-person changes in symptoms of anxiety and depression on older age cognitive performance. Psychol. Med. 48, 1350–1358 (2018).

    Article  PubMed  Google Scholar 

  47. Vuorre, M., Orben, A. & Przybylski, A. K. There is no evidence that associations between adolescents’ digital technology engagement and mental health problems have increased. Clin. Psychol. Sci. 9, 823–835 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ryan, O., Bringmann, L. F. & Schuurman, N. K. The challenge of generating causal hypotheses using network models. Struct. Equ. Modeling 29, 953–970 (2022).

    Article  Google Scholar 

  49. Johannes, N., Thuy-vy Nguyen, N. W. & Przybylski, A. K. Objective, subjective, and accurate reporting of social media use: no evidence that daily social media use correlates with personality traits, motivational states, or well-being. Technol. Mind Behav. (2021).

  50. Vogel, E. A. et al. Problematic social media use in sexual and gender minority young adults: observational study. JMIR Mental Health 8, e23688 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Institute for Social and Economic Research. Understanding Society: Waves 1–10, 2009–2019 and Harmonised BHPS: Waves 1–18, 1991–2009, User Guide, 29 October 2020 (University of Essex, 2020).

  52. Schools, Pupils and Their Characteristics: January 2019 (Department for Education, 2019).

  53. Sonderen, E. V., Sanderman, R. & Coyne, J. C. Ineffectiveness of reverse wording of questionnaire items: let’s learn from cows in the rain. PLoS ONE 8, e68967 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bertha, E. A. & Balázs, J. Subthreshold depression in adolescence: a systematic review. Eur. Child Adolesc. Psychiatry 22, 589–603 (2013).

    Article  PubMed  Google Scholar 

  55. Rapee, R. M. et al. Adolescent development and risk for the onset of social-emotional disorders: a review and conceptual model. Behav. Res. Ther. 123, 103501 (2019).

    Article  PubMed  Google Scholar 

  56. Black, L., Panayiotou, M. & Humphrey, N. The dimensionality and latent structure of mental health difficulties and wellbeing in early adolescence. PLoS ONE 14, e0213018 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Essau, C. A. & de la Torre-Luque, A. Comorbidity between internalising and externalising disorders among adolescents: symptom connectivity features and psychosocial outcome. Child Psychiatry Hum. Dev. 54, 493–507 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Black, L., Mansfield, R. & Panayiotou, M. Age appropriateness of the self-report Strengths and Difficulties Questionnaire. Assessment 28, 1556–1569 (2020).

    Article  PubMed  Google Scholar 

  59. Epskamp, S. Psychonetrics: structural equation modeling and confirmatory network analysis. R Project (2021).

  60. Epskamp, S. Graph plotting methods, psychometric data visualization and graphical model estimation. R Project (2021).

  61. Wickham, H. ggplot2: elegant graphics for data analysis. R project (2016).

  62. Berry, D. & Willoughby, M. T. On the practical interpretability of cross-lagged panel models: rethinking a developmental workhorse. Child Dev. 88, 1186–1206 (2017).

    Article  PubMed  Google Scholar 

  63. Epskamp, S., Borsboom, D. & Fried, E. I. Estimating psychological networks and their accuracy: a tutorial paper. Behav. Res. Methods 50, 195–212 (2018).

    Article  PubMed  Google Scholar 

  64. Hu, L. T. & Bentler, P. M. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equ. Modeling 6, 1–55 (1999).

    Article  Google Scholar 

  65. Crede, M. & Harms, P. Questionable research practices when using confirmatory factor analysis. J. Manag. Psychol. 34, 18–30 (2018).

    Article  Google Scholar 

  66. University of Essex, Institute for Social and Economic Research, Understanding Society [data series]., UK Data Service, 9th release,

Download references


We thank S. Epskamp for feedback on analyzes. The authors received no specific funding for this work. Data for the current study were drawn from Understanding Society, an initiative funded by the Economic and Social Research Council and various UK government departments, with scientific leadership by the Institute for Social and Economic Research, University of Essex, and survey delivery by NatCen Social Research and Kantar Public. The funders were not involved in the design, analysis, interpretation or writing up of this study.

Author information

Authors and Affiliations



Conceptualization: M.P., L.B., P.C.-M., P.Q. and N.H. Data access and analysis: M.P. Visualization: M.P. Writing of manuscript: M.P, with contribution from all authors. Review and editing: M.P., L.B., P.C.-M., P.Q. and N.H.

Corresponding author

Correspondence to Margarita Panayiotou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Amy Orben, Han Li and Mark D. Weist for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Tables 1–3.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panayiotou, M., Black, L., Carmichael-Murphy, P. et al. Time spent on social media among the least influential factors in adolescent mental health: preliminary results from a panel network analysis. Nat. Mental Health 1, 316–326 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing