Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Machine learning-based identification of a psychotherapy-predictive electroencephalographic signature in PTSD

This article has been updated

Abstract

Although psychotherapy is at present the most effective treatment for posttraumatic stress disorder (PTSD), its efficacy is still limited for many patients, due mainly to the substantial clinical and neurobiological heterogeneity in the disease. Development of treatment-predictive algorithms by leveraging machine learning on brain connectivity data can advance our understanding of the neurobiological mechanisms underlying the disease and its treatment. Doing so with low-cost and easy-to-gather electroencephalogram (EEG) data may furthermore facilitate clinical translation of such algorithms for patients with PTSD. This study investigates whether individual patient-level resting-state EEG connectivity can predict psychotherapy outcomes in PTSD. We developed a treatment-predictive EEG signature using machine learning applied to high-density resting-state EEG collected from military veterans with PTSD. The predictive signature was dominated by theta frequency EEG connectivity differences and was able to generalize across two types of psychotherapy—prolonged exposure and cognitive processing therapy. Our results also advance a biological definition of a PTSD patient subgroup who is resistant to psychotherapy, which is currently the most evidence-based treatment for the condition. The findings support a path towards clinically translatable and scalable biomarkers that could be used to tailor interventions for each individual or drive the development of novel treatments (ClinicalTrials.gov registration: NCT03343028).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the EEG treatment-predictive algorithm.
Fig. 2: Prediction performance for psychotherapy outcome and visualization of the identified EEG signature in PTSD.
Fig. 3: Prediction of psychotherapy outcome using baseline demographic and clinical variables.
Fig. 4: Within-arm and across-arm validations of the EEG connectivity signature for psychotherapy outcome prediction.
Fig. 5: Treatment response and self-report questionnaires differentiated by the EEG connectivity signature.

Similar content being viewed by others

Data availability

The data supporting the results in this study are available within the paper and its Supplementary Information. The dataset used in this study is governed by a data-use agreement and is therefore not publicly available.

Code availability

The custom code used in this study is available for research purpose from the corresponding author (A.E., amitetkin@altoneuroscience.com) upon reasonable request.

Change history

  • 26 May 2023

    In the version of this article initially published, there was a typo in the surname of Dawlat El-Said which is now amended in the HTML and PDF versions of the article.

References

  1. Yehuda, R. Post-traumatic stress disorder. N. Engl. J. Med. 346, 108–114 (2002).

    Article  PubMed  Google Scholar 

  2. Diagnostic and Statistical Manual of Mental Disorders 5th edn (American Psychiatric Publishing, 2013).

  3. Maercker, A. et al. Proposals for mental disorders specifically associated with stress in the International Classification of Diseases-11. Lancet 381, 1683–1685 (2013).

    Article  PubMed  Google Scholar 

  4. Galatzer-Levy, I. R. & Bryant, R. A. 636,120 ways to have posttraumatic stress disorder. Perspect. Psychol. Sci. 8, 651–662 (2013).

    Article  PubMed  Google Scholar 

  5. Kessler, R. C. et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 593–602 (2005).

    Article  PubMed  Google Scholar 

  6. Etkin, A. et al. Using fMRI connectivity to define a treatment-resistant form of post-traumatic stress disorder. Sci. Transl. Med. 11, eaal3236 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Foa, E. B. et al. A comparison of exposure therapy, stress inoculation training, and their combination for reducing posttraumatic stress disorder in female assault victims. J. Consult. Clin. Psychol. 67, 194–200 (1999).

    Article  PubMed  Google Scholar 

  8. Resick, P. A. Cognitive therapy for posttraumatic stress disorder. J. Cogn. Psychother. 15, 321–329 (2001).

    Article  Google Scholar 

  9. Bradley, R., Greene, J., Russ, E., Dutra, L. & Westen, D. A multidimensional meta-analysis of psychotherapy for PTSD. Am. J. Psychiatry 162, 214–227 (2005).

    Article  PubMed  Google Scholar 

  10. Kline, A. C., Cooper, A. A., Rytwinksi, N. K. & Feeny, N. C. Long-term efficacy of psychotherapy for posttraumatic stress disorder: a meta-analysis of randomized controlled trials. Clin. Psychol. Rev. 59, 30–40 (2018).

    Article  PubMed  Google Scholar 

  11. Lee, D. J. et al. Psychotherapy versus pharmacotherapy for posttraumatic stress disorder: systemic review and meta‐analyses to determine first‐line treatments. Depress. Anxiety 33, 792–806 (2016).

    Article  PubMed  Google Scholar 

  12. Steenkamp, M. M., Litz, B. T., Hoge, C. W. & Marmar, C. R. Psychotherapy for military-related PTSD: a review of randomized clinical trials. JAMA 314, 489–500 (2015).

    Article  PubMed  Google Scholar 

  13. Steenkamp, M. M., Litz, B. T. & Marmar, C. R. First-line psychotherapies for military-related PTSD. JAMA 323, 656–657 (2020).

    Article  PubMed  Google Scholar 

  14. Fonzo, G. A. et al. PTSD psychotherapy outcome predicted by brain activation during emotional reactivity and regulation. Am. J. Psychiatry 174, 1163–1174 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nixon, R. D. et al. Predicting response to cognitive processing therapy for PTSD: a machine-learning approach. Behav. Res. Ther. 144, 103920 (2021).

    Article  PubMed  Google Scholar 

  16. Van Minnen, A., Arntz, A. & Keijsers, G. Prolonged exposure in patients with chronic PTSD: predictors of treatment outcome and dropout. Behav. Res. Ther. 40, 439–457 (2002).

    Article  PubMed  Google Scholar 

  17. Zalta, A. K. et al. Evaluating patterns and predictors of symptom change during a three-week intensive outpatient treatment for veterans with PTSD. BMC Psychiatry 18, 242 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhutovsky, P. et al. Individual prediction of psychotherapy outcome in posttraumatic stress disorder using neuroimaging data. Transl. Psychiatry 9, 326 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Watkins, L. E., Sprang, K. R. & Rothbaum, B. O. Treating PTSD: a review of evidence-based psychotherapy interventions. Front. Behav. Neurosci. 12, 258 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fonzo, G. A., Federchenco, V. & Lara, A. Predicting and managing treatment non-response in posttraumatic stress disorder. Curr. Treat. Options Psychiatry 7, 70–87 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Drysdale, A. T. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23, 28–38 (2017).

    Article  PubMed  Google Scholar 

  22. Zhao, K. et al. A dynamic graph neural network framework reveals new insights into connectome dysfunctions in ADHD. Neuroimage 246, 118774 (2022).

    Article  PubMed  Google Scholar 

  23. Rashid, B. & Calhoun, V. Towards a brain‐based predictome of mental illness. Hum. Brain Mapp. 41, 3468–3535 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Woodward, N. D. & Cascio, C. J. Resting-state functional connectivity in psychiatric disorders. JAMA Psychiatry 72, 743–744 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Viard, A. et al. Altered default mode network connectivity in adolescents with post-traumatic stress disorder. Neuroimage Clin. 22, 101731 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Maron-Katz, A. et al. Individual patterns of abnormality in resting-state functional connectivity reveal two data-driven PTSD subgroups. Am. J. Psychiatry 177, 244–253 (2020).

    Article  PubMed  Google Scholar 

  27. Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shen, X. et al. Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat. Protoc. 12, 506–518 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Toll, R. et al. An electroencephalography connectomic profile of post-traumatic stress disorder. Am. J. Psychiatry 177, 233–243 (2020).

    Article  PubMed  Google Scholar 

  30. Shim, M., Im, C. & Lee, S. Disrupted cortical brain network in post-traumatic stress disorder patients: a resting-state electroencephalographic study. Transl. Psychiatry 7, e1231–e1231 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Y. et al. Identification of psychiatric-disorder subtypes from functional-connectivity patterns in resting-state electroencephalography. Nat. Biomed. Eng. 5, 309–323 (2021).

    Article  PubMed  Google Scholar 

  32. Aiyer, R., Novakovic, V. & Barkin, R. L. A systematic review on the impact of psychotropic drugs on electroencephalogram waveforms in psychiatry. Postgrad. Med. 128, 656–664 (2016).

    Article  PubMed  Google Scholar 

  33. Fenster, R. J., Lebois, L. A., Ressler, K. J. & Suh, J. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nat. Rev. Neurosci. 19, 535–551 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Harnett, N. G., Goodman, A. M. & Knight, D. C. PTSD-related neuroimaging abnormalities in brain function, structure, and biochemistry. Exp. Neurol. 330, 113331 (2020).

    Article  PubMed  Google Scholar 

  35. Scheeringa, R. et al. Frontal theta EEG activity correlates negatively with the default mode network in resting state. Int. J. Psychophysiol. 67, 242–251 (2008).

    Article  PubMed  Google Scholar 

  36. Cooper, P. S. et al. Theta frontoparietal connectivity associated with proactive and reactive cognitive control processes. Neuroimage 108, 354–363 (2015).

    Article  PubMed  Google Scholar 

  37. Xing, M. et al. Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder. Neuroimage Clin. 13, 24–32 (2017).

    Article  PubMed  Google Scholar 

  38. Neria, Y. Functional neuroimaging in PTSD: from discovery of underlying mechanisms to addressing diagnostic heterogeneity. Am. J. Psychiatry 178, 128–135 (2021).

    Article  PubMed  Google Scholar 

  39. Sripada, R. K. et al. Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder. J. Psychiatry Neurosci. 37, 241–249 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Koch, S. B. et al. Aberrant resting‐state brain activity in posttraumatic stress disorder: a meta‐analysis and systematic review. Depress. Anxiety 33, 592–605 (2016).

    Article  PubMed  Google Scholar 

  41. Zhang, Y. et al. Intranetwork and internetwork functional connectivity alterations in post-traumatic stress disorder. J. Affect. Disord. 187, 114–121 (2015).

    Article  PubMed  Google Scholar 

  42. Zilcha-Mano, S. et al. Diagnostic and predictive neuroimaging biomarkers for posttraumatic stress disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 688–696 (2020).

    PubMed  PubMed Central  Google Scholar 

  43. Sripada, R. K. et al. Neural dysregulation in posttraumatic stress disorder: evidence for disrupted equilibrium between salience and default mode brain networks. Psychosom. Med. 74, 904 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bluhm, R. L. et al. Alterations in default network connectivity in posttraumatic stress disorder related to early-life trauma. J. Psychiatry Neurosci. 34, 187 (2009).

    PubMed  PubMed Central  Google Scholar 

  45. Chen, A. C. & Etkin, A. Hippocampal network connectivity and activation differentiates post-traumatic stress disorder from generalized anxiety disorder. Neuropsychopharmacology 38, 1889–1898 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhu, H. et al. Multivariate classification of earthquake survivors with post‐traumatic stress disorder based on large‐scale brain networks. Acta Psychiatr. Scand. 141, 285–298 (2020).

    Article  PubMed  Google Scholar 

  47. Terpou, B. A. et al. Spectral decomposition of EEG microstates in post-traumatic stress disorder. Neuroimage Clin. 35, 103135 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Weathers, F. W. et al. The Clinician-Administered PTSD Scale for DSM–5 (CAPS-5): development and initial psychometric evaluation in military veterans. Psychol. Assess. 30, 383–395 (2018).

    Article  PubMed  Google Scholar 

  49. Weathers, F. W., Keane, T. M. & Davidson, J. R. Clinician‐Administered PTSD Scale: a review of the first ten years of research. Depress. Anxiety 13, 132–156 (2001).

    Article  PubMed  Google Scholar 

  50. Forbes, D., Creamer, M. & Biddle, D. The validity of the PTSD checklist as a measure of symptomatic change in combat-related PTSD. Behav. Res. Ther. 39, 977–986 (2001).

    Article  PubMed  Google Scholar 

  51. Blevins, C. A., Weathers, F. W., Davis, M. T., Witte, T. K. & Domino, J. L. The posttraumatic stress disorder checklist for DSM‐5 (PCL‐5): development and initial psychometric evaluation. J. Trauma. Stress 28, 489–498 (2015).

    Article  PubMed  Google Scholar 

  52. Beck, A. T., Steer, R. A. & Brown, G. K. Manual for the Beck Depression Inventory 2nd edn (Psychological Corporation, 1996).

  53. Kroenke, K., Spitzer, R. L., Williams, J. B. & Löwe, B. The Patient Health Questionnaire Somatic, Anxiety, and Depressive Symptom Scales: a systematic review. Gen. Hosp. Psychiatry 32, 345–359 (2010).

    Article  PubMed  Google Scholar 

  54. Skevington, S. M., Lotfy, M. & O’Connell, K. The World Health Organization’s WHOQOL-BREF quality of life assessment: psychometric properties and results of the international field trial. a report from the WHOQOL group. Qual. Life Res. 13, 299–310 (2004).

    Article  PubMed  Google Scholar 

  55. Hale, A. C., Bohnert, K. M., Ganoczy, D. & Sripada, R. K. Predictors of treatment adequacy during evidence-based psychotherapy for PTSD. Psychiatr. Serv. 70, 367–373 (2019).

    Article  PubMed  Google Scholar 

  56. Kehle-Forbes, S. M., Meis, L. A., Spoont, M. R. & Polusny, M. A. Treatment initiation and dropout from prolonged exposure and cognitive processing therapy in a VA outpatient clinic. Psychol. Trauma 8, 107–114 (2016).

    Article  PubMed  Google Scholar 

  57. Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

    Article  PubMed  Google Scholar 

  58. Mullen, T. NITRC: CleanLine: Tool/Resource Info (2012).

  59. Perrin, F., Pernier, J., Bertrand, O. & Echallier, J. Spherical splines for scalp potential and current density mapping. Electroencephalogr. Clin. Neurophysiol. 72, 184–187 (1989).

    Article  PubMed  Google Scholar 

  60. Bell, A. J. & Sejnowski, T. J. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995).

    Article  PubMed  Google Scholar 

  61. Wu, W. et al. ARTIST: a fully automated artifact rejection algorithm for single‐pulse TMS‐EEG data. Hum. Brain Mapp. 39, 1607–1625 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Streiner, D. L. Starting at the beginning: an introduction to coefficient alpha and internal consistency. J. Pers. Assess. 80, 99–103 (2003).

    Article  PubMed  Google Scholar 

  63. Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D. & Leahy, R. M. Brainstorm: a user-friendly application for MEG/EEG analysis. Comput. Intell. Neurosci. 2011, 879716 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hauk, O. Keep it simple: a case for using classical minimum norm estimation in the analysis of EEG and MEG data. Neuroimage 21, 1612–1621 (2004).

    Article  PubMed  Google Scholar 

  65. Gramfort, A., Papadopoulo, T., Olivi, E. & Clerc, M. OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed. Eng. Online 9, 45 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).

    Article  PubMed  Google Scholar 

  67. Vinck, M., Oostenveld, R., Van Wingerden, M., Battaglia, F. & Pennartz, C. M. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55, 1548–1565 (2011).

    Article  PubMed  Google Scholar 

  68. Marzetti, L. et al. Brain functional connectivity through phase coupling of neuronal oscillations: a perspective from magnetoencephalography. Front. Neurosci. 13, 964 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011).

    Article  PubMed  Google Scholar 

  70. Chen, A. C. et al. Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proc. Natl Acad. Sci. USA 110, 19944–19949 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Tipping, M. E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001).

    Google Scholar 

  72. Zhang, Y. et al. Sparse Bayesian classification of EEG for brain-computer interface. IEEE Trans. Neural Netw. Learn. Syst. 27, 2256–2267 (2016).

    Article  PubMed  Google Scholar 

  73. Wipf, D. P. & Rao, B. D. Sparse Bayesian learning for basis selection. IEEE Trans. Signal Process. 52, 2153–2164 (2004).

    Article  Google Scholar 

  74. Fonzo, G. et al. Brain regulation of emotional conflict predicts antidepressant treatment response for depression. Nat. Hum. Behav. 13, 1319–1331 (2019).

    Article  Google Scholar 

  75. Cawley, G. C. & Talbot, N. L. Gene selection in cancer classification using sparse logistic regression with Bayesian regularization. Bioinformatics 22, 2348–2355 (2006).

    Article  PubMed  Google Scholar 

  76. Li, Y., Campbell, C. & Tipping, M. Bayesian automatic relevance determination algorithms for classifying gene expression data. Bioinformatics 18, 1332–1339 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Cohen Veterans Bioscience grant no. CVB034. Y.Z. was supported by the National Institute of Mental Health of the National Institutes of Health grant nos. R01MH129694 and R21MH130956 and Lehigh University FIG, CORE and Accelerator grants. This research also was supported in part by the Department of Veterans Affairs Office of Academic Affiliations Advanced Fellowship Program in Mental Illness Research and Treatment, the Medical Research Service of the VA Palo Alto Health Care System, the Department of Veterans Affairs Sierra Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), and STI2030-Major Projects 2022ZD0211700.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. contributed to the development of methods, analysis and interpretation of the data, and the drafting of the manuscript. S.N. contributed to the clinical data analysis and treatment outcome evaluation. J.G., M.W., E.S., D.E.-S., F.S.B., M.L.E., R.T.T. and M.S.G. contributed to EEG and clinical data collection. A.G. contributed to the interpretation of the data. A.E. provided funding and oversaw the analysis and interpretation of the data and drafting of the manuscript. W.W. oversaw analysis and interpretation of the data and contributed to the development of methods and the drafting of the manuscript.

Corresponding authors

Correspondence to Yu Zhang, Amit Etkin or Wei Wu.

Ethics declarations

Competing interests

A.E., W.W., F.S.B. and J.G. report salary and equity from Alto Neuroscience. A.E. additionally holds equity in Akili Interactive and Mindstrong Health. None of the other authors has financial disclosures to report.

Peer review

Peer review information

Nature Mental Health thanks Amin Zandvakili and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Tables 1 and 2.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Naparstek, S., Gordon, J. et al. Machine learning-based identification of a psychotherapy-predictive electroencephalographic signature in PTSD. Nat. Mental Health 1, 284–294 (2023). https://doi.org/10.1038/s44220-023-00049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00049-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing