Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

A systematic review and meta-analysis of brain volume abnormalities in disruptive behaviour disorders, antisocial personality disorder and psychopathy

Abstract

Individuals with disruptive behaviour disorders in youth and antisocial personality disorder and psychopathy as adults share some clinical characteristics, but also diverge in important ways. Existing meta-analyses of structural imaging studies suggest abnormalities within these disorders; however, so far none has examined the role of variability. Here we performed a systematic review and meta-analysis to examine both variability (coefficient of variation ratio) and magnitude of brain volume differences between antisocial groups and healthy controls (quantified using Hedges’ g). A comprehensive search was conducted of PubMed, EMBASE, Web of Science, Scopus and PsycINFO from inception to 31 January 2022 (pre-registered with PROSPERO, ID number CRD42021250980, registered 25 June 2021). We included studies which included individuals with disruptive behaviour disorder (± callous–unemotional traits) or antisocial personality disorder (± psychopathy), defined using standardized classificatory tools (Diagnostic and Statistical Manual of Mental Disorders or International Classification of Diseases criteria for disruptive behaviour disorders and antisocial personality disorder, Psychopathy Checklist: Revised or Psychopathy Checklist: Screening Version for psychopathy) and a healthy control group, and which had sufficient data to extract mean and standard deviations, or t or P values, for both groups. We measured the relative variability of brain regions in antisocial individuals compared with controls, by using the log coefficient of variability ratio. Between-group differences in mean volumes were quantified using standardized mean difference. Risk of bias was assessed using modified version of the Newcastle–Ottawa Scale for case–control studies. Twenty-three studies met inclusion criteria. In antisocial individuals, there was significantly increased variability for total grey matter (Z = −2.6581, P = 0.0079) and overall decreases in mean volume for total whole brain (g = −0.41; 95% confidence interval (CI) −0.67 to −0.15, P = 0.0016), total grey matter (g = −0.6; 95% CI −0.93 to −0.26, P = 0.004) and amygdala (g = −0.89; 95% CI −1.55 to −0.22, P = 0.009), compared with healthy controls. This suggests a key role for structural variability in clinical divergence within these disorders. The key limitations were lack of studies for some brain regions of interest, including insula, and inconsistent clinical phenotyping. Further studies should seek to specify how this neurobiological variability maps to clinical variability and whether this holds potential value as a biomarker to guide prognosis or treatment selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Forest plot of variability (CVR) by region.
Fig. 2: Forest plot of mean difference by region.

Similar content being viewed by others

Data availability

Analysis data are available at https://github.com/JohnTullyPsych/AntisocialStructuralVariabilityMeta ref. 85, and data sources are all listed in AntisocialStructuralVariabilityMeta_Excel.csv.

Code availability

Analysis code is available at https://github.com/JohnTullyPsych/AntisocialStructuralVariabilityMeta ref. 85, and code sources are all listed in AntisocialStructuralVariabilityMeta_Excel.csv.

References

  1. Falk, Ö. et al. The 1% of the population accountable for 63% of all violent crime convictions. Soc. Psychiatry Psychiatr. Epidemiol. 49, 559–571 (2014).

    Article  PubMed  Google Scholar 

  2. Piquero, A. R., & Moffitt, T. E. in Encyclopedia of Criminology and Criminal Justice (ed. Weisburd, D.) 3121–3127 (Springer, 2014).

  3. Moffitt, T. E. Male antisocial behaviour in adolescence and beyond. Nat. Hum. Behav. 2, 177 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Viding, E. & McCrory, E. J. Genetic and neurocognitive contributions to the development of psychopathy. Dev. Psychopathol. 24, 969–983 (2012).

    Article  PubMed  Google Scholar 

  5. Lynam, D. R., Derefinko, K. J., Caspi, A., Loeber, R. & Stouthamer-Loeber, M. The content validity of juvenile psychopathy: an empirical examination. Psychol. Assess. 19, 363 (2007).

    Article  PubMed  Google Scholar 

  6. Forsman, M., Lichtenstein, P., Andershed, H. & Larsson, H. Genetic effects explain the stability of psychopathic personality from mid-to late adolescence. J. Abnorm. Psychol. 117, 606 (2008).

    Article  PubMed  Google Scholar 

  7. Kosson, D. S., Lorenz, A. R. & Newman, J. P. Effects of comorbid psychopathy on criminal offending and emotion processing in male offenders with antisocial personality disorder. J. Abnorm. Psychol. 115, 798 (2006).

    Article  PubMed  Google Scholar 

  8. Coid, J. & Ullrich, S. Antisocial personality disorder is on a continuum with psychopathy. Compr. Psychiatry 51, 426–433 (2010).

    Article  PubMed  Google Scholar 

  9. Frick, P. J., Ray, J. V., Thornton, L. C. & Kahn, R. E. Can callous-unemotional traits enhance the understanding, diagnosis, and treatment of serious conduct problems in children and adolescents? A comprehensive review. Psychol. Bull. 140, 1–57 (2014).

    Article  PubMed  Google Scholar 

  10. Guy, L. S., Edens, J. F., Anthony, C. & Douglas, K. S. Does psychopathy predict institutional misconduct among adults? A meta-analytic investigation. J. Consult. Clin. Psychol. 73, 1056 (2005).

    Article  PubMed  Google Scholar 

  11. Noordermeer, S. D. S., Luman, M. & Oosterlaan, J. A systematic review and meta-analysis of neuroimaging in oppositional defiant disorder (ODD) and conduct disorder (CD) taking attention-deficit hyperactivity disorder (ADHD) into account. Neuropsychol. Rev. 26, 44–72 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rogers, J. C., De & Brito, S. A. Cortical and subcortical gray matter volume in youths with conduct problems a meta-analysis. JAMA Psychiatry. 73, 64–72 (2016).

    Article  PubMed  Google Scholar 

  13. Santana, E. J. The brain of the psychopath: a systematic review of structural neuroimaging studies. Psychol. Neurosci. 9, 420–443 (2016).

    Article  Google Scholar 

  14. Anderson, N. E. & Kiehl, K. A. The psychopath magnetized: insights from brain imaging. Trends Cogn. Sci. 16, 52–60 (2012).

    Article  PubMed  Google Scholar 

  15. Harenski, C., Hare, R. D., & Kiehl, K. A. in Responsibility and Psychopathy: Interfacing Law, Psychiatry and Philosophy (eds Malatesti, L. & McMillan, J.) Ch. 8 (Oxford University Press, 2010).

  16. De Brito, S. A., McDonald, D., Camilleri, J. A. & Rogers, J. C. Cortical and subcortical gray matter volume in psychopathy: a voxel-wise meta-analysis. J. Abnorm. Psychol. 130, 627 (2021).

    Article  PubMed  Google Scholar 

  17. Brugger, S. P. & Howes, O. D. Heterogeneity and homogeneity of regional brain structure in schizophrenia: a meta-analysis. JAMA Psychiatry 74, 1104–1111 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rogdaki, M. et al. Magnitude and heterogeneity of brain structural abnormalities in 22q11.2 deletion syndrome: a meta-analysis. Mol. Psychiatry 25, 1704–1717 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kaminski, J. et al. Glutamate in the dorsolateral prefrontal cortex in patients with schizophrenia: a meta-analysis of 1H-magnetic resonance spectroscopy studies. Biol. Psychiatry 89, 270–277 (2021).

    Article  PubMed  Google Scholar 

  20. Fairchild, G. et al. Decision making and executive function in male adolescents with early-onset or adolescence-onset conduct disorder and control subjects. Biol. Psychiatry 66, 162–168 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fanti, K. A., Kimonis, E. R., Hadjicharalambous, M.-Z. & Steinberg, L. Do neurocognitive deficits in decision making differentiate conduct disorder subtypes? Eur. Child Adolesc. Psychiatry 25, 989–996 (2016).

    Article  PubMed  Google Scholar 

  22. Schwenck, C. et al. Empathy in children with autism and conduct disorder: group‐specific profiles and developmental aspects. J. Child Psychol. Psychiatry 53, 651–659 (2012).

    Article  PubMed  Google Scholar 

  23. Marsh, A. A. & Blair, R. J. R. Deficits in facial affect recognition among antisocial populations: a meta-analysis. Neurosci. Biobehav. Rev. 32, 454–465 (2008).

    Article  PubMed  Google Scholar 

  24. Dawel, A., O’Kearney, R., McKone, E. & Palermo, R. Not just fear and sadness: meta-analytic evidence of pervasive emotion recognition deficits for facial and vocal expressions in psychopathy. Neurosci. Biobehav. Rev. 36, 2288–2304 (2012).

    Article  PubMed  Google Scholar 

  25. Gregory, S. et al. The antisocial brain: psychopathy matters: a structural MRI investigation of antisocial male violent offenders. Arch. Gen. Psychiatry 69, 962–972 (2012).

    Article  PubMed  Google Scholar 

  26. Pappa, I. et al. A genome‐wide approach to children’s aggressive behavior: the EAGLE consortium. Am. J. Med. Genet. B 171, 562–572 (2016).

    Article  Google Scholar 

  27. Tielbeek, J. J. et al. Unraveling the genetic etiology of adult antisocial behavior: a genome-wide association study. PLoS ONE 7, e45086 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rautiainen, M. et al. Genome-wide association study of antisocial personality disorder. Transl. Psychiatry 6, e883 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Panizzon, M. S. et al. Distinct genetic influences on cortical surface area and cortical thickness. Cerebr. Cortex 19, 2728–2735 (2009).

    Article  Google Scholar 

  30. Ecker, C. et al. Brain surface anatomy in adults with autism: the relationship between surface area, cortical thickness, and autistic symptoms. JAMA Psychiatry 70, 59–70 (2013).

    Article  PubMed  Google Scholar 

  31. Gudbrandsen, M. et al. Brain morphometry in 22q11.2 deletion syndrome: an exploration of differences in cortical thickness, surface area, and their contribution to cortical volume. Sci. Rep. 10, 1–12 (2020).

    Article  Google Scholar 

  32. Pardini, D. A., Raine, A., Erickson, K. & Loeber, R. Lower amygdala volume in men is associated with childhood aggression, early psychopathic traits, and future violence. Biol. Psychiatry 75, 73–80 (2014).

    Article  PubMed  Google Scholar 

  33. Hofhansel, L. et al. Morphology of the criminal brain: gray matter reductions are linked to antisocial behavior in offenders. Brain Struct. Funct. 225, 2017–2028 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schiffer, B. et al. Disentangling structural brain alterations associated with violent behavior from those associated with substance use disorders. Arch. Gen. Psychiatry 68, 1039–1049 (2011).

    Article  PubMed  Google Scholar 

  35. Yang, Y., Raine, A., Narr, K. L., Colletti, P. & Toga, A. W. Localization of deformations within the amygdala in individuals with psychopathy. Arch. Gen. Psychiatry 66, 986–994 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang, Y. et al. Volume reduction in prefrontal gray matter in unsuccessful criminal psychopaths. Biol. Psychiatry 57, 1103–1108 (2005).

    Article  PubMed  Google Scholar 

  37. Raine, A. et al. Corpus callosum abnormalities in psychopathic antisocial individuals. Arch. Gen. Psychiatry 60, 1134–1142 (2003).

    Article  PubMed  Google Scholar 

  38. Raine, A., Lencz, T., Bihrle, S., LaCasse, L. & Colletti, P. Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Arch. Gen. Psychiatry 57, 119–127 (2000).

    Article  PubMed  Google Scholar 

  39. Griem, J., Kolla, N. J. & Tully, J. Key challenges in neurocognitive assessment of individuals with antisocial personality disorder and psychopathy. Front. Behav. Neurosci. 16, 1007121 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Birbaumer, N. et al. Deficient fear conditioning in psychopathy: a functional magnetic resonance imaging study. Arch. Gen. Psychiatry 62, 799–805 (2005).

    Article  PubMed  Google Scholar 

  41. Gregory, S. et al. Punishment and psychopathy: a case–control functional MRI investigation of reinforcement learning in violent antisocial personality disordered men. Lancet Psychiatry 2, 153–160 (2015).

    Article  PubMed  Google Scholar 

  42. Decety, J., Skelly, L., Yoder, K. J. & Kiehl, K. A. Neural processing of dynamic emotional facial expressions in psychopaths. Soc. Neurosci. 9, 36–49 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sebastian, C. L. et al. Neural responses to affective and cognitive theory of mind in children with conduct problems and varying levels of callous–unemotional traits. Arch. Gen. Psychiatry 69, 814–822 (2012).

    Article  PubMed  Google Scholar 

  44. Lockwood, P. L. et al. Association of callous traits with reduced neural response to others’ pain in children with conduct problems. Curr. Biol. 23, 901–905 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Walter, H. Social cognitive neuroscience of empathy: concepts, circuits, and genes. Emot. Rev. 4, 9–17 (2012).

    Article  Google Scholar 

  46. Blair, R., Veroude, K. & Buitelaar, J. Neuro-cognitive system dysfunction and symptom sets: a review of fMRI studies in youth with conduct problems. Neurosci. Biobehav. Rev. 91, 69–90 (2018).

    Article  PubMed  Google Scholar 

  47. O’Doherty, J. P. Contributions of the ventromedial prefrontal cortex to goal‐directed action selection. Ann. N. Y. Acad. Sci. 1239, 118–129 (2011).

    Article  PubMed  Google Scholar 

  48. Hiser, J. & Koenigs, M. The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biol. Psychiatry 83, 638–47. (2018).

    Article  PubMed  Google Scholar 

  49. Finger, E. C. et al. Disrupted reinforcement signaling in the orbitofrontal cortex and caudate in youths with conduct disorder or oppositional defiant disorder and a high level of psychopathic traits. Am. J. Psychiatry 168, 152–162 (2011).

    Article  PubMed  Google Scholar 

  50. Decety, J., Michalska, K. J., Akitsuki, Y. & Lahey, B. B. Atypical empathic responses in adolescents with aggressive conduct disorder: a functional MRI investigation. Biol. Psychol. 80, 203–211 (2009).

    Article  PubMed  Google Scholar 

  51. Glenn, A. L., Raine, A., Yaralian, P. S. & Yang, Y. Increased volume of the striatum in psychopathic individuals. Biol. Psychiatry 67, 52–58 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Báez-Mendoza, R. & Schultz, W. The role of the striatum in social behavior. Front. Neurosci. 7, 233 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wickens, J. R., Budd, C. S., Hyland, B. I. & Arbuthnott, G. W. Striatal contributions to reward and decision making. Ann. N. Y. Acad. Sci. 1104, 192–212 (2007).

    Article  PubMed  Google Scholar 

  54. Alegria, A. A., Radua, J. & Rubia, K. Meta-analysis of fMRI studies of disruptive behavior disorders. Am. J. Psychiatry 173, 1119–30. (2016).

    Article  PubMed  Google Scholar 

  55. Floresco, S. B., Montes, D. R., Maric, M. & van Holstein, M. Differential contributions of nucleus accumbens subregions to cue-guided risk/reward decision making and implementation of conditional rules. J. Neurosci. 38, 1901–14. (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sethi, A. et al. Emotional detachment in psychopathy: involvement of dorsal default-mode connections. Cortex 62, 11–19 (2015).

    Article  PubMed  Google Scholar 

  57. Craig, M. C. et al. Altered connections on the road to psychopathy. Mol. Psychiatry 14, 946–953 (2009).

    Article  PubMed  Google Scholar 

  58. Jones, A. P., Laurens, K. R., Herba, C. M., Barker, G. J. & Viding, E. Amygdala hypoactivity to fearful faces in boys with conduct problems and callous-unemotional traits. Am. J. Psychiatry 166, 95–102 (2009).

    Article  PubMed  Google Scholar 

  59. Lozier, L. M., Cardinale, E. M., VanMeter, J. W. & Marsh, A. A. Mediation of the relationship between callous-unemotional traits and proactive aggression by amygdala response to fear among children with conduct problems. JAMA Psychiatry 71, 627–636 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Viding, E. et al. Amygdala response to preattentive masked fear in children with conduct problems: the role of callous–unemotional traits. Am. J. Psychiatry 169, 1109–1116 (2012).

    Article  PubMed  Google Scholar 

  61. White, S. F. et al. Reduced activity within the dorsal endogenous orienting of attention network to fearful expressions in youth with disruptive behavior disorders and psychopathic traits. Dev. Psychopathol. 24, 1105–1116 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Passamonti, L. et al. Abnormal anatomical connectivity between the amygdala and orbitofrontal cortex in conduct disorder. PLoS ONE 7, e48789 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cohn, M. D. et al. Fear conditioning, persistence of disruptive behavior and psychopathic traits: an fMRI study. Transl. Psychiatry 3, 89 (2013).

  64. Rubia, K. et al. Disorder-specific dissociation of orbitofrontal dysfunction in boys with pure conduct disorder during reward and ventrolateral prefrontal dysfunction in boys with pure ADHD during sustained attention. Am. J. Psychiatry 166, 83–94 (2009).

    Article  PubMed  Google Scholar 

  65. Crowley, T. J. et al. Risky decisions and their consequences: neural processing by boys with Antisocial Substance Disorder. PLoS ONE 5, e12835 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Finger, E. C. et al. Disrupted reinforcement signaling in the orbitofrontal cortex and caudate in youths with conduct disorder or oppositional defiant disorder and a high level of psychopathic traits. Am. J. Psychiatry 168, 152–162 (2011).

  67. Hosking, J. G. et al. Disrupted prefrontal regulation of striatal subjective value signals in psychopathy. Neuron 95, 221–31. e4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pujol, J., Batalla, I., et al. Breakdown in the brain network subserving moral judgment in criminal psychopathy. Soc. Cogn. Affect. Neurosci. 7, 917–923 (2012).

  69. Contreras-Rodriguez, O. et al. Disrupted neural processing of emotional faces in psychopathy. Soc. Cogn. Affect. Neurosci. 9, 505–512 (2014).

    Article  PubMed  Google Scholar 

  70. Decety, J., Skelly, L. R. & Kiehl, K. A. Brain response to empathy-eliciting scenarios involving pain in incarcerated individuals with psychopathy. JAMA Psychiatry 70, 638–645 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Raine, A. Antisocial personality as a neurodevelopmental disorder. Annu. Rev. Clin. Psychol. 14, 259–89. (2018).

    Article  PubMed  Google Scholar 

  72. Lange, N., Froimowitz, M. P., Bigler, E. D., Lainhart, J. E. & Group, B. D. C. Associations between IQ, total and regional brain volumes, and demography in a large normative sample of healthy children and adolescents. Dev. Neuropsychol. 35, 296–317 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shaw, P. et al. Intellectual ability and cortical development in children and adolescents. Nature 440, 676–679 (2006).

    Article  PubMed  Google Scholar 

  74. Cox, S. R., Ritchie, S. J., Fawns-Ritchie, C., Tucker-Drob, E. M. & Deary, I. J. Structural brain imaging correlates of general intelligence in UK Biobank. Intelligence 76, 101376 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Blair, R. Psychopathy: cognitive and neural dysfunction. Dialogues Clin. Neurosci. 15, 181–190 (2013).

    Article  Google Scholar 

  76. Kong, X.-Z. et al. Individual differences in impulsivity predict head motion during magnetic resonance imaging. PLoS ONE 9, e104989 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Reuter, M. et al. Head motion during MRI acquisition reduces gray matter volume and thickness estimates. NeuroImage 107, 107–115 (2015).

    Article  PubMed  Google Scholar 

  78. Dosenbach, N. U. et al. Real-time motion analytics during brain MRI improve data quality and reduce costs. NeuroImage 161, 80–93 (2017).

    Article  PubMed  Google Scholar 

  79. Sui, Y., Afacan, O., Gholipour, A. & Warfield, S. K. SLIMM: slice localization integrated MRI monitoring. NeuroImage. 223, 117280 (2020).

    Article  PubMed  Google Scholar 

  80. D’Andrea, C. B. et al. Real-time motion monitoring improves functional MRI data quality in infants. Dev. Cogn. Neurosci. 55, 101116 (2022).

    Article  Google Scholar 

  81. McCutcheon, R., Beck, K., Jauhar, S. & Howes, O. D. Defining the locus of dopaminergic dysfunction in schizophrenia: a meta-analysis and test of the mesolimbic hypothesis. Schizophr. Bull. 44, 1301–1311 (2018).

    Article  PubMed  Google Scholar 

  82. Hedges, L. V., & Olkin, I. Statistical Methods for Meta-analysis (Academic Press, 2014).

  83. Higgins, J. P. et al. Cochrane Handbook for Systematic Reviews of Interventions (John Wiley & Sons, 2019).

  84. Becker L. A. Effect size (ES). https://www.uv.es/~friasnav/EffectSizeBecker.pdf (2000).

  85. Tully J. McCutcheon, RA. https://github.com/JohnTullyPsych/AntisocialStructuralVariabilityMeta (2022).

  86. Barkataki, I., Kumari, V., Das, M., Taylor, P. & Sharma, T. Volumetric structural brain abnormalities in men with schizophrenia or antisocial personality disorder. Behav. Brain Res. 169, 239–247 (2006).

    Article  PubMed  Google Scholar 

  87. Boccardi, M. et al. Atypical nucleus accumbens morphology in psychopathy: another limbic piece in the puzzle. Int. J. Law Psychiatry 36, 157–167 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Budhiraja, M. et al. Brain structure abnormalities in young women who presented conduct disorder in childhood/adolescence. Cogn. Affect. Behav. Neurosci. 17, 869–885 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Dolan, M. C., Deakin, J. F. W., Roberts, N. & Anderson, I. M. Quantitative frontal and temporal structural MRI studies in personality-disordered offenders and control subjects. Psychiatry Res. Neuroimaging 116, 133–149 (2002).

    Article  Google Scholar 

  90. Glenn, A. L., Yang, Y., Raine, A. & Colletti, P. No volumetric differences in the anterior cingulate of psychopathic individuals. Psychiatry Res. Neuroimaging 183, 140–143 (2010).

    Article  Google Scholar 

  91. Huebner, T. et al. Morphometric brain abnormalities in boys with conduct disorder. J. Am. Acad. Child Adolesc. Psychiatry 47, 540–547 (2008).

    Article  PubMed  Google Scholar 

  92. Ibrahim, K. et al. Sex differences in medial prefrontal and parietal cortex structure in children with disruptive behavior. Dev. Cogn. Neurosci. 47, 100884 (2021).

    Article  PubMed  Google Scholar 

  93. Kaya, S., Yildirim, H. & Atmaca, M. Reduced hippocampus and amygdala volumes in antisocial personality disorder. J. Clin. Neurosci. 75, 199–203 (2020).

    Article  PubMed  Google Scholar 

  94. Kruesi, M. J., Casanova, M. F., Mannheim, G. & Johnson-Bilder, A. Reduced temporal lobe volume in early onset conduct disorder. Psychiatry Res. Neuroimaging 132, 1–11 (2004).

    Article  Google Scholar 

  95. Kumari, V. et al. Reduced thalamic volume in men with antisocial personality disorder or schizophrenia and a history of serious violence and childhood abuse. Eur. Psychiatry 28, 225–234 (2013).

    Article  PubMed  Google Scholar 

  96. Laakso, M. P. et al. Prefrontal volumes in habitually violent subjects with antisocial personality disorder and type 2 alcoholism. Psychiatry Res. Neuroimaging 114, 95–102 (2002).

    Article  Google Scholar 

  97. Narayan, V. M. et al. Regional cortical thinning in subjects with violent antisocial personality disorder or schizophrenia. Am. J. Psychiatry 164, 1418–1427 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Noordermeer, S. D. S. et al. Structural brain abnormalities of attention-deficit/hyperactivity disorder with oppositional defiant disorder. Biol. Psychiatry 82, 642–650 (2017).

    Article  PubMed  Google Scholar 

  99. Sebastian, C. L. et al. Grey matter volumes in children with conduct problems and varying levels of callous-unemotional traits. J. Abnorm. Child Psychol. 44, 639–649 (2016).

    Article  PubMed  Google Scholar 

  100. Tiihonen, J. et al. Brain anatomy of persistent violent offenders: more rather than less. Psychiatry Res. Neuroimaging 163, 201–212 (2008).

    Article  Google Scholar 

  101. Vetter, N. C., Backhausen, L. L., Buse, J., Roessner, V. & Smolka, M. N. Altered brain morphology in boys with attention deficit hyperactivity disorder with and without comorbid conduct disorder/oppositional defiant disorder. Hum. Brain Mapp. 41, 973–983 (2020).

    Article  PubMed  Google Scholar 

  102. Wallace, G. L. et al. Cortical and subcortical abnormalities in youths with conduct disorder and elevated callous-unemotional traits. J. Am. Acad. Child Adolesc. Psychiatry 53, 456–465 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

R.A.M.’s work is funded by a Wellcome Clinical Research Career Development Fellowship (224625/Z/21/Z). None of the other authors received funding towards this work.

Author information

Authors and Affiliations

Authors

Contributions

J.T. and R.A.M. conceived the idea. J.T., B.C. and B.G. performed the literature search and cross-checking of papers. J.T. performed the analyses, with input from R.A.M. J.T. wrote the initial draft. J.T., B.C., B.G., J.G., N.B., R.J.B. and R.A.M. all provided critical analysis on scientific content on this and further drafts.

Corresponding author

Correspondence to John Tully.

Ethics declarations

Competing interests

R.A.M. has received honoraria for educational talks from Otsuka and Janssen. None of the other authors has any conflict of interest, financial or otherwise, to disclose.

Peer review

Peer review information

Nature Mental Health thanks Nathaniel Anderson, Olivia Choy and Natalia Tesli for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

All supplementary text and figures.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tully, J., Cross, B., Gerrie, B. et al. A systematic review and meta-analysis of brain volume abnormalities in disruptive behaviour disorders, antisocial personality disorder and psychopathy. Nat. Mental Health 1, 163–173 (2023). https://doi.org/10.1038/s44220-023-00032-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00032-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing