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From neural circuits to communities: an 
integrative multidisciplinary roadmap for 
global mental health

Michelle G. Craske1,2,9  , Mohammad M. Herzallah    3,4,9, Robin Nusslock5,6 & 
Vikram Patel7,8

Suffering due to mental health problems is rising inexorably in all regions 
of the world. One major reason is that our understanding of the causation, 
prevention and treatment of mental health problems has been hindered 
by an over-reliance on diagnostic categories. Yet there is growing evidence 
for alternative approaches from across multiple disciplines, including 
neuroscience, which elucidates neural regions and networks underlying 
specific mental health experiences; cognitive science, which identifies 
cognitive functions and impairments relevant to mental health; clinical 
science, which identifies symptom patterns associated with cognitive 
dysfunctions; developmental science, which identifies environmental 
influences on brain development in early life; social science, which identifies 
sociocultural influences on mental health; intervention science, which 
identifies the ‘active ingredients’ of psychological interventions; and 
implementation science, which designs scalable interventions to effectively 
deliver these active ingredients. We propose an integrative model that 
converges these diverse disciplinary perspectives, from neural circuits 
to interventions, that can be delivered at scale, with a potential for higher 
coverage, greater personalization and greater efficacy than traditional 
diagnostic approaches. This integrative approach can lead to a radical 
opportunity to shift the needle on mental health-related suffering globally.

Mental health problems are among the leading causes of global disease 
‘burden’ (the term ‘burden’ is based on a binary model of mental illness 
that is explicitly rejected herein, but which is the basis of the majority 
of clinical research over the past 50 years), and are associated with 
premature mortality (particularly in young people). Their prevalence 
and impact are rising in all regions of the world, leading to massive 
personal, family and societal costs1. Despite tens of billions of dollars 

of research funding over the past four decades, we have only a shallow 
understanding of these conditions, with no signature pathology or 
biomarkers for any condition, and only marginal progress regarding 
prevention or therapeutics. One of the major reasons—perhaps the 
single most important one—for this state of affairs is the adoption 
of diagnostic categories, exemplified by the two major classification 
systems in use (the International Classification of Diseases (ICD)2 and 
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relevant to anxiety and depression include Pavlovian fear learning and 
extinction, predictable and unpredictable threat tests, face matching, 
reward anticipation and attainment, and reinforcement learning. These 
paradigms probe circuits such as the cortico-amygdala circuit, which 
supports vigilance for, and responses to, threatening stimuli12–14. The 
amygdala is engaged by a range of threat-relevant cues and defensive 
behaviors8,15, whereas the ventromedial prefrontal cortex is involved 
in fear extinction and extinction recall16–18. The cortico-striatal circuit 
is involved in processing the hedonic value of stimuli (reward process-
ing)19, reinforcement learning20 and motivation21,22. This circuit involves 
projections from midbrain neuromodulator nuclei (that is, dopamin-
ergic, serotoninergic and noradrenergic) to subcortical areas within 
the basal ganglia (for example, ventral striatum) and cortical target 
regions (for example, orbitofrontal cortex).

Neural and cognitive features have been associated with  
mental health across hundreds of studies. These include changes 
in neural and cognitive indices of attention and threat detection  
in relation to anxiety23, and reward responsivity and reward learn-
ing in relation to depression9,24,25. In terms of connectivity across  
neural regions, reduced structural connectivity within the uncinate 
fasciculus tract that connects the ventromedial prefrontal cortex 
and amygdala26 has been associated with poor regulation of nega-
tive emotions and elevated depression27,28 and anxiety29,30. Functional 
connectivity between the orbitofrontal cortex and ventral striatum 
has been associated with depression, and, in particular, anhedonia9,31. 
In some cases, neural patterns have been shown to not only correlate 
but to predict the subsequent development of clinically important 
symptoms of anxiety32 and depression33, suggesting a contributory 
role to the development of mental health problems. (Conversely, as 
we describe in more detail later, mental health symptoms probably 
influence neural processes and cognitive functions.) Box 1 provides 
exemplars of circuit–function–symptom relations for fear learning 
and reward processing.

Treatments that specifically target circuit-cognitive changes 
already exist. Examples include exposure therapies (that is, system-
atic, repeated facing of feared objects or situations) that specifically 
target extinction-related mechanisms34, cognitive training programs 
that specifically target attentional bias for anxiety35, imagery training 
for depression36, response inhibition training for intrusive images37, 
and behavioral treatments that specifically target reward hyposensitiv-
ity38,39. Thus, there is already enough evidence to scale up cognitively 
targeted interventions for community implementation.

In terms of neurocognitive advances, neural processes are  
now recognized as larger in scale than serial connections or regions  
of interest11,40,41. The emerging field of network neuroscience pro-
vides a conceptual framework and statistical toolkit for this scale and  
complexity42. In the same vein, cognitive functions themselves (for 
example, reward, semantic and emotional) are better understood 
within network models versus as independent entities, and clustering 
of these functions may provide better correspondence with neural 
functioning43–45. Neural and cognitive network models are likely to 
elucidate brain involvement in cognitive functions beyond what is 
described in Box 1, and yield even more targeted and more efficient 
treatments.

In terms of clinical advances, the majority of studies compare 
neurocognitive circuits and functions across diagnostically classified 
groups and healthy controls. However, the true value of neuroscience 
lies in elucidating cognitive functions associated with symptom dimen-
sions or profiles rather than diagnostic categories. Dimensional models 
offer greater precision in treatment targets and greater treatment 
personalization. As an example, symptoms of anhedonia combined 
with psychomotor retardation may benefit more from behavioral 
interventions that differ from interventions most suited to symptoms 
of sadness and agitation, even though all are criterion symptoms for 
the diagnosis of major depression.

the Diagnostic and Statistical Manual of Mental Disorders (DSM)3). 
Diagnostic categorization, which is eminently applicable to infec-
tious diseases, where there is a clear distinction between individuals  
infected with a specific pathogen and those who are not, is ill-suited 
for mental health problems, for which there is rarely a comparable 
boundary between ‘normality’ and ‘illness’. Consequently, diagnos-
tic categories are plagued with considerable overlap and ill-defined 
boundaries4.

A number of scientific endeavours have sought to address mental 
health problems without relying on diagnostic categories. For exam-
ple, the National Institute of Mental Health Research Domain Criteria 
initiative (RDoC) embraces dimensional approaches for identifying 
biological and cognitive processes that explain mental health and 
illness5,6. The RDoC focuses on six major domains of functioning (for 
example, positive valence systems), and constructs and subconstructs 
(for example, reward responsiveness and reward anticipation) within 
each domain, each of which is measurable across an array of ‘units of 
analysis’, including genes, molecules and cells, neural circuits, physio
logy, behavior and self-report. The dimensionality of constructs (from 
‘normal’ to ‘abnormal’) is a fundamental principle, consistent with 
robust evidence for dimensional models of mental health that have 
emerged from analyses of symptom structure independent of neu-
roscience, such as the Hierarchical Taxonomy of Psychopathology 
(HiTOP) model4,5,7. Inspired by these dimensional models, we propose 
a dynamic convergence across disciplines to bridge neural circuits, 
cognitive function, symptom profiles, developmental phases, socio-
cultural influences and targeted and personalized interventions that 
can be fashioned for delivery through scalable platforms such as com-
munity health workers or digital tools. Our ‘circuits-to-communities’ 
framework not only aligns with the RDoC emphasis on neuroscience 
and dimensional models of psychopathology, but extends beyond the 
RDoC by linking dimensional models to clinical interventions that can 
be translated to population-level impact through innovative global 
mental health practices.

In the forthcoming sections, we review advances in each disci-
pline (neurocognitive science, clinical science, developmental-social  
science, intervention science and implementation science), pro-
viding the building blocks for our integrative model. We provide  
examples relevant to (1) symptoms of fear/anxiety and depres-
sion, the most common mental health experiences, although the  
model is applicable to many other forms of psychopathology (for 
example, obsessive–compulsive, trauma-related, somatic symptoms, 
eating and substance use), (2) active ingredients of interventions  
and their personalization and (3) their adaptation for delivery in  
communities on a global scale. We conclude with future research 
directions and pathways to full adoption of a circuits-to-communities 
framework.

Neural and cognitive systems relevant to mental 
health
The acceleration of neurocognitive science over the past few decades 
has led to major advances in identifying brain regions implicated in 
mental health problems, including the most common conditions of 
depression and anxiety8,9. Early focus on abnormalities in specific areas 
of the brain has expanded to abnormalities in the structural and func-
tional connections between neural regions10,11. Elucidating the neural 
systems and cognitive functions relevant to mental health may inform 
more precisely targeted and more efficient treatments—treatments 
that address the neural and cognitive functions that are most relevant 
for an individual’s particular symptom profile.

The cognitive functions relevant to mental health (for example, 
threat detection, reward learning, emotion regulation) have been 
mostly investigated using paradigms that measure a single princi-
pal construct with well-demarcated neural circuits, usually derived 
from validated animal behavioral paradigms. Examples of paradigms 
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Developmental science and sociocultural 
influences
Both animal and human research indicate that the brain is highly sensi-
tive to stress and adversity during the early months to years of life. This 
adversity sensitizes cells in brain regions that respond to threatening 
stimuli, including the amygdala, the anterior cingulate cortex and the 
insula46. For example, individuals who grew up in adversity or who have 
a history of childhood maltreatment display structural alterations in the 
amygdala that sustain into adulthood and show heightened amygdala 
reactivity to threatening stimuli47–49. Early life adversity also affects the 
development of the cortico-striatal reward circuit and is associated 
with sustained deficits in reward processing50–53. Preliminary research 
suggests that even stress during the prenatal period, as measured by 
placental gene expression and epigenetic marks (that is, DNA methyla-
tion), can generate risk for mental and physical health problems across 
the lifespan52,53. Collectively, this suggests that social determinants, 
including poverty, discriminatory experiences and marginalization, 
generate risk for mental health problems in part through affecting 
neural and genomic signalling early in life54.

Despite the effect of early life adversity on the developing brain, 
many forms of mental health problems, including depression and 
some variants of anxiety, do not emerge until adolescence55. This sug-
gests that stress and adversity incubate in the developing brain until a 
developmental inflection point associated with the onset of a particular 
mental health problem is reached. Multiple biological and psychoso-
cial factors converge during adolescence, making it ‘an age of risk’ for 
the onset of symptoms. Adolescence is characterized by heightened 
neuronal sensitivity during which the amygdala, the ventral striatum 
and the prefrontal cortex go through normative growth spurts56–58. 
Longitudinal research indicates both the volume and activity of the 
amygdala and ventral striatum are heightened in adolescents relative 
to both children and adults59,60. The prefrontal cortex, in turn, has a 
delayed and prolonged development, and the regulatory processes 
it supports improve in a linear manner through early adulthood61. 
Adolescence may thus be a period during which the brain’s threat and 
reward systems are particularly sensitive to stress, and stress exposure 
during adolescence may compound the effects of early adversity on the 

brain. Neural circuits involving the amygdala, the ventral striatum and 
the prefrontal cortex are also very responsive to social stressors during 
adolescence50,56,62,63, which dramatically increase during this period 
as the individual establishes their own identity, completes education, 
seeks a livelihood and forms intimate relationships62,64.

Collectively, the evidence suggests that (1) childhood is an impor-
tant period for prevention strategies to lower the risk for symptoms, 
and for the identification of biomarkers to identify at-risk individuals, 
(2) adolescence is a critical point for intervening, and (3) interven-
tions should be attuned to sociocultural influences. In our model, we 
consider some of these components by examining circuit–function–
symptom relations in the context of developmental and sociocultural 
factors to generate active ingredients of interventions. For example, 
early childhood exposure to trauma, living in a warzone or the sequelae 
of the COVID-19 pandemic could translate to heightened responses to 
threat stimuli in related neural circuits (amygdala, ventral striatum, 
prefrontal cortex) that could be targeted through emotion regulation 
interventions, such as problem solving. Problem-solving skills may 
be especially suited to adolescents given their unique neurodevel-
opmental transitions. Our circuits-to-communities model integrates 
developmental and social influences with neural and cognitive circuits, 
which together inform interventions.

Clinical science: symptom dimensions
Diagnostic classifications (ICD and DSM) are beleaguered by high levels 
of cross-diagnostic comorbidity and within-diagnosis heterogeneity, 
which together impede personalized mental health care. Dimensional 
hierarchical models, such as the HiTop model4,5 or the depression and 
anxiety Tri-level model65,66, have been gaining support as alternatives to 
categorical diagnoses. These factor analytic models evaluate patterns 
of covariation among symptoms across different levels of generality 
and specificity. They also identify symptom clusters that are com-
mon to multiple groupings or conditions and disentangle the different 
sources of variance within symptom clusters. For example, the Tri-level 
model portions variance attributable to broad general distress/negative 
affect (common to depression and anxiety) from variance attributable 
to fears (more specific to anxiety) and to anhedonia-apprehension 

Box 1

Circuit–function–symptom patterns in relation to anxiety and 
depression
1.	 Fear learning and anxiety

a.	 Pavlovian fear learning paradigms model how fears are 
acquired, generalized, extinguished and renewed32.

b.	 Neural circuitry underlying fear acquisition and fear extinc
tion includes the basolateral and centromedial nuclei of 
the amygdala, dorsal anterior cingulate cortex, insular  
cortex, hippocampus and ventromedial prefrontal cortex129,  
although evidence for the amygdala in human fear condi-
tioning is mixed130.

c.	 Behavioral and neural changes in fear acquisition and extinc
tion correlate with symptoms of fear and anxiety and are 
characteristic of individuals with anxiety disorders67,131,132.

d.	 Behavioral differences in fear extinction are observed in 
youth at risk for anxiety133, and neural patterns during  
fear acquisition and extinction associate with the subse-
quent development of fears and general distress in young 
adults68.

2.	 Reward processing and anhedonia
a.	 Reward processing involves anticipation of appetitive out-

comes, motivation and effort to obtain rewards, reward val-
uation and satiation, response to reward attainment, and 
instrumentally learned stimulus–reward associations134.

b.	 Neural circuitry underlying reward processing involves  
regions of the basal ganglia, notably the ventral and dorsal 
striatum, and prefrontal cortex, particularly the orbitofron-
tal and medial prefrontal cortex22,135. Dopaminergic modu-
lation of the basal ganglia is believed to modulate positive 
reinforcement learning9,136–138.

c.	 Changes in basal ganglia circuitry139,140 using well-validated 
reinforcement learning tasks15,17,18 have been correlated 
with depression and anhedonia141.

d.	 Behavioral and neural patterns in reward processes have 
been associated with subsequent development of depres-
sive and anhedonic symptoms9,53,142–145.

http://www.nature.com/NatMentHealth
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(more specific to depression)65,66. Such portioning has already proven 
useful when mapping symptoms to cognitive functions and neural 
underpinnings67,68.

Moreover, just as with networks of brain regions and networks of 
cognitive functions, symptoms per se are increasingly understood as 
networks of interactions, with one symptom contributing to another 
symptom (for example, inactivity leads to apathy, which leads to hope-
lessness)69. From the symptom network perspective, mental disorders 
emerge when groups of tightly coupled symptoms actively maintain 
each other, leading to clusters of symptoms that become self-sustain-
ing. Inherent to this model is that symptoms may persist in a sustained 
activating cycle even after the initial cause has dissipated.

At first glance, the symptom network approach may appear at 
odds with a circuit–function–symptom model, which could seem to 
imply directionality from an underlying biological cause to a symp-
tom outcome. Yet with the emergence of network approaches at the 
circuit and function levels, the circuit–function–symptom model can 
easily accommodate multi-directional influences, wherein symptom 
expression itself can evoke changes in underlying neural systems and 
cognitive functions, a topic we explore in more detail in the following. 
Hence, even though the initial underlying causes of a symptom network 
may have dissipated, and even though symptoms are driven at least 
in part by other symptoms, our model highlights the importance of 
linking symptom networks to circuit–function networks that can be 
targeted in treatment, with treatment itself having reciprocally positive 
effects upon symptoms as well as circuit–functions (that is, symptom 
reduction produces neural changes, and neural changes produce 
symptom reduction).

Intervening anywhere in the symptom network could have ripple 
effects to other symptoms in the network. Furthermore, a symptom 
network model can identify symptoms that are most influential on the 
spread of symptoms (that is, centrality), which in turn may highlight 
the underlying network of circuits–functions that is most essential as 
a treatment target. This logic parallels recent developments in net-
work neuroscience that identify drivers or hubs in the brain that when 
modified have a particularly strong effect on other brain systems and 
symptoms11,40.

Notably, symptom dimension approaches provide greater preci-
sion for understanding sociocultural influences on mental health than 
do diagnostic categorizations70. For example, a systematic review of 
138 studies of the experience of depression across many world regions 
observed that several features of depression that were reported with 
high frequency were not included in diagnostic criteria, whereas oth-
ers which were in the diagnostic criteria were rarely reported71. These 
results suggest that symptom checklists may more fully capture depres-
sion in all of its geographic heterogeneity than do diagnostic criteria.

Intervention science: targeted and personalized 
active ingredients
A circuit–function–symptom model is consistent with a targeted and 
personalized active ingredients approach to mental health interven-
tions. Active ingredients are the elements within a treatment shown to 
be responsible for therapeutic change; targeted active ingredients are 
designed to treat underlying cognitive or behavioral patterns (either 
directly or through compensatory mechanisms)72, and personalized 
active ingredients are the ones that are selected for an individual 
from an available set of active ingredients, based on prediction of the 
strongest response. A targeted and personalized active ingredients 
approach differs from standard therapeutics, often composed of mul-
tiple elements in a ‘one-size-fits-all’ approach for diagnosed disorders, 
and differs from a ‘common elements’ approach, wherein contents 
of ‘winning’ evidence-supported treatment manuals are ‘distilled’ or 
separated into distinct techniques but are not mechanistically deter-
mined73. Targeted active ingredients are targeted at specific cognitive 
or behavioral features that have been elucidated through neuroscience 

and cognitive science, are relevant to mental health and are develop-
mentally informed. Examples of targeted active ingredients of psycho-
logical therapies include exposure therapy to target avoidance and 
fear extinction74, concreteness training to target overgeneralization 
of depressive cognition75, attentional bias training and interpretation 
bias training to target attention and interpretation biases76, response 
inhibition training to target intrusive memories37 and imagery train-
ing to counteract depressive future thinking36. In Box 2 we provide 
more detailed examples of extinction-based active ingredients for 
fear symptoms and reward processing-based active ingredients for 
anhedonia symptoms.

Each active ingredient involves a purported mechanism, targeted 
by a specific strategy that is derived from cognitive neuroscience. No 
one particular mechanism, be it cognitive (for example, distorted think-
ing style), behavioral (for example, experiential avoidance) or biologi-
cal (for example, neural patterns), takes precedence as an explanatory 
factor for psychopathology. Rather, the approach is driven by evidence 
for any or all of a broad array of possible mechanisms. By being so tar-
geted, these intervention ingredients are efficient relative to standard 
therapies. Even more targeted active ingredients may evolve alongside 
advances in neuroscience and cognitive science, and advances in net-
work neuroscience may identify control hubs in the brain that can be 
targeted to drive symptom change40.

Although most evidence-based therapies comprise active ingre-
dients, they are usually combined into one package, which prohibits 
ascertainment of which ingredient is responsible for change and pro-
hibits personalization of care (or selection of a particular ingredient for 
a given individual based on expected response). (Note that, herein, we 
are emphasizing personalized mental health care, consistent with the 
notion of precision medicine, and different from the concept of person-
centred care, which applies to all individuals equally.) Moreover, the few 
studies of individual active ingredients utilize diagnostically classified 
samples, rather than circuit–function classified individuals, which may 
have limited their effectiveness. As an example, the active ingredient 
of attention bias modification training produces relatively small effect 
sizes for individuals with anxiety disorders77, perhaps because only 
some individuals with anxiety disorders exhibit an attentional bias 
to threat78,79. Symptoms of general anxiety may link more strongly 
with attentional bias towards threat, whereas phobic symptoms may 
link more strongly with avoidance of threat80. Thus, the effect size of 
attentional bias modification is probably dampened when applied to 
the entire diagnostic group, and amplified when applied to anxious 
individuals with attentional bias towards threat. As another example, 
some individuals with post-traumatic stress disorder exhibit amygdala 
hyperactivation and prefrontal cortex hypoactivation in response to 
trauma reminders, whereas others show the reverse pattern, and these 
neural differences have been linked to symptom profiles of emotional 
reactivity versus numbing and avoidance81. Consequently, active ingre-
dients that target amygdala hyperactivation and prefrontal cortex 
hypoactivation may be more effective for those exhibiting emotional 
reactivity, whereas other active ingredients may benefit those with 
numbing and avoidance. A circuit–function–symptom active ingredi-
ent approach facilitates a more efficacious personalized approach to 
mental health care.

Implementation science: task-sharing of brief 
psychosocial interventions
A large body of evidence has demonstrated the effectiveness of psy-
chosocial interventions, typically complex multi-ingredient treatment 
packages designed to treat diagnostic categories of mental health 
problems. These interventions are recommended as the first-line treat-
ment for a wide range of mental health problems, in particular during 
childhood and adolescence (such as autism, emotional and behavioral 
disorders), and for anxiety- and stress-related disorders across the life 
course. They are the best initial treatment choice for mood disorders 
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(for which alternative pharmacological interventions are also widely 
used)82,83 and enhance the effectiveness of pharmacological interven-
tions for psychoses. The evidence, however, is not without limitations, 
such as the absence of long-term outcomes from the majority of imple-
mentation studies, although recent findings are emerging to suggest 
general persistence of benefits over lengthy time periods84,85. Adverse 
outcomes typically are not reported, although it remains unclear as 
to whether this is because they were absent or they were not assessed 
during or beyond the duration of the study. Furthermore, there have 
been few effectiveness trials in public health settings with regular health 
workers performing multiple functions.

Moreover, there are a number of notable limitations of the multi-
ingredient packages: their one-size-fits-all approach, akin to phar-
macotherapy, which treats a disorder rather than an individual and, 
in doing so, perpetuates the categorical diagnosis-driven approach 
to mental health problems; their complexity, which requires a large 
number of sessions to deliver to protocol and a considerable number 
of skills to be mastered by the patient; and the proliferation of hundreds 
of packages of psychosocial interventions, which differ marginally 
from one another, sharing a number of ‘active ingredients’, leading to a 
fragmentation of therapeutic approaches for mental health problems. 
The arduous training and supervision requirements to deliver these 
interventions with fidelity have effectively restricted their delivery to 
highly trained, and expensive, mental health professionals, who are 
in short supply globally. These challenges have greatly hampered the 
scale-up of these therapies.

These challenges have been addressed head-on by implemen-
tation scientists working in low-resource contexts globally, includ-
ing in the most resourced countries in the world, such as the United 
States. In doing so, these scientists have designed briefer interven-
tions that target hypothesized mediators of mental health problems 
(for example, interventions comprising only the active ingredient of 
behavioral activation to target low-response contingent positive rein-
forcement, hypothesized to contribute to the onset and maintenance 

of depression) and are thus easier to learn and implement with fidelity 
(and therefore be delivered by non-specialized providers, enhancing 
accessibility and reducing cost) and easier for patients to understand 
and master (therefore enhancing acceptability). These pared-down 
interventions represent the first stage of a circuit–function–symp-
tom–communities approach, in which continuous research advances 
lead to even more targeted and personalized interventions that are 
scalable. Importantly, treatment need has been typically identified 
on the basis of symptom presentation (assessed using brief symptom 
questionnaires), eschewing the requirement for a diagnosis (which 
needs a more intensive assessment by a highly trained provider)86. The 
research agenda of the circuits-to-communities model will go beyond 
existing pared-down programs and eventuate in active ingredients 
that target specific cognitive functions and are selected to suit an 
individual’s symptom profile in combination with their developmental 
stage and relevant sociocultural influences (thus both targeted and 
personalized).

Over the past two decades, the effectiveness of these pared-down 
psychosocial interventions delivered through task-sharing with a wide 
range of non-specialist providers (for example, community health 
workers, nurses and lay counsellors) in routine, real-world, settings 
(for example, in primary care, community settings and schools) has 
been repeatedly demonstrated in randomized controlled trials (more 
than 100 so far). Furthermore, a number of recent systematic reviews 
have concluded that this approach, combining a parsimonious, active-
ingredient intervention with a pragmatic delivery model, is the most 
cost-effective strategy to shift the needle on the crisis of unmet needs 
for quality care for mental health problems87–89. Delivery of active ingre-
dients can be greatly facilitated by digital technologies, as described 
in more detail in the following.

The parallels between the use of such ‘simpler’ targeted inter-
ventions designed around a single, or a few, active ingredients and 
the mechanistically informed active ingredients described as a key 
approach of intervention science are obvious. That notwithstanding, 

Box 2

Active ingredients for treatment of fear and anhedonia
1.	 Extinction processes guide active ingredients for fears

a.	 Prediction error is critical to fear extinction and is reli-
ant upon dopaminergic neurons in the ventral tegmental 
area146. Prediction error processes are posited to underlie 
the generation of inhibitory associations during extinction 
that compete with (versus erase) original excitatory asso-
ciations with conditional stimuli147 that are hippocampally 
dependent and context specific46.

b.	 Elucidation of the neuroscience of extinction learning 
has informed refinements to exposure therapy (clinical 
proxy of extinction) for fear symptoms, such as designing 
exposures to maximize prediction error learning (that is, 
learning that the feared outcome did not happen) through 
strategies such as designing exposure to violate expectan-
cies, removing safety signals, varying the objects or situa-
tions, practising in multiple contexts and repeated mental  
rehearsal of the inhibitory learning32,34.

c.	 Behavioral and neural markers of extinction learning 
predict response to exposure therapy in adults and chil-
dren148–150. Exposure therapy influences neural responses 
to conditional fear stimuli94, and prediction error learning 
predicts outcomes from exposure therapy151.

2.	 Reward processes guide active ingredients for anhedonia
a.	 Processes of reward sensitivity, including reward antici-

pation–motivation, response to attainment and learning, 
involve the nucleus accumbens, caudate and putamen, 
anterior cingulate cortex, medial prefrontal cortex, hippo
campus and amygdala141.

b.	 Elucidation of the neuroscience of reward processing  
has informed emerging behavioral interventions that target  
reward hypo-responsivity for the treatment of anhedo-
nia40,67,69,152,153. Examples of active ingredients include 
behavioral activation combined with imaginal savouring 
of positive features, cognitive training to attend to posi-
tive features of complex situations, imagining positive 
future outcomes, and mindfulness training (for example, 
gratitude).

c.	 Whereas there is no evidence to suggest that processes of 
reward sensitivity predict response to behavioral inter
ventions for anhedonia, such interventions have been 
shown to influence physiological and behavioral indices 
of reward anticipation and reward attainment (M.G.C. 
et al., manuscript in preparation) and neural functional 
connectivity154.
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there remains a gap between existing implementations of pared-down 
interventions and the rapid advancements in neurocognitive science 
and clinical science that are leading to novel active ingredients and, 
importantly, ways to match active ingredients to each individual.

An integrative multidisciplinary framework for 
global mental health
Our circuits-to-communities framework is not a theory of change 
per se, nor is it a model of system changes needed to implement new 
approaches to mental health care. Rather, our model is a call for a new 
approach to treatments that are targeted, personalized and scalable. 
We link and converge the highly specialized and segregated disciplines 
of neuroscience, cognitive science, developmental science, clinical 
science, intervention science and implementation science to inform 
the design and delivery of targeted and personalized active ingredients 
of treatment for mental health problems. By examining networks and 
circuit–function–symptom chains in individuals that take sociocul-
tural and developmental influences into account, we move beyond 
average-based inferences and one-size-fit-all treatment modalities. We 
argue that the emerging selection of specific active ingredients can be 
delivered through low-cost strategies, such as task-sharing or digital 
therapies. Our model is not based on any of the individual disciplines 
in discussion, but rather on their integration to produce personalized 
therapeutic active ingredients that can be applied at scale, using data-
driven algorithms.

Alongside interactions within networks of neural processes, cog-
nitive functions and symptoms, our integrative circuits-to-symptoms 
framework emphasizes dynamic relationships across neural circuits, 
the cognitive functions supported by those neural circuits, and symp-
tom expression. To illustrate the reciprocity, as much as neural systems 
underpin cognitive and behavioral responding (for example, elevated 
activation of the amygdala is related to pronounced detection and 
avoidance of threat)90,91, behavioral responding in turn can exert neural 
effects. In animal models, for example, neural changes emerge as a 
function of behavioral ‘learned helplessness training’ on the one hand 
(for example, excessive serotonin is released in projection regions 
of the dorsal raphe nucleus) and behavioral ‘control training’ on the 
other hand (for example, the medial prefrontal cortex inhibits the 
serotonergic dorsal raphe nucleus)92. There are multiple correspond-
ing examples for behavioral training in humans to influence neural 
responses (for example, attention bias modification training influ-
ences neural correlates of response monitoring93, exposure therapy 
influences neural response to conditional stimuli94, and behavioral 
reward training influences physiological response to reward). Con-
versely, symptom reduction from psychological therapies (albeit 
multi-ingredient) is associated with changes in neural circuits for 
anxiety95,96, depression and anhedonia97,98. Hence, in our integrative 
framework, neurocognitive circuits and functions influence symptoms, 
and targeted interventions, including behavioral ones, influence both 
symptomatic and neurocognitive effects.

A core assumption of the circuit-to-communities model is that 
targeted active ingredients will be more efficient and more effective 
when personalized. This is because, within a package of therapeu-
tic elements, some elements are likely to be ineffective for a given 
individual, increasing the risk of iatrogenic effects, inefficiency and 
treatment dropout. Personalization methodologies already have been 
demonstrated to improve treatment response, such as the Personalized 
Advantage Index for choosing between psychotherapy packages99. 
Evidence is beginning to emerge in support of prescriptive matching 
to specific treatment ingredients from symptom network models100.

Links to symptom profiles will be the key pin for large-scale imple-
mentation, wherein symptom profiles themselves will become the 
proxy for underlying neural and cognitive dysfunctions (whether 
related to distal mechanisms, compensatory mechanisms or symp-
toms themselves). In alignment with our circuit–function–symptom 

model, active ingredients would be selected on the basis of the central 
symptom cluster within a symptom network model, because central 
clusters have most influence on the spread of symptoms and thereby 
represent the underlying network of circuits–functions that is most 
essential as a treatment target. This will require the generation of cir-
cuit–function–symptom networks, as we have described, calibrated 
or adjusted to account for sociocultural and developmental influences 
upon symptom expression (Box 3).

Future research directions
Greater precision in neural systems: neural network models 
and precision imaging
There are two developments in structural and functional brain imaging 
that have implications for understanding circuit–function–symptom 
pathways and the development of personalized interventions. The 
first pertains to the emerging field of network neuroscience42. Histori-
cally, structural and functional neuroimaging studies have examined 
brain regions in isolation of each other or examined the associations 
between just a handful of brain regions. Network neuroscience builds 
on a branch of mathematics called graph theory to model the connec-
tions between hundreds to thousands of regions of interests across the 
brain101,102. Variations in these network metrics have been associated 
with individual differences in emotion, cognition and attention103,104, 
as well as mental health, including depression105,106. Newer variants of 
network neuroscience (for example, network control theory) examine 
how the activation of one node in a network affects the rest of that 
network107. This work has the potential to generate new insights into 
neural architecture and identify prominent drivers or hubs in the brain 
that can be targeted by person-centred interventions.

Another important development is precision imaging108. The 
majority of research on mental health focuses on group-based sta-
tistics, examining how diverse groups differ on some outcome vari-
able, or how one treatment compares to another. Group comparisons, 
however, do not capture the heterogeneity of biological and psycho-
logical characteristics across any given disorder109,110. Furthermore, 
the personalized interventions proposed in this Perspective are about 
understanding and affecting the lives of individuals, not groups. Thus, 
ultimately, we will need to model the individual at both biological 
and psychological levels of analysis. Precision functional magnetic 
resonance imaging (fMRI) approaches, for example, use extended 
data acquisition and forward-thinking analyses of the functional con-
nections in the brain to provide reliable and stable individual meas-
ures of brain organization111,112. Early reports indicate that precision 
fMRI is more sensitive to individual differences and clinical symptoms 
than standard group-based analyses, and can increase the association 
between fMRI measures and behavior113–115. Future research is needed to 
examine whether precision imaging (1) generates more individualized 
prognostic markers of risk, (2) facilitates the development of personal-
ized interventions and (3) provide personalized targets in the brain for 
behavioral therapies.

Greater precision in symptom profiling and integration with 
neural networks
In parallel to the greater precision in understanding neural and cogni-
tive systems, there is a need for greater precision in symptom profiling. 
Although dimensional models (for example, HiTOP, tri-level model) 
have many advantages over diagnostic categories, they are limited to 
traditional symptom questionnaire measures that represent explicit 
retrospective judgements of oneself that, although relevant in and 
of themselves, are biased (for example, depressive recall of negative  
over positive self-referent information)116. Ecological momentary 
assessments of subjective experience capture affective dynamics 
in daily life that are less biased than traditional questionnaires that  
estimate status over lengthy intervals, but remain limited to self  
reporting117.
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A challenge for the field is achieving greater precision in  
individualized symptom assessment that is not fully reliant on  
language, self-awareness and retrospection, although in nascent 
stages, digital phenotyping of behaviors and peripheral physiology 
through smartphones and wearable sensors can record features  
such as movement, sleep, social interaction, heart rate variability,  
vocal and facial features118 that continuously snapshot mental 
health-relevant features. Traditional questionnaire symptom ratings  
combined with moment-to-moment dynamic trajectories in self- 
report plus continuous physiological and behavioral expressions may 
lead to more precise measurement needed for precision mapping 
onto neurobiology. The digital divide will remain an obstacle, how-
ever, for global implementation of these high-frequency naturalistic 
measurements.

Individually targeted care embedded in social interventions
The emphasis throughout has been on translating research on circuit–
function–symptom pathways into personalized interventions that 
can be distributed on a global scale. Therefore, our focus has been on 
scaling upwards from circuits to communities, with feedback regard-
ing their effectiveness. Yet, as discussed, the links between circuits 
and symptoms are influenced by developmental and sociocultural 

factors, including maltreatment and neglect47,49. This work has inspired 
family-centred interventions designed to increase parental warmth 
and responsiveness that have a positive effect on brain development 
and help protect youth from the onset of stress-related mental and 
physical health problems119. There is growing evidence, however, that 
the society or larger community in which a person develops also affects 
the brain and body120. Early exposure to community stressors such as 
poverty or neighbourhood violence alter brain systems involved in a 
variety of cognitive and affective processes121,122. Theory and research 
suggest that these alterations are one possible mechanism through 
which social determinants of health such as poverty and structural 
inequality get under the skin to heighten risk for mental health prob-
lems, as well as various physical health conditions123. This work also 
suggests that social policies designed to address structural inequities 
in society may help reduce health inequities in part through having a 
positive effect on brain development124. In line with this Perspective, 
Troller-Renfree et al. reported that a modest monthly cash transfer 
to low-income families had a causal impact on infant brain activity 
associated with cognitive and emotional development125. A full inte-
gration of social determinants of health and circuit–function–symp-
tom pathways is beyond the scope of this Perspective. However, an 
important future direction will be to integrate research examining 

Box 3

Fundamental principles of the circuits-to-communities model
1.	 Alignment across multiple, previously siloed disciplines, including 

neuroscience, cognitive science, developmental science, social  
science, clinical science, and intervention and implementation 
science.

2.	 Precision in measurement within neural systems, cognitive func-
tions and symptom expression in the context of development and 
sociocultural factors and in delineation of therapeutic ingredients.

3.	 Network models that recognize multiple and reciprocating influ-
ences within and between neural systems, associated cognitive 
functions and symptom expression.

4.	 Reciprocating influences among circuit–function–symptom con-
structs and sociocultural, environmental and developmental fac-
tors that influence neural systems and expression of symptoms, 

the effects of interventions on circuits–functions–symptoms, and, 
in turn, their effects on response to interventions.

5.	 Interventions that are derived from a circuits–functions–symp-
toms approach that involve mechanistically targeted active ingre-
dients will be more efficient and more effective than traditional 
‘diagnosis’ based treatments, and lend themselves to personaliza-
tion to match to an individual’s most pressing needs at any given 
point in time.

6.	 Active ingredients lend themselves to scaling up for global imple-
mentation, as they are more widely acceptable to the public and 
more easily implemented by paraprofessionals than traditional 
diagnostic-based interventions.
The figure provides an exemplar of the fundamental principles.
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the mechanisms through which social inequities like poverty affect 
the brain and body with the work of social scientists and policy makers 
investigating the structural foundation of inequality and economic 
determinants of health disparities126. This could help synergize the 
development of targeted and personalized interventions with societal 
policies and social programs to optimize mental and physical health 
and well-being.

Pathways to global implementation
Large-scale implementation of the circuit-to-communities model will 
require digital tools that automate selection of the most fitting active 
ingredients for a given individual (which are based on the research to 
date linking circuits to functions and symptoms) and include data-
driven feedback systems for updating the selection algorithms and the 
active ingredients themselves based on the response of the individual. 
In this way, the research agenda continuously informs global implemen-
tation, which in turn continuously feeds back to inform the research.

As an example, the community or frontline health worker might 
have an app in which a person enters symptom ratings, preferably 
over repeated occasions to permit symptom network modelling and 
identification of central drivers of symptom extension, as well as their 
developmental stage, early adversity and ongoing stress exposure. 
These person-specific symptom and contextual data would be fed into 
the circuit–function–symptom data corpus, from which an automated 
algorithmic output indicates the active ingredient(s) most likely to be 
effective for the individual. The selected active ingredient(s) would be 
implemented by the community health worker, with repeated symptom 
measurement to index treatment response. In this continuous cycle 
of measurement-based care, efficacy of a targeted active ingredient 
will be assessed along with broad reassessment of symptom nodes to 
determine adjuvant or subsequent active ingredients to implement. 
Ongoing circuit–function–symptom research, taking sociocultural 
and developmental factors into account, will inform refinements to the 
active ingredients and the selection algorithms. Ongoing data collec-
tion regarding the effectiveness of the personalized active ingredients 
will feed back to inform refinements to the active ingredients and the 
selection algorithms, ensuring calibration across different sample 
characteristics and settings. In this way, sociocultural and develop-
mental influences are incorporated into the data corpus that guides 
intervention selection as well as into ongoing refinement of selection 
tools and of interventions themselves to suit different developmental 
phases and cultural factors.

Aside from guiding the selection and evaluating the efficacy of 
active ingredients, digital technologies offer two more pathways for 
global implementation. The first is training and fidelity assurance of 
health-care workers. Digital platforms can be used for competency-
based training and quality assurance in the delivery of specific active 
ingredients, as is already being rolled out in rural India127. The second is 
actual delivery of the active ingredients. Although health workers will 
be better able to deliver active ingredients than complex psychological 
treatments86, digital technologies will greatly facilitate the delivery of 
selected targeted active ingredient therapies with fidelity, especially 
given the scope of an ever-growing set of active ingredients. The diverse 
opportunities offered by digital technologies targeting the person 
with or without the aid of non-specialist providers dramatically opens 
up access to care, with evidence of their efficacy in diverse contexts 
already accruing128.

Summary and synthesis
The integrative framework we propose offers a pathway for circuit–
function–symptom dynamic relationships to inform targeted and effi-
cient psychological treatments that can be scaled up in diverse global 
contexts. Our framework utilizes the logic of network theory within 
and between circuits, functions and symptoms to identify central, yet 
modifiable, targets for interventions in the context of developmental and 

sociocultural factors. Inspired by the RDoC taxonomy, the framework 
traverses different disciplines by evaluating circuit–function–symptom 
changes rather than diagnoses, while implementation science opens a 
window for scaling up personalized interventions using task-sharing and 
digital technologies. Our integrative framework builds on and comple-
ments the RDoC taxonomy in a number of ways. First, it moves beyond 
serial linkage between units of analysis (circuits), domains (function) 
and constructs (symptoms) to highlight multidimensional and dynamic 
relationships within and across neural networks, cognitive functions 
and symptom networks. Second, it completes the cycle with personal-
ized and targeted clinical interventions and their scalable implementa-
tion at the population-level impact through innovative global mental 
health practices. Third, our framework emphasizes the importance of 
placing circuit–function–symptom profiles within a developmental, 
environmental and sociocultural context. Transformations in research 
approaches, paradigms and multidisciplinary collaborations are impera-
tive for the successful implementation of our framework. It is the align-
ment across disciplines that can lead to sizable advancement in our 
understanding of the causation, prevention and treatment of mental 
health problems.
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