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Testing the reliability of an AI-based large
language model to extract ecological
information from the scientific literature

Check for updates

Andrew V. Gougherty & Hannah L. Clipp

Artificial intelligence-based large language models (LLMs) have the potential to substantially improve
the efficiency and scale of ecological research, but their propensity for delivering incorrect information
raises significant concern about their usefulness in their current state. Here, we formally test how
quickly and accurately an LLM performs in comparison to a human reviewer when tasked with
extracting various types of ecological data from the scientific literature. We found the LLMwas able to
extract relevant data over 50 times faster than the reviewer and had very high accuracy (>90%) in
extracting discrete and categorical data, but it performed poorly when extracting certain quantitative
data. Our case study shows that LLMs offer great potential for generating large ecological databases
at unprecedented speed and scale, but additional quality assurance steps are required to ensure data
integrity.

The recent public release of multiple artificial intelligence (AI)-based lan-
guage generating chatbots has garnered significant attention from both the
public and scientific communities1,2. The ability of large language models
(LLMs) to quickly process and synthesize large amounts of text and return a
reasonable response to user queries has led to the suggestion that scientists
could potentially begin to shift mundane, laborious, or time-consuming
tasks to AI systems3. However, while it seems promising that LLMs can
generate correct technical answers and seemingly reasonable responses, the
tendency for LLMs to sometimes “hallucinate” or return objectively wrong
information raises significant concern aboutwhether LLMs, in their current
(publicly available) state, can be relied upon to produce accurate results.
Furthermore, biases in the training data can perpetuate errors that can be
difficult to understand, given the “black box” nature of LLMs and the fre-
quent lack of transparency in the data used for training4. As such, it is
uncertain whether LLMs in their current form offer a useful tool for sci-
entists that could improve productivity, efficiency, learning, and teaching or
whether LLMs should be avoided as a research tool due to imprecision and
unreliability. With AI being increasingly used in ecological studies, and the
possibility of AI-based systems generating novel, testable hypotheses and
predictions5,6, there is a pressing need to characterize the ability of AI-based
systems to interact with ecological data.

Here, we sought to formally test the ability of an LLM to extract
ecological information from scientific reports and, in the process, generate a
database that could undergo further analysis. We focused on scientific
reports of plant pathogens occurring on new hosts or in new geographic

regions (i.e., emerging infectious diseases [EIDs]). These reports provide a
valuable real-world case study, as thousands of new disease reports are
published annually in the scientific literature—indeed, there are entire
journals dedicated to the topic (e.g.,NewDiseaseReports,Online ISSN:2044-
0588)—produced at a rate that would challenge any researcher to keep up-
to-date on this rapidly expanding literature7. These reports also provide
important information for understanding the spread of invasive species,
whichmay harm ecosystems8, native communities9, and crop production10,
and for informing future management and surveillance of invasive species.
Based on the results of our case study, we identified the strengths and
weaknesses of theLLM in extractingdifferent types of data, andwe conclude
by commenting on the potential usefulness of LLMs in general as a
research tool.

Results and discussion
In total, data extraction via the LLM took approximately 5min, while the
reviewer took approximately 268min to review the 100 reports, repre-
senting an over 50-fold difference. The LLM had a strong ability to accu-
rately identify the pathogens, hosts, years, and countries described in the
reports. Of the 103pathogens described in the reports, 98.1%matched those
identified by the reviewer (Kappa = 0.98, CI = 0.95–1.0). The only instances
thatwerenot exactmatcheswere associatedwith the alder yellowspathogen.
In this case, the reviewer correctly identified the pathogen as “Alder yellows
phytoplasma,” while the LLM identified the pathogen as “Candidatus
Phytoplasma alni.” While this pathogen name seems correct, it was not
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specificallymentioned in the report, norwerewe able tofindanymention of
this specific pathogenname in the literature. Interestingly, this species name
seems to follow the convention of other phytoplasmas (e.g., Candidatus
Phytoplasma ulmi, Ca. P. fraxini). Host identities were also matched with
high accuracy. Of the 132 hosts identified by the reviewer or LLM, 91.7%
were exactmatches (Kappa = 0.92, CI = 0.87–0.96). The greatest errorswere
due to omission—that is, instances where the reviewer identified a host that
the LLM did not. These were exclusively cases where multiple hosts were
listed in the report, but the LLM failed to identify all of the hosts. A similar
trend was found for the year during which EIDs were observed. Generally,
the reviewer and LLM returned identical years, with an overall accuracy of
72.1%, which consisted of 106 “true positive” matches, 11 “false positive”
cases, 14 mismatching values, 15 errors of omission [due primarily to the
LLM missing hosts or locations identified by the reviewer], and 1 error of
commission out of 147 total cases. Mismatched values often occurred when
the EIDs were observed across a range of multiple years. Countries were
identifiedwith the highest accuracy rate—effectively, all countries identified
by the LLM were exact matches (100%) to those identified by the reviewer
(Kappa = 1.0).

When latitude/longitude coordinates were supplied in the report
(N = 34 out of the 100 total reports, comprising 44 unique locations where
diseases were first recorded; Fig. 1), they tended to be similar between the
LLM and reviewer, but the LLM frequently struggled with converting given
coordinates to decimal degrees. There were 46 total unique locations
identified by both the reviewer and LLM from the reports, and 34.0% of the
latitude/longitude coordinate values were an exact match (aside from neg-
ligible rounding issues that occurred when converting to decimal degrees
and resulted inmean absolute differences in latitude and longitude of 0.0002
and 0.0004, respectively). For 16 locations, minor mismatches arose from
seemingly random discrepancies in converting to decimal degrees, which
resulted inmean absolute differences in latitude and longitude of 0.1369 and
0.0022, respectively. For 8 locations, the LLM completely failed to convert
correctly to decimal degrees, returning latitude and longitude values that
had mean absolute differences of 0.1733 and 0.1097, respectively. The

remaining mismatches were due to errors of omission (N = 4), errors of
commission (N = 2), and a case where 2 different locations were conflated
and treated as a single location. Excluding those latter 7 cases, absolute
differences ranged from 0–1.8383 (mean = 0.1052) for latitude and from
0–0.2800 (mean = 0.0270) for longitude.

It is worth noting that therewere 2 cases where the reviewerwas able to
interpret location-related information that the LLM could not. The first
instances were 2 errors of commission by the LLM in returning latitude/
longitude coordinates that were not identified by the reviewer; both were
from a single report that contained 2 sets of coordinates for surveys that had
been conducted to monitor for tree diseases but were not the actual coor-
dinates of the first records of the disease. The reviewer was able to distin-
guish the context and indicated NA for the latitude/longitude coordinates,
as they were not provided, but the LLM returned the 2 sets of tree survey
coordinates. Thus, in this case, the LLM appeared to simply return any
coordinates that were explicitly included in a report, even though they did
not correspond to the requested locationof afirst disease record.The second
instancewas where the authors of the report apparently recorded thewrong
longitude coordinate, resulting in a location that was far outside of the
country where the disease was observed. The reviewer was able to correctly
identify this inconsistency, but the LLM did not. While this is not entirely
surprising, it verifies the LLM does not confirm the data it returns are
internally consistent and, therefore, may be unlikely to identify errors in the
inputted data without additional instruction.

Surprisingly, even when the report did not explicitly supply latitude/
longitude coordinates, the LLM geocoded the locations (Fig. 1), producing
coordinates for 70 unique locations with high accuracy (98.6%) for place-
ment within the correct country. We were not expecting this behavior, but
automatically geocoding the locations adds significant value to the extracted
data, as climatic, land use and other environmental data could then be
extracted for those locations. However, the LLM’s method of determining
the geocoded locationwhen it is not provided in the report is unknown, and
wewere unable to determine the reason for the single set of coordinates that
were located within the incorrect country (~5 km from the border of the

Fig. 1 | Geographic locations of emerging infectious tree diseases from 100
reports.Gray points (N = 44) are unique locations provided explicitly in the disease
reports and identified by the human reviewer, and all other points (N = 110) are
those identified by the large language model (LLM). In many cases, geographic
coordinates were not provided in the disease reports, but the LLM automatically
geocoded 70 unique locations, with high accuracy (98.6%) for placement in the
correct country (black points) but uncertain precision (e.g., 3 sets of coordinates
were located in bodies of water [see blue points]). Approximately 34.0% of the
coordinates provided in the reports were precise matches (aside from negligible

rounding issues) between values identified by both the reviewer and LLM (i.e., gray
points with black border).Mismatches were due to small discrepancies in converting
to decimal degrees (N = 16; yellow points), complete failure to correctly convert to
decimal degrees (N = 8; orange points), errors of omission (N = 4; gray points with
no border), errors of commission (N = 2; red points; note that these coordinates also
failed to correctly convert to decimal degrees and resulted in the 2 points east of
Japan, which should have been located inAustralia), and conflation of 2 different sets
of coordinates as a single set of coordinates (N = 1; purple point).
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correct country). Furthermore, the precision of the geocoded locations is
uncertain, particularly as 3 sets of coordinates were situatedwithin bodies of
water (Fig. 1), ranging 40m to 5.2 km from the nearest shoreline.

The least accurate data extracted by the LLM were for pathogen inci-
dence, which had an overall accuracy of 23.8% (consisting of 25 “true
positive” matches, 10 “true negative” matches, 95 “false positive” cases, 1
mismatchingvalue, 15 errors of omission [dueprimarily to theLLMmissing
hosts or locations identified by the reviewer], and 1 error of commission out
of a total of 147 cases). Although the prompt specifically stated that NAs
should be used when the data were not available in the report, the LLM
assigned 53 of the 100 total reports with no incidence data as 100% inci-
dence, whereas the reviewer returned an NA, and it was not clear how the
LLM reached this answer. Of the cases where the reviewer identified an
incidence value, the LLM frequently extracted the same value (96.2%
matches, N = 25/26), which seems to indicate that the LLM can extract
numeric data, but the frequency of “false positive” cases was concerning.

Implications, limitations, and future directions
Theworkflowweutilized to automate data extraction fromscientific reports
highlights the potential for LLMs to rapidly generate large databases with
relatively high accuracy, opening the potential for researchers to address
newquestions at a scale thatwas previously not possible. That said, there are
numerous caveats to the approach we present, and to LLMs generally, that
shouldbenoted. First, the reports fromwhichweextracteddatawere known
a priori to have relevant pathogen, host, and geographic information. This
use of generative AI is likely “safer” than some others, as we only asked the
LLM to extract data we suspected were in the reports rather than find new
data or generate text that was not already in the report. Further, the reports
were short in length and relatively data-dense, sowhile the LLMwas usually
able to identify relevant data, it is yet unclear howwell it would interact with
longer text sources (e.g., journal articles with thousands of words). Further,
the data we were extracting were relatively simplistic (e.g., pest/host scien-
tific names, countrynames), which likely facilitatedhigh accuracy rates.Our
results are largely consistent with ref. 11, who suggested LLMs respond best
to simple, straightforward tasks that do not require multiple sequential
steps. Despite its simplicity, however, we note this type of information is
valuable for tracking pathogens, pests, and invasive species in new areas and
could be useful for both automating surveillance and identifying high-risk
pathogens and pests before they arrive in a new region.

The LLM’s ability to distinguish between pathogen and host names
was particularly useful as it indicates the LLM is not simply searching for
formatting clues of scientific names (e.g., italics). Rather, it implies the
pathogen and host names are evident from the context of the text and/or
that possibly some of these scientific names occur in the data used to
train the LLM. Interestingly, several of the pathogens in the reports were
parasitic plants, which the LLM correctly identified as the pathogen—
again suggesting an ability to distinguish between the antagonistic
species and host species. However, the LLM did not consistently extract
the quantitative data correctly. The tendency to assign 100% incidence
when no incidence data were providedwas somewhat disconcerting, and
it was unclear why this occurred. If the general workflow from our case
studywere to be used to generate quantitative datasets, numerous quality
assurance steps would need to be taken to ensure reasonable accuracy
before further analysis. The fast pace of development of publicly avail-
able LLMs could overcome these issues in the near future, and formal
comparison of multiple LLMs could clarify differences in their ability to
interact with ecological data.

Despite the relatively high accuracy of the data extracted, the workflow
could yet be improved. For instance, although the “off-the-shelf” LLM from
our case study produced acceptable results formuch of the data, fine-tuning
an LLM could help improve the accuracy of the incidence or other quan-
titative data12. An LLM trained in ecological text could be particularly
advantageous for more complex types of data, such as when effect sizes are
needed for a meta-analysis. However, even the ability to reliably extract
discrete/categorical data can prove tremendously valuable as these types of

data could be used to identify novel ecological associations, biological
introductions/invasions, and interactions between species and their envir-
onment. The ability of LLMs to interpret an expanding range of languages
can also help overcome biases that may emerge when focusing solely on the
English-language scientific literature13,14.However, the growingnumber and
capabilities of LLMs, along with their associated data processing require-
ments, should warrant a certain amount of reflection on their use as
cumulative environmental costs have yet to be fully realized15.

Methods
Source text
We used reports from a recent study on the global accumulation of emer-
ging infectious tree diseases7. EIDs are generally defined as diseases occur-
ring in a new geographic region, on a new host, or recently increasing in
impact16. For plant species, EIDs are frequently documented in the literature
as “First reports”, in which authors describe the conditions where the
pathogen was detected and the methodological approaches used to identify
the pathogen. These reports are frequently short in length, similar to the
wordcountof a typical abstract (e.g., current guidelines forPlantDisease, the
source of the disease reports used in our case study, state that reports should
be ≤2985 characters). Because these reports are known to contain new and
important ecological information, they offer a unique opportunity to test an
LLM’s ability to extract relevant ecological information from the scientific
literature. We used the first 100 reports from ref. 7, which represent unique
hosts and pathogens reported in new regions.

LLM data extraction
For our case study testing the ability of an LLM to extract various types of
ecological data from the scientific literature, we elected to use the publicly
available text-bison-001 generative text model fromGoogle. As a generative
text model, text-bison-001 is designed to return only the relevant text
requested, which can then be parsed to a table, without the superfluous
conversational text that would accompany responses by a chat model (e.g.,
OpenAI’s ChatGPT, Google’s Bard). In addition, the text-bison-001model
can be accessed freely from an API, which allows for an entirely scripted
workflow that bypasses the need to manually copy and paste data to and
from a web browser.

We prompted the LLM to extract multiple pieces of information
from the disease reports, including the scientific names of the pathogen
and hosts described in the report, the incidence of the pathogen (i.e.,
percent of hosts affected by the pathogen), andwhen (i.e., year) andwhere
(i.e., country) the pathogen was detected. The development of the prompt
required some iterative experimentation to ensure that the requested data
were returned accurately and consistently. In initial testing, for instance,
we found that the LLM sometimes returned geographic coordinates as
degrees–minutes–seconds or returned common names when scientific
names were available. We found that explicitly stating the desired format
for these variables increased the consistency of data extraction. Further-
more, because the data table was returned as a single text string, we
realized that we needed to request that columns be delimited by a vertical
bar (as opposed to a comma), because locations occasionally included
commas, and this specificationwas necessary to properly delimit the table.
As part of our workflow, the title and text of each report were appended to
a text prompt, which described the data we wished to extract and the
desired format of the response. The prompt read:

“The following is an abstract describing a plant pathogenon anewhost
or in a new geographic area.

I’d like to know (i) what is the scientific name of the pathogen?
(ii) what is the scientific name of the host?
(iii) what percentage of hosts were infected by the pathogen?
(iv) what year was the pathogen sampled?
(v) where was the pathogen observed?
(vi) what country was the pathogen observed in? and
(vii) what are the latitude/longitude, in decimal degrees, of the location

where the pathogen was observed.
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For the coordinates, don’t include letters to indicate the cardinal
directions, but use negative numbers to indicate west and south.

It is very important that the latitude and longitude be returned in
decimal degrees.

If there are multiple pathogens, hosts, or locations, include each as a
separate row.

If any of the information is not included in the abstract, use NA.
Use a vertical bar | to delimit the table. Use the column names:

‘Pathogen’ [scientific name of pathogen], ‘Host’ [scientific name of host],
‘Percentage’ [percent of hosts infected], ‘Year’ [year pathogenwas sampled],
‘Location’ [location where the pathogen was observed], ‘Country’ [country
where pathogen was observed], ‘Latitude’ [latitude in decimal degrees],
‘Longitude’ [longitude in decimal degrees].

Always use scientific names when possible. Do not summarize the
abstract. Return only a table. Here is the title, followed by the abstract:”

We interacted with the LLM through Google’s developer API, which
was accessed with the httr package17 in the R statistical program18. The data
from each report were returned as a single text string, with rows delimited
with a newline designator (\n) and columns delimited with a vertical bar (|).
The workflow was entirely scripted, and the table with the relevant
responses was saved as an Excel file. The entire script to interact with the
LLM is available at https://doi.org/10.6084/m9.figshare.24646302.

In initial testing, we found the LLM occasionally flagged the prompt
and reports as being “derogatory” or “toxic” and would not return a
response. It was not immediately clearwhy these particular reportsmight be
considered derogatory or toxic.Wewere able to adjust the thresholds for the
allowable derogatory/toxic content level in the response, which fixed the
issue for the problematic reports. Of the 100 reports tested, 87 returned a
result without adjusting the allowable derogatory/toxicity level, and 13
returned a result only after adjusting the allowable derogatory/toxicity level.
Furthermore, to improve the repeatability of the responses, we set the
“temperature” of the response to zero. Temperature controls the degree of
creativity and stochasticity in the response. Setting the temperature to zero
made the responses more deterministic, as the model always selected the
highest probability response (see the API guide: https://cloud.google.com/
vertex-ai/docs/generative-ai/model-reference/text).

Validation
We tested how well the data extracted by the LLM compared to those
extracted by an independent human reviewer (H. L. Clipp; hereafter,
reviewer), who had not worked with these data previously. For the
discrete variables (i.e., the identity of the pathogen, host, country, and
year of sampling), we calculated 2 validation statistics: (i) an overall
accuracy metric that was calculated as the number of exact matches
between the LLM and reviewer divided by the total number of unique
returns by the LLMand reviewer, and (ii) Cohen’sKappa using the psych
package in the R statistical program19. For the quantitative variables (i.e.,
latitude/longitude, incidence), we calculated LLM accuracy as the per-
centage of unique values that matched between those identified by both
the LLM and reviewer, and we tallied the reasons for discrepancies (e.g.,
errors of commission/omission). We additionally calculated the abso-
lute differences between unique latitude and longitude values returned
by the LLM and reviewer. Any discrepancies between the reviewer and
the LLM were assessed by the first author (A. V. Gougherty) to confirm
the reviewer had extracted the correct information. We allowed some
flexibility when the reviewer and LLM had minor disagreements. For
instance, when hosts were identified to the subspecific level, we con-
sidered it amatchwhether or not the reviewer or LLM included “subsp.”,
“ssp”, or no specific designation for the sub-specific epithet. Similarly,
when the host was identified only to the genus level, we allowed the
inclusion, or not, of “sp.” or “spp.” as a species identifier.

Data availability
The text of thedisease reports and script to interactwith theLLMis available
at https://doi.org/10.6084/m9.figshare.24646302.
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