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Ecological processes are often spatially and temporally structured, potentially leading to autocorrelation either in environmental
variables or species distribution data. Because of that, spatially-biased in-situ samples or predictors might affect the outcomes of
ecological models used to infer the geographic distribution of species and diversity. There is a vast heterogeneity of methods and
approaches to assess and measure spatial bias; this paper aims at addressing the spatial component of data-driven biases in species
distribution modelling, and to propose potential solutions to explicitly test and account for them. Our major goal is not to propose
methods to remove spatial bias from the modelling procedure, which would be impossible without proper knowledge of all the
processes generating it, but rather to propose alternatives to explore and handle it. In particular, we propose and describe three
main strategies that may provide a fair account of spatial bias, namely: (i) how to represent spatial bias; (ii) how to simulate null
models based on virtual species for testing biogeographical and species distribution hypotheses; and (iii) how to make use of
spatial bias - in particular related to sampling effort - as a leverage instead of a hindrance in species distribution modelling. We link
these strategies with good practice in accounting for spatial bias in species distribution modelling.
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INTRODUCTION

’A greater acknowledgement of model uncertainty often
has the consequence of widening our uncertainty bands [...].
Since hedging against uncertainty is hard work, this is an
unpopular turn of events, at least in the short run. But [...]
which is worse - widening the bands now, or missing the
truth later?’1

Ecological processes are often spatially and temporally struc-
tured, so both environmental variables and species observations
can potentially be autocorrelated2,3. Modelling the geographic
distribution of species and the composition of ecological
communities is key to preserve biodiversity and support a proper
management of the habitats in which species live and have
adapted over their evolutionary history4–7. From this point of view,

predicting the distributions of species and communities in space
and time provides a powerful tool for conservation planning8–12.
Hence, studying species distribution changes might represent an
effective approach to understand the complex interplay between
the current biodiversity crisis and anthropogenic climate
change13–15.
Yet, complete knowledge of the distribution of any plant or

animal species, and how these aggregate into more or less diverse
communities, is hardly achievable. In some cases, the battle of
ecologists against the many problems related to the modelling of
species distributions becomes quixotic, or similar to fighting
against a chimera. Hence, it needs to be approached in an
idealistic way, fostering new ideas to fight the many challenges
associated with biodiversity modelling16. Such a battle requires
proper modelling approaches, which simultaneously account for
empirical evidence13 and stochastic processes15. In this context,
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Species Distribution Models (hereafter SDMs, also known as
Ecological Niche Models, Habitat Suitability Models and many
other names used in the scientific literature9,17) are powerful tools,
since they provide insights into species or community distribu-
tions in space and their potential shifts over time18. In practical
terms, depending on the final interest or overarching goal, the
label might change, e.g., labelling it SDMs when the focus is on
the spatial distribution of species and labelling it ENMs when the
focus is on the underlying drivers, namely the niche requirements
of species19.
In this paper we did not explicitly distinguish between SDMs,

ENMs or HSMs, the three main acronyms used for the same
underlying model machinery, since they are all relying on the
estimation of ecological requirements of species for predicting
their distributions in space and time19. In addition to that, other
labels such as Potential Habitat Distribution Models (PHDMs),
Climate Envelope Models (CEM), Resource Selection Functions
(RSF) and others are also used to name this category of niche- or
habitat-suitability based distribution models. In fact, we share the
view that niches—or habitats—should not be distinguished from
or opposed to distributions because these two are faces of the
same coin, where the coin is a species with one side being the
distribution within the geographical space and the other side the
niche as an envelope of habitat suitability within the environ-
mental space. Hence, in our opinion, niche, habitat suitability and
distribution are too much entangled to dissociate them into
separate entities or types of models (see ref. 20 for an example of
such an entanglement focusing only on SDMs and ENMs).
All SDMs typically rely on (i) species distribution data, either in

the form of both presence and background data (also called
pseudo-absences) or presence and true absence data gathered in
the field, as well as (ii) a list of predictor variables expected to
represent the ecological and geographical drivers of the species’
distribution range17. Understanding the spatial covariation of
species and their assembly into communities is crucial in
ecology21,22, so a wealth of methodological approaches has been
developed recently to account for species co-occurrences; for
instance, joint SDMs—for modelling the covariance of multiple
species together (e.g., ref. 23)—or stacked SDMs—for modelling
single species distributions sequentially and combining them
afterwards (e.g., ref. 24)—can be used to estimate community-level
parameters like species richness25,26. In other words, properly
stacking SDMs and considering the biotic interactions among
species24,27 will yield more realistic estimates of spatial patterns in
alpha diversity that relate to environmental gradients28. This said,
no modelling techniques are free from the uncertainty coming
from biases in the input data, like uneven sampling effort29–35 or
spatial positioning errors36–38. Here, an integration of species
distributions and community-level biodiversity modelling can be
performed under the Spatially-Explicit Species Assemblage
Modelling framework (SESAM39), in which species associations
and biotic interactions are explicitly considered40.
The increasing availability of spatially explicit open-access

databases on species distribution and community composition
(e.g., GBIF, sPlotOpen) with appropriate georeferencing41–43—
coupled with technical and methodological advances for data
querying, cleaning, and analysis—opened up new opportunities
for global species distribution modelling44–46. Furthermore, large-
scale environmental layers describing bioclimatic and edaphic
conditions have been effectively used as proxies of ecological and
climatic drivers of species distributions47. These global gridded
data, under a structured framework, have been used to system-
atically select proper environmental variables from a large suite of
spatio-environmental variables48. Nonetheless, the actual knowl-
edge on species distributions over wide geographical regions is
still far from being complete49–54, and suffers from pervasive
geographical biases55–64.

Projecting species distributions for regions and time periods
other than those used during model calibration (i.e., model
extrapolation)—based on, e.g., bioclimatic variables—requires
explicit recognition of all the possible sources of spatial bias, or
the use of mechanistic models of species distribution65. In fact,
transferring model rules onto non-analogous bioclimatic condi-
tions is perilous and a very risky business66–68. In other words,
extending such projections to new regions involves some sort of
extrapolation risk, simply because the recorded occurrences used
for model calibration are incomplete or spatially biased, thus
increasing spatial uncertainty69–71. For instance, methods would
be needed to minimize the effects of spatial autocorrelation
among records within the geographical space72–75, although in
some cases spatial autocorrelation could have minimal effects in
peculiar regions, such as in topographically rugged land-
scapes76,77. More generally, starting from spatially biased in-situ
samples (or predictors), undesired model outcomes can be
expected78.
This paper aims at addressing the spatial component of data-

driven biases in species distribution modelling, and at proposing
potential solutions to explicitly test and account for it. Our major
goal is not to propose existing or new methods to remove spatial
bias from the modelling procedure, which would be impossible
without a proper knowledge of all the processes generating it, but
rather to propose alternatives to explore and handle it. In
particular, we describe three main strategies that may provide a
fair account of spatial bias, namely: (i) how to represent spatial
bias; (ii) how to build null models based on virtual species for
testing biogeographical and species distribution hypotheses; and
(iii) how to make use of spatial bias—in particular related to
sampling effort—as a leverage instead of a hindrance in species
distribution modelling. In each one of these sections we outline
what would be good practices to account for spatial bias in
species distribution modelling.

VISUALIZING SPATIAL BIAS IN THE DISTRIBUTION OF SPECIES
AND THEIR DIVERSITY
Recently, the massive increase in the availability of biodiversity
data43, coupled with enhanced computing power and modelling
techniques, has fostered a new wave of large-scale analyses of
biodiversity patterns45,79,80. Nonetheless, data quality plays a
crucial role in this process54,81. In fact, biodiversity knowledge is
often skewed toward specific taxonomic groups82, wealthy
regions of colonial history64, English-speaking research83,84, and/
or environmental domains14,82,85,86, which are the major issues
among the so-called seven shortfalls of biodiversity data59.
The undersampling of some geographical areas—named the

‘Wallacean shortfall’ by Lomolino49 (see also ref. 87)—was recently
recognized as one of the main factors preventing an exhaustive
large-scale understanding of biodiversity patterns54,88. Even when
biodiversity data are available for a well-studied taxonomic group,
these might suffer from a number of bias sources, just to cite a
few33,75,89–91: lack of standardized sampling design, inconsistent
spatial scales, inadequate environmental coverage of the surveys,
and observer’s/recorder’s bias (e.g., proximity to roads). Indeed,
the large variety of standardized and unstandardized sampling
schemes used to survey the distribution of different biological
groups often adds up as an additional source of heterogeneity in
the data, which may increase the spatial bias and thus affect the
complex exercise of modelling species distributions. Likewise, site
accessibility and proximity to roads, also have strong effects on
data quality, biodiversity inventories being more intensive in
locations closer to research centres, infrastructure, highways or
places allowing easier access92–96. Moreover, the striking geo-
graphic bias in the accessibility to resources and in scientific data
processing among different regions across the globe can only
increase gaps in the data. Altogether, bias in data quality
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represents a key issue in current macroecological and biogeo-
graphical research97, and hinders realizing the full potential of
using large-scale databases in biodiversity modelling (ref. 59,96,98,99,
see Fig. 1). Examples exist where smooth geographical biases could
be controlled during modelling procedures, in case some in-situ
data have still been sampled even in remote areas100, but spatial
lack of information and stronger bias is generally expected to
severely hinder final results101.
Spatial bias has been shown to increase uncertainty in the

data91, and has strong effects on the outcomes of the whole
modelling process78,102,103. For example, species-people correla-
tions, in which more populated regions show higher biodiversity
simply because they are more thoroughly surveyed, are now well
known104. Ensuring an adequate sampling design is of utmost
importance to avoid the generation of truncated species response
curves31,105. For instance, datasets biased towards widespread
environmental conditions across the study area106–108 hampered
the characterization of species responses to the effects of land
transformation or the rarest climate conditions in highly dynamic
landscapes such as the Brazilian Atlantic Forest109. Moreover, the
autecology of species and related eco-geographic characteristics
such as species traits110, range size111 and species niche breadths
(i.e., generalist vs specialist112), among other factors, can
ultimately influence the performance of species-related models35.
Recent methodological advances have been proposed to limit

spatial bias in data distribution. These can apply either when
sampling new species data, or by resampling available data inside
a strongly biased dataset30,43,113, and restricting analyses to the
geographical regions holding enough data coverage114. For
instance, Hattab et al.115 developed a scheme that, by ensuring
a systematic sampling of field observations within the environ-
mental conditions available across the study area, can aid in
limiting potential shortcomings when modelling species distribu-
tion while being not in equilibrium with the contemporary
environment (e.g., the case of a recent introduction of an invasive
alien species). Likewise, Lembrechts et al.116 developed a new
framework to design standardized microclimate networks able to
capture the largest variation in microclimate at regional or
national extents117,118.

To appropriately map large-scale patterns of species distribu-
tions, the spatial structure of sampling bias must be first
understood63. For instance, direct gradient analysis119 might be
used to relate the sampling effort of a focal species distribution
with the assumed continuous variation of spatial predictors120. In
some cases, spatial bias can be attenuated by (i) reducing the
clustering of presences within the geographical space108 using
approaches such as spatial data thinning121 or background
thickening34, or (ii) tuning the model before predicting species
distributions122. For instance, even in the case of data which are
geographically biased, regularization of the models can lead to
high quality outputs. As an example, when clumping depends on
sampling bias, using spatial or environmental filtering123 or
rarefaction methods before running SDMs may amend the final
output124. Concerning spatial data thinning33, it might decrease
the probability of retaining species with unique environmental
conditions. However, in case of a gradual species response to
environmental gradients, there is a high model sensitivity to an
inappropriate use of data thinning in the environmental space,
based on e.g., thresholding methods125. From this point of view, a
blind data thinning without testing model sensitivity is strongly
discouraged. Hence, for instance, proper model averaging might
reduce prediction errors126. Besides, the combination of predic-
tions derived from different algorithms has generated much
attention under the ensemble models umbrella127, although in
some cases ensemble models might not outperform well-tuned
individual models based on machine learning algorithms such as
Random Forests or Boosted Regression Trees128.
Another important effect of sampling bias is that it creates

information gaps129,130. This could be solved with recourse to
citizen science, although it is well known that such information is
even more biased (i) spatially, e.g., with a higher amount of data
near roads, cities, research centres, in peculiar ecosystems or
regions and, more globally, in the northern hemisphere, but also
(ii) taxonomically, toward certain charismatic groups, e.g.,
vertebrates in terrestrial ecosystems94,96,131. In order to solve
sampling completeness issues, new tools are now available based
on diversity estimates and further fine-tuning of datasets, before
they are used for further analysis. As an example, Lobo et al.132

Fig. 1 Plant species occurrences over the globe available in GBIF (https://www.gbif.org, latest access: December 2021). The cartogram or
density-equalizing map as proposed by Dorling200 and Gastner and Newman201) shows a bias on species occurrences towards continents with
higher sampling effort. To generate the cartogram, a geographical grid of 10 degrees was superimposed on the dataset and the grid cells
were further distorted according to the amount of plant species occurrences.

D. Rocchini et al.

3

npj Biodiversity (2023)    10 

https://www.gbif.org


propose a tool to estimate the degree of completeness in
biodiversity surveys in each territorial unit, when the number of
records (including repeated species) is available, as a surrogate of
sampling effort. After having estimated the relationship between
the number of records and cumulative species richness, Lobo
et al.132 suggest that the slope of the species accumulation curves
and completeness percentages can be used to distinguish and
map the level of survey per territorial unit. A similar approach has
been proposed by Mokany et al.133 based on alpha- and beta-
diversity models to measure data completeness. When the
number of records is not available for each territorial unit, another
approach consists in dividing the study area into regions with
known differences in the levels of survey effort. Models can then
be computed on these different regions, to check if the observed
relationships are consistent among them104, obviously provided
that all the considered regions span the entire species niche to
avoid niche truncation105,134.
Finally, it is also of primary importance to reveal the uncertainty

in distributional data underlying SDMs, which can be achieved by
maps of ignorance accounting for different sources of errors, such
as data quality, time elapsed among the field observations,
inventory completeness and the eco-geographic distance
between species presences and absences (including true absences
or pseudo-absences)53,75,101,135,136. More recently, Konig et al.137

suggested a framework to increase the integration of biodiversity
data across domains and resolutions (e.g., from point occurrences
to entire floras) for scalable and integrative biodiversity research,
especially when the quality of primary data can be integrated with
expert knowledge138.

USING VIRTUAL SPECIES TO HIGHLIGHT POTENTIAL SPATIAL
BIASES OF SDMS
In most cases, there is no complete information about the ‘reality’
of the focal species distribution besides the data collected in-
situ101. This is partly because the completeness of the data
extracted from surveys (recorded in-situ) is difficult to measure139.
For instance, occurrence data from natural history collections,

such as museum or herbaria collections, tend to be very
incomplete with a relatively high amount of false absences—i.e.,
species occurrences missed by the observer in the field in case of
a rare or difficult to identify species (see ref. 140 on detection bias).
Such incompleteness affects our ability of detecting the real
spatial coverage of the samples and records available for
modelling141. These limitations, in turn, can seriously flaw final
results of species distribution models, by distorting the relation-
ship between species occurrences and the underlying environ-
mental patterns56,142. Yet, quantifying sources of error is essential
for proper descriptive or mechanistic modelling of species
distributions143.
Making use of simulated or in-silico datasets—the so-called

‘virtual ecologist’ approach143—allows to generate distribution
data with known ecological characteristics76, considering that
virtual species are better at rejecting candidate models than they
are at supporting them143–147. The use of virtual species is
burgeoning in ecology to build toolkits implementing in-silico
analytical experiments simulating natural processes, thanks to the
complete control on the configurations of factors constraining the
distributions of species19. Moreover, virtual species allow creating
simulated data for benchmarking models of different complexity.
This is true passing from traditional SDMs projecting simple
distributions, to those including population dynamics (the so-
called hybrid models148, see also ref. 149 on population dynamics
and regulation), up to hierarchical Bayesian process-based
dynamic range models150, considering that model complexity
can impact the projection of species distributions151.
Making use of virtual species data allows (i) controlling for

random variation in species distributions as well as (ii) simulating

patterns of distribution based on known relationships with, for
instance, climatic variables (i.e., by species response curves). Due
to the artificial nature of such data, the expected underlying
processes shaping species distribution patterns can be adjusted
or, at least, balanced to account for random or systematic noise152.
The use of such spatially explicit simulated data helps reaching a
better conceptualization and implementation of modelling
techniques, leading to the creation of a dominant paradigm for
robust generalization and further recommendations for conserva-
tion planning. This is difficult with empirical studies, mainly due to
confounding effects of interactions among different data types,
environmental variables, and methodologies to assess model
accuracy145,153. Further, models simulating virtual scenarios based
on different ecological processes can be used to assess the
sensitivity of different SDM algorithms to the effects of historical
processes on species distributions154.
From this point of view, open-source spatial algorithms have been

developed and are freely downloadable (e.g., refs. 152,155,156). We also
provide an example in R in Figs. 2 and 3, with the complete code in
Appendix 1 or in the following GitHub repository: https://github.com/
ducciorocchini/Virtual_species_SDM/(see also ref. 20 for a similar
example). The concept of virtual species is not the only example of
virtual individuals/surfaces, since it has been widely used in
disciplines other than ecology—e.g., in geology, virtual globes have
been used for geophysical modelling157.
Passing from species to assemblages, virtual communities can

be simulated (Figs. 2 and 3) to understand what should be an
effective sampling effort to predict the distribution of species
assemblage, for instance when stacking separate species distribu-
tion models146. This is generally done by simulating virtual species
in a community given a certain virtual species richness, and then
manipulating this artificial set by changing different sampling
parameters such as sample size, sampling strategy or different
species distribution modelling algorithms such as Generalized
Linear Models, Generalized Additive Models, MaxEnt, Boosted
Regression Trees or Random Forests146. This approach is
particularly useful, since it allows to better understand species
co-existence, which is a long-lasting theme158 and (still) an open
question159,160 in ecology. Furthermore, simulations of different
sampling design strategies by virtual communities represent a
solid basis for developing experimental designs, which guarantee
a high reproducibility and avoid low statistical power due to e.g.,
small sample size152.
Operationally speaking, hitherto there is no consensus about

the best methods for generating virtual species distributions.
Various examples exist based on: (i) model-based simulations; (ii)
model fitting to in-situ data; or (iii) predefined theoretical response
(see ref. 76). In some cases, it is possible to combine several virtual
species to compose a community146. Starting from a set of
environmental combinations, e.g., using a Principal Components
Analysis (PCA) to reduce the number of dimensions of the
environmental space, the overlap among niches of different
virtual species can be set and controlled to look at potential
complements with a focal species of interest161. This procedure
allows understanding patterns at the community level and
balancing potential spatial sampling bias related to rare species.
A complete review on the backbone of the virtual species
approach is provided by Miller144 and Meynard et al.147. An
experimental approach to data science requires that simulations
are a key elements of experimental tests162–164. In this paper, we
provided an operational way of generating virtual species; albeit
we rely on a synthetic and simplistic community of four virtual
species, more complex communities composed by thousands of
virtual species can be created165–168. Further, there is already a
broad spectrum of methods for implementing virtual species147.
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SAMPLING EFFORT BIAS AS A COVARIATE IN SDMS
Uneven sampling effort is a crucial source of spatial bias. For
instance, many areas over the planet are oversampled due to their
higher accessibility and closeness to research institutes and
universities. On the other hand, most remote areas are under-
sampled, mainly due to inaccessibility and/or inhospitality to
humans92,169. The effect of this spatial non-stationarity (see
refs. 170–172) is a spatial bias in the perceived species distribution
and diversity patterns over the planet173–175, and therefore a
limited coverage of niche-based responses to the environment for
many species56. If undersampled areas are included in the
modelled region, such spatial bias can lead to zero inflation—
related to true or false absences in the data—which is problematic
to handle176. Flexible methods are therefore required to face data
with proportions of zeros larger than those expected from pure
count Poisson data177. This said, zero inflation is not necessarily
due to a bias in the species data, but it is often simply an inherent
property of ecological systems, where a large number of species
are infrequent or rare. Individuals belonging to rare and/or elusive
species might be missed, also depending on the strategy of the
sampling design adopted. In other words, species distribution
models are expected to show a diverse sensitivity to sampling
effort, depending on the taxonomic group whose distribution
they attempt to forecast178.
Unbiased estimates of species distributions are strictly related to

the assumption of a random distribution of sampling effort over
the area under study. This is also true considering that, when
using SDMs to make inference, any model is wrong in its intrinsic
definition176, but some are less wrong than others and can still
provide useful outputs. Sampling effort is also inherently related
to scale: species occurrence and community diversity are generally

scale dependent. Various approaches have been used to
investigate the scale-dependency of ecological variables, from
nested sampling179 to distance-based sampling176. However,
these do not guarantee that sampling effort is explicitly measured
and/or controlled for. This is particularly true when considering
the covariance of different variables180—in our case, as an
example, of different species. Using mixed-effects or hierarchical
models in SDMs, e.g. grounded in the spatial Mixed-effects Models
(spaMM) framework181,182, should help solving such bias by
accounting for pseudo-replication issues.
Obviously, additional causes of uncertainty might increase the

spatial bias of species distribution models. For instance, taxonomic
misidentification and phenological mismatches of species can
lead to highly unreliable models if the biological subject of
analysis and the sampling period are not adequately defined183,
e.g., by sampling a site at the wrong time period or by using an
outdated taxonomy184. Yet, while these and other sources of
uncertainty have non-negligible effects on SDMs accuracy, their
impact is normally smaller compared to that of sampling effort185,
as it may mainly affect the interpretation of the resulting
models183.
Accounting for uncertainty in SDMs may increase their reliability

and predictive power186. Based on the above, making use of
sampling effort estimates as covariates directly into SDMs can
certainly increase their accuracy174,187–189. These estimates of
sampling effort can be based on (i) the accessibility of the
surveyed areas; (ii) time spent on single plots; (iii) multiple visiting
periods to catch the right phenological period; (iv) the number of
records (including repeated species) per territorial unit; or (v) the
number of occurrences within the same taxonomic group, e.g. the
genus or family that the focal species belongs to. Such estimates

Fig. 2 The procedure used to generate virtual species and colorist-based community distribution. First of all, the climatic variables are
selected (a) and the species response functions of each environmental variable are set (b). The environmental suitability of the virtual species
distribution is generated in conformity with the response functions (c). Then, a logistic conversion transforms it into presences and absences
(d) and presence and absence points are sampled according to the sample prevalence value (e). Furthermore, a collinearity test is performed
and the correlated variables are removed (f). Once the statistical model has been calibrated, the climatic variables for the prediction are
selected (g) and—among them—those which are correlated are deleted (h). Eventually, multiple virtual species distributions are combined
together in colorist R package to map community distribution (i). Results are shown in Fig. 3. The complete code to generate virtual
species and final maps is available in both Appendix 1 and at the following GitHub repository link: https://github.com/ducciorocchini/
Virtual_species_SDM/.
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of sampling effort can then be included as covariates in the
analysis190–192. Similarly, estimates of completeness (e.g., ref. 132)
or multivariate estimates of data-driven uncertainty, such as the
previously cited maps of ignorance approach75,101, can be used as
ancillary predictors in SDMs, or as spatially-explicit error terms in
regression-based modelling techniques186.
Starting from the intuitive assumption that a higher sampling

effort could be related to intrinsically higher prevalence of species’
occurrence data inside a region, Bayesian inference can integrate
this information in the modelling of species distributions to guide
model predictions. However, Bayesian methods are, in general,
computationally intensive, which makes them sometimes unfea-
sible for many species over large areas. Alternatively, one can
generate very simple covariates to capture the effect of sampling
effort in traditional SDMs. For instance, Wasof et al.193 fitted SDMs
for vascular plant species that included several covariates: a region
effect (Alps vs. Fennoscandia) to test potential differences in
distribution patterns between the two investigated regions and a
covariate reflecting sampling effort based on the total number of

presence/absence records available per sampled grid cell (1 km2)
to account for the spatially imbalanced data within each of the
two investigated regions. Furthermore, Rocchini et al.175 included
sampling effort as a hyper-prior in a multilevel model structure, by
considering different degrees of association between sampling
effort at large spatial extents to predict the probability of species
presence (Abies alba over Europe) in smaller nested areas.
Sampling effort was estimated as the number of revisiting dates
and used for further modelling in three main manners: no effect,
mild effect and strong effect. The model with the strongest
importance assigned to sampling effort significantly corrected
final results for sampling effort bias (Fig. 4). This indicates that
sampling effort might be used to supplement the often
incomplete information provided by species presence at fine
spatial scales. This modelling approach could also be extended
considering similar species characterized by opposite degrees of
sampling effort in an area (or even the overall species sampling
effort; see ref. 194). Data on sampling effort for a well surveyed and
widespread species could also be considered to correct model

Fig. 3 Virtual species can be built to form a virtual community. Starting from colours of single virtual species distributions and relying on
the colorist package, it is possible to spatially merge colours and their overlaps in a final gamut which account for single species colour
intensity.
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outputs for a similar, but less sampled, species belonging to, e.g.,
the same genus102.

CONCLUSION
In this short essay, we have addressed a range of methods to
quantify and account for spatial bias when mapping species
distribution and diversity (see also ref. 195). Based on this general
overview of the issues related to spatial bias in modelling species
distribution, we basically propose (i) to integrate several methods
to set the best tuning and achieve optimal model complexity
when modelling distributions of species and their relative
diversity196,197 as well as (ii) to find the most effective visualization
techniques to explore model behaviour198.
If left unchecked, spatial bias could impair species distribu-

tion models/outputs, thereby resulting in pervasive biases
along SDMs of different species, as spatially-structured sam-
pling biases are often shared by all species pertaining to the
same group. Implementing robust methods to map species
distributions and spatial bias is crucial for natural resource
management. In particular, two critical points must be faced
explicitly: (i) integrating prior knowledge for improving the
prediction of species distributions over wide geographical
areas, and (ii) quantifying and visualizing the uncertainty
associated with species distribution predictions over large
geographical scales. Improved knowledge in areas where the
modelled species are predicted to spread, along with illustra-
tion of uncertainty of predictions in an easily interpretable
map, can lead to more effective management strategies199.

This would allow timely actions to be initiated, both in case of
the protection of natural species and the management of
invasive species.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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