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Predicting state level suicide fatalities in the united states with
realtime data and machine learning
Devashru Patel1, Steven A. Sumner2, Daniel Bowen2, Marissa Zwald2, Ellen Yard2, Jing Wang2, Royal Law2, Kristin Holland2,
Theresa Nguyen3, Gary Mower4, Yushiuan Chen5, Jenna Iberg Johnson6, Megan Jespersen6, Elizabeth Mytty6, Jennifer M. Lee7,
Michael Bauer7, Eric Caine8 and Munmun De Choudhury1✉

Digital trace data and machine learning techniques are increasingly being adopted to predict suicide-related outcomes at the
individual level; however, there is also considerable public health need for timely data about suicide trends at the population level.
Although significant geographic variation in suicide rates exist by state within the United States, national systems for reporting
state suicide trends typically lag by one or more years. We developed and validated a deep learning based approach to utilize real-
time, state-level online (Mental Health America web-based depression screenings; Google and YouTube Search Trends), social
media (Twitter), and health administrative data (National Syndromic Surveillance Program emergency department visits) to
estimate weekly suicide counts in four participating states. Specifically, per state, we built a long short-term memory (LSTM) neural
network model to combine signals from the real-time data sources and compared predicted values of suicide deaths from our
model to observed values in the same state. Our LSTM model produced accurate estimates of state-specific suicide rates in all four
states (percentage error in suicide rate of −2.768% for Utah, −2.823% for Louisiana, −3.449% for New York, and −5.323% for
Colorado). Furthermore, our deep learning based approach outperformed current gold-standard baseline autoregressive models
that use historical death data alone. We demonstrate an approach to incorporate signals from multiple proxy real-time data sources
that can potentially provide more timely estimates of suicide trends at the state level. Timely suicide data at the state level has the
potential to improve suicide prevention planning and response tailored to the needs of specific geographic communities.
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INTRODUCTION
In the United States (U.S.), there are more than 47,000 suicides
annually and suicide rates have increased significantly over the
past 20 years1. While there are many factors that influence
epidemiologic trends related to suicide2,3, clear differences exist
by geography4–6. For example, suicide rates tend to be highest in
Western states7,8 as well as rural and medium/small metropolitan
counties9. Changes in suicide rates over time also differ by
location10.
Robust suicide prevention efforts that are appropriately tailored

to specific community needs depend on access to timely
information about local epidemiologic trends related to suicide6.
However, current suicide surveillance approaches are often
hampered by a significant lag in reporting suicide deaths.
Nationally, lags in the availability of official suicide data reported
by the Centers for Disease Control and Prevention (CDC) have
historically been several months or more. Although some states
possess more timely approaches for reviewing local suicide data,
the significant amount of time required to investigate, certify, and
report deaths from suicide present a major challenge to public
health efforts11,12. Importantly, differences in the timeliness of
data exist across geography because of differential procedures,
technology, or infrastructure available to local county or state
medical examiners or coroners13–15.
Experts have emphasized the need for using complementary

sources of near real-time data to better understand suicide
trends16. Such data have included large scale online data such as

social media, markers of environmental or social risk factors such
as economic data, or administrative clinical data17, although the
study of novel data sources for understanding epidemiologic
trends is less developed than the exploration of novel data
sources for individual-level or clinical research. For example,
Jashinsky et al.18 demonstrated that Twitter conversations can be
indicative of geography-specific suicide rates; however, the vast
majority of the existing research using social media has focused
on demonstrating whether social media data may contain signals
potentially predictive of individual level suicide-related outcomes
(e.g., ideation)19–27, and not necessarily how such predictions may
assist or augment geographically focused suicide surveillance
efforts or conventional public health data28. Exceptions include
the work of Won et al.29, where economic and meteorological data
were coupled with social media data to make national-level
suicide prediction in South Korea. Moreover, Recently, Choi et al.30

combined disparate and real-time data sources in an ensemble
machine learning approach to estimate weekly suicide fatalities at
the national level in the U.S. with high accuracy. Still, these works
do not elucidate how to combine multiple and diverse real-time
data sources to nowcast (predicting the present) or forecast
(predicting the future) suicide fatalities at sub-national levels and
for specific geographic communities10.
Despite the near real-time nature of many data sources which

may be useful for understanding suicide-related trends, such data
sources may suffer from a variety of biases stemming from the fact
that these data sources often represent convenience samples31,32,
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the limitations of which may be amplified when used in the
context of diverse geographic regions and communities. For
instance, although people increasingly use social media and
search engines to seek and share health information33, including
that around mental health and suicide34, the amount of use and
patterns of use are different across geographic regions35,36.
Studies have also identified shifting socio-demographic represen-
tativeness with other forms of online data, such as that provided
by Google trends37. Even with health services data drawn from
official clinical records, varying access to and utilization of
psychiatric services can influence trends across geographic
regions38. Hence, intelligently and systematically harnessing
multiple types of real-time data sources is needed and may
provide a more comprehensive estimate of suicide fatalities that
spans varied geography, while ameliorating some of the biases
and idiosyncrasies of individual data sources.
Consequently, given geographic disparities in suicide rates

among U.S. states and the need for more timely suicide data
across all states39, this study aims to examine whether diverse
sources of near real-time information may be leveraged in a
machine learning framework to obtain state-specific weekly
estimates of suicide fatalities.

METHODS
Data collection
We used six data sources drawn from both clinical and online
sources. These data sources were identified based on prior-
literature and theory33,40–42, drawing largely on recent research by
Choi et al.30 that harnessed real-time ensemble data for estimating
U.S. national suicide deaths. Because the aim of this prior work
was to estimate state-level suicide rates, we considered only data
sources available at the state-level. Furthermore, based on data
availability, we focused our analysis on four states: Colorado (CO),
Louisiana (LA), New York (NY), and Utah (UT). These states provide
diverse geographic representativeness to our evaluation and
encompass both small, medium, and large population states.

Inclusion and ethics statement. Since we utilized secondary
administrative data that was either public and/or de-identified,
the study did not constitute human subjects research per the
ethical review board of the primary and supervisory author’s
institution: Georgia Institute of Technology.

Online data. We utilized three real-time data sources ascertained
from online sources. The three channels were (1) Google search
trends (weekly normalized term popularity for 42 suicide- related
terms on the Google search engine; 2015–2018); (2) public Twitter
data (weekly count of Twitter posts containing 38 suicide-related
keywords, phrases, and hashtags; 2015–2018), and (3) YouTube
search trends (weekly normalized term popularity for 42 suicide-
related terms on YouTube; 2015–2018). Keywords utilized are
available in previously published appendices by the authors30. The
data from the Google and YouTube sources was constrained to
the states where the query was made and is made publicly
available from the platform as a score from 0 to 100 which
represents the normalized popularity of the term over the time
period studied. For the Twitter data, we appropriated and
expanded a large dataset of public Twitter posts between 2015
and 2018 initially created by Choi et al.30, which contained one or
more of a set of 38 suicide terms (keywords, phrases, hashtags)
identified by a panel of public health experts. Our goal was to
assign a geo-location to as many of these postings as possible,
based on the location of the author of those same postings—a
technique well-established in the social computing literature43,44.
This was achieved by first utilizing the publicly available self-
reported location field of the profile page of all unique authors of

the collected posts45. Since a user can fill in the location
information on their Twitter profile with any text, not necessarily
their location, we converted the collected unstructured texts of
the profile location fields into a latitude-longitude format by using
two popular geocoding APIs, HERE46 and OpenStreetMap47, which
allow inferring the location from a given textual string and provide
the inferred location in a standardized geocoded format.
Considering only those users whose inferred locations have US
state information from either APIs and fall within one of the four
states noted above, we labeled the locations of each user as the
extracted state information. Finally, we assigned all of the Twitter
posts a specific state (out of the four above), based on the state
information of their corresponding authors. Then, we aggregated
the number of weekly posts for each state in our entire time
period of analysis (2015–2018), and used the calculated weekly
time-series values as an input for the estimation of suicide
fatalities in the corresponding states.

Health services data. We next used two data sources which we
label as health services data. These consisted of two data sources
available in near real-time: (1) the weekly number of emergency
department (ED) visits for suicide ideation or attempt provided by
each of the four states involved in this research and participating
in CDC’s National Syndromic Surveillance Program (NSSP) (Suicide-
Related Syndrome, 2015–2018), and (2) weekly averages of self-
reported assessments on the Patient Health Questionnaire (PHQ-
9), as gathered through continuous online assessments available
to the public and administered by the patient advocacy
organization Mental Health America (MHA) (2015–2018). Hence-
forward, these data sources will be referred to as ED and MHA
data respectively, and we computed time series signals for both
based on aggregation at the state level—location of the EDs and
location of the MHA PHQ-9 survey participants as determined by
Internet Protocol (IP) address state location.

Suicide fatality data. Historical suicide fatality data, aggregated as
weekly counts at the state-level, was the primary outcome variable
we aimed to estimate. We also utilized lagged historical suicide
fatality data as a predictor variable in models. When historical
suicide data was used as a predictor variable, only lagged data
more than one-year delayed was used in keeping with real-world
constraints. Suicide deaths were identified from CDC’s National
Vital Statistics System using the International Statistical Classifica-
tion of Diseases and Related Health Problems, Tenth Revision. The
underlying cause of death codes that correspond to such fatalities
include U03, X60-X84, and Y87.0.

Machine learning models
We built and tested a deep-learning based approach to estimate
state-level suicide deaths. The choice of the specific methods was
motivated from recent advances in deep learning and artificial
neural networks in the context of digital health48. For all of the
approaches described below, aside from the historical suicide
fatalities dataset, data in the years 2016, 2017, and 2018 were used
for training, validation, and testing respectively.
The modeling approach we pursued used long short-term

memory artificial recurrent neural networks (LSTMs)49. Unlike
standard feed-forward neural networks common in the deep
learning field, LSTMs have feedback connections. Consequently,
they can not only process single data points (such as documents
or images), but also longitudinal sequences of data (such as
speech, video, or data streams with temporal relationships—the
case in this work)50,51. Thus, LSTMs are particularly well-suited to
classifying, processing and making predictions based on time
series data, since there can be lags of unknown duration between
important events in a time series. Furthermore, LSTMs were
developed to deal with the vanishing gradient problem that can
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be encountered when training traditional recurrent neural net-
works (RNNs). Relative insensitivity to gap length is an advantage
of LSTM over RNNs, hidden Markov models, and other sequence
learning methods in numerous digital health applications. This
motivated our choice of the approach in this work, given the large
diversity of near real-time time series data from various data
sources.
As the input to the LSTM, separate models were built and

evaluated using the individual data sources, as well as their
combinations; for instance we developed baseline models with
health services data as well as baseline models with online data,
for the states under consideration. For each such model, we
provided the past two weeks of data, including the current week’s
data (for all real time data sources except the historical suicide
fatalities) to estimate suicide fatalities in that same week. For
instance, to predict the weekly suicide fatalities for a particular
state in the first week of a given year, state-level data from the last
week of the previous year and the first week of the current year
would be used as an input. These sequences of time series values
were then adjusted using a sliding-window approach to obtain
predictive estimates in subsequent weeks for the
corresponding state.
Finally, to tune the optimal hyper-parameters of the LSTM

model per state, following standard machine learning procedures,
we used a limited grid search procedure of possible values for
practical considerations of compute time and resources needed.
The parameters we experimented with were (1) number of hidden
layers {1, 2}, (2) hidden dimensions {16, 32, 64}, and (3) epochs
{150, 200, 250, 300}. Using the combined data stream as the input,
each combination of hidden layers, hidden dimensions, and
epochs was tested and the performance compared. For the other
hyper-parameters, we adopted the default values as follows:
Dropout: 0.2 (dropout applied between LSTM layers); Activation
Function: Sigmoid for gating mechanisms, Tanh for activation of
memory cells; Learning Rate: 0.001; Optimization Algorithm:
Adam; Initialization Method: Xavier/Glorot initialization; and
Regularization Technique: L2 regularization with a weight decay
of 0.01. The best performing combination for any given state was
defined as the one that produced the lowest root mean squared
error (RMSE). In addition, we used Pearson correlation coefficient
to understand the alignment between actual and estimated
suicides per week and per model type, and the Mean Absolute
Difference metric to assess the extent to which the predicted
number of weekly suicide deaths diverged from the actual counts.
In order to evaluate the performance of our models in providing

weekly estimates of suicide deaths in the four states under
consideration, we additionally built a baseline model for
comparison. Motivated from Choi et al.30, this baseline model
simulates current state-of-the-art forecasting approaches based on
using historical suicide fatalities. Autoregressive approaches that
harness historical data of the same predictive variable are
common in computational social science52 and public health
research53. In order to ensure a fair comparison between the
approaches in Section 2.2.1 and the baseline model from a model
sophistication perspective, for each state, we built a separate
LSTM on the lagged historical suicide fatalities data alone. Prior
work has revealed that LSTMs typically improve over autoregres-
sive approaches like autoregressive integrated moving average
(ARIMA) in time series forecasting49.
In addition to the baseline approach, we compared our deep

learning based LSTM approach to other potential leading
ensemble modeling approaches. First, we implemented the
ensemble approach developed by Choi et al.30, which used a
two-phase pipeline—the first or intermediate phase fits optimal
machine learning models to each individual data stream, while the
second phase subsequently combines the predictions made from
each data stream via an artificial neural network into a single

estimate. We adapted this default model to the estimation task at
the state-level for each of the states.
Second, again at the state-level, we considered a single phase

estimation pipeline that harnessed all data sources at once in a
supervised learning approach and identified optimal features for
the learning task using principal component analysis (PCA)54.
Unlike the ensemble model above which determined the best
machine learning model for each data source and then combined
these outputs using a neural network, this model approached the
problem in a different manner so that the relationships between
the data sources could be harnessed. The data was first
concatenated into a single vector which included the time series
data of the entire training period for the particular state. PCA was
then applied to this concatenated vector to reduce dimensions
and identify a set of the most representative, non-redundant
features. Essentially, rather than relying on the neural network to
combine estimates from each data source together, this PCA-
based approach combined and meaningfully fused the features
across data sources before coming up with the final estimate. The
PCA-fused features were then fed into various machine learning
models: elastic net, LASSO (least absolute shrinkage and selection
operator), linear regression, random forest regression, ridge
regression, and support vector regression. The best model, per
state, was determined using RMSE.

RESULTS
State-wise comparison of performance
Table 1 presents the results of our LSTM model for each of the four
states. The selected hyper-parameters for the best models are as
follows: the number of hidden layers was 1 for all states; the
number of hidden dimensions were 32, 16, 64, 16 for UT, LA, NY,
and CO respectively; and the number of epochs were 200, 200,
250, 150 respectively for the same states, UT, LA, NY, and CO. The
main metric of interest is the estimated suicide rate per 100,000
population made by the model and the error for this estimate
when comparing to actual, observed values. Each of the four
states exhibited an error rate of approximately 5 percent or less,
for the All Sources model. Specifically, error rates were −2.768%
for Utah, −2.823% for Louisiana, −3.449% for New York, and
−5.323% for Colorado. The RMSE metric provides a measure of the
number of weekly suicide deaths that a particular model’s
estimates deviated on average from true values. RMSE ranged
from 3.765 in Utah to 7.414 in New York for the All Sources model.
In addition, Table 1 also reports the Pearson correlation
coefficients between the actual and predicted weekly suicide
deaths as well as the Mean Absolute Difference (MAD) metrics; the
latter computed as the median of the absolute difference between
the actual and predicted values for each model. Correlation was
the highest for NY (0.475) and lowest for LA (0.061) when
considering the All Sources model. For MAD, the best performance
of the All Sources model was for UT (3). These results indicate
state-wise differences in model performance, a point we discuss
later on in the paper.
To present additional information beyond Table 1, including the

performance of individual data sources alone, Fig. 1 plots the
percentage errors for each of the individual data sources and key
combinations of data sources by state. In general, errors were
negative, indicating that models typically predicted suicide counts
lower than what actually occurred in 2018. Overall, in all states the
LSTM model using all data sources outperformed a model trained
on historical suicide fatality data alone (Fig. 1).
Table 2 presents an examination of the error rate, RMSE, MAD,

and Pearson correlation for each individual data source for New
York, the state with the largest population in our sample and the
state with the most suicides. Examining results on this state, we
found that the online data sources generally had a lower error rate
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compared to the health services data sources. Furthermore, the
online data sources exhibited a higher week-to-week Pearson
correlation.

Sensitivity analysis
As a final analysis, Table 3 presents the state-wise results of
sensitivity analyses testing alternative methods for combining
signals from the data sources. Across the four states, percentage
error rates for the annual suicide rate prediction were generally
higher for the alternate models considered and more hetero-
geneous than with the LSTM based models.

DISCUSSION
There is considerable public health need for timely state-level data
on suicide trends as states can exhibit patterns which deviate from
national level trends10,41. Furthermore, local level data on suicide is
important to facilitate program and policy development specific to a
given geographic setting as well as to rapidly detect and respond to
abnormal trends, such as those driven by suicide clusters. In this work
we developed and validated a modern deep learning based model
to estimate weekly suicide fatalities at the state level using multiple
proxy real-time data sources. In general, we find good performance
with the four states considered here, exhibiting an error of <5% and

with the deep learning based LSTM ensemble models outperforming
the baseline model that used historical suicide data alone.
We found that models utilizing all data sources typically

exhibited improved predictions compared to predictions made
from online data, health services data, or historical fatality data
alone. The benefit of ensembling or combining signals from
multiple disparate data sources was demonstrated in prior
national level prediction models and appears to hold for state
level models as well30. While our models seemingly generalized
well, they may not perform well on small population states and
with small counts of suicide. Indeed, when examining suicides at
the weekly level, it is possible to encounter weeks with zero
suicides for states. The presence of low count observations in our
time series and general sparsity in suicide deaths at smaller
geographic and temporal granularity may have led our models to
generally underestimate suicide deaths.
Our findings pave the way for future investigations to examine

factors that explain the variability we observed in the ability of
different types of real-time data in predicting suicide rates in
different states. Regarding the self-reported PHQ-9 data, prior
research has observed that depression remains underestimated in
the population and this may affect models utilizing data derived
from patient screening38. Moreover, other scholars have observed
that the availability of psychiatric services and allocation of public
health funding vary geographically and may be relevant in
explaining variations in suicide incidence55. Certain types of data,

Table 1. Performance of long short-term memory models for various possible combinations of data sources, by state during the test year 2018.

ASR per 100,000 Source ESR per 100,000 (Annual Error Rate, %) RMSE MAD Pearson corr.

Colorado (22.51) Online Data, Combined 20.765 (−7.751%) 5.782 8 0.379

Health Services, Combined 19.931 (−11.458%) 6.675 13 −0.174

Baseline with Health Services 19.924 (−11.488%) 6.745 13 −0.152

Baseline with Online Data 20.572 (−8.608%) 5.934 12 0.310

Health Services with Online Data 21.234 (−5.669%) 5.711 8 0.338

All Sources, Combined 21.312 (−5.323%) 5.889 11 0.223

Louisiana (15.45) Online Data, Combined 15.188 (−1.695%) 4.064 6 0.196

Health Services, Combined 14.951 (−3.227%) 4.113 7 0.065

Baseline with Health Services 14.851 (−3.877%) 4.147 7 −0.022

Baseline with Online Data 15.157 (−1.897%) 4.130 7 0.043

Health Services with Online Data 15.344 (−0.687%) 4.039 6 0.259

All Sources, Combined 15.014 (−2.823%) 4.156 7 0.061

New York (8.82) Online Data, Combined 8.852 (0.363%) 7.370 12 0.523

Health Services, Combined 8.206 (−6.958%) 8.818 15 0.032

Baseline with Health Services 8.437 (−4.345%) 8.180 14 0.041

Baseline with Online Data 8.617 (−2.305%) 7.319 9 0.525

Health Services with Online Data 8.523 (−3.368%) 7.148 8 0.556

All Sources, Combined 8.516 (−3.449%) 7.414 11 0.475

Utah (21.04) Online Data, Combined 20.476 (−2.68%) 3.775 4 −0.030

Health Services, Combined 20.152 (−4.219%) 3.797 4 −0.024

Baseline with Health Services 19.515 (−7.249%) 3.907 5 −0.053

Baseline with Online Data 21.113 (0.345%) 3.777 4 0.000

Health Services with Online Data 20.902 (−0.654%) 3.689 3 0.312

All Sources, Combined 20.458 (−2.768%) 3.765 3 0.065

Online data sources included Google Trends, YouTube Trends, and Twitter. Health services data included emergency department visits from the National
Syndromic Surveillance Program and Patient Health Questionnaire (PHQ-9) assessment scores from Mental Health America. Baseline refers to inclusion of
historical suicide fatality data in models. ASR actual suicide rate, gathered from CDC WONDER’s officially reported crude suicide rate for the year 2018; ESR
estimated suicide rate, RMSE root mean squared error, MAD mean absolute difference. MAD gives the median of the absolute difference between actual and
estimated suicide deaths per week. Pearson correlation indicates the correlation between weekly estimates from the LSTM model and actual number of deaths
during the same week.
Rows in bold indicate the models using a combination of all of the data sources for each state.
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such as ED visit data, might in turn be affected by the availability
and extent of access to health services56. Future research can test
these conjectures with deeper engagement with local data
collection efforts.
Finally, Pew Internet Research surveys have persistently

revealed systematic socio-demographic (and by corollary, geo-
graphic) differences in Internet penetration as well as social media
use57,58—behaviors that have been found to be highly correlated
with both population density and urbanization. Despite being a
small selection of U.S. states, our list did include high population
density and urban states like NY as well as relatively more sparsely
populated/smaller states like UT, or states where the majority of
counties are rural, such as LA. The differing performance of our
models across states might be explained by these underlying
factors. Future research can expand our observations to establish
empirical correlates of predictive performance, in relation to
metrics like population density and urbanization.

Our study does include some limitations. We note that our
approach focused on a limited number of states, limiting the
generalizability of both the model as well as the findings. That
said, given the diversity of the states in terms of population and
socio-demographics, as discussed above, our models still show-
case some robustness when applied across differing geographical
regions and contexts. We also note that additional data sources
(both online and health services) could have been harnessed that
might have improved predictive ability of the models – an aspect
that is very pertinent to real-world and persistent use of the
models for public health efforts, and could be explored in future
research. Relatedly, there is some existing research noting the role
of environmental factors accounting for regional variations in
suicide rates within the same country59,60; thus future work could
additionally complement the models with such data, although
these are not necessarily real-time varying data. Some of the data
sources we utilized, such as Twitter data, contained inherent
limitations in that information was derived only from public
accounts and required geolocation, which introduces some
degree of unmeasurable bias. It is interesting to note that our
modeling approach, which generally had excellent performance
with an approximate error of 5% or less, did consistently
underestimate suicide rates. This trend was evident even when
utilizing a variety of input data sources and therefore suggests
that further improvements to the LSTM model can be made.
Furthemore, we speculate that this may have occurred given that
suicide deaths nationally had been experiencing a large annual
increase over a multiyear period and models may have had
difficulty fully capturing the rising rates of suicide in the US. It is
also interesting to note, as seen in Fig. 1, that models
incorporating all health services and online data sources but
excluding historical suicide fatalities generally performed well,
sometimes better than models utilizing all data sources including
historical suicides. Thus, including historical suicide data itself as a
predictor may overindex prediction results to past trends and it
should be explored in future research whether utilizing real-time
proxy data sources alone yields consistently more reliable
estimates. A final limitation relates to the gold-standard for our
models – mortality figures reported by local medical examiners

Fig. 1 Error rate per data source for all states using long short-term memory models. MHA mental health America, ED emergency
department.

Table 2. Performance of Long short-term memory models using
individual data sources for the state of New York.

Category Source Estimated suicide
rate per 100,000
(annual error
rate, %)

RMSE MAD Pearson
corr.

Online
Data

Google 8.422 (−4.511%) 7.849 12 0.382

YouTube 8.455 (−4.137%) 7.929 13 0.244

Twitter 8.644 (−1.99%) 7.916 13 0.286

Health
Services

MHA 8.348 (−5.352%) 8.730 20 0.037

ED Visits 8.243 (−6.54%) 8.288 16 −0.240

Baseline Historical
Suicide
Fatalities

8.512 (−3.495%) 8.092 14 0.016

MHA mental health America, ED emergency department, RMSE root mean
squared error.
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and coroners to their state authorities. Rapidly rising rates of
opioid-related fatalities during recent years likely has challenged
postmortem reviews and suicides may be misclassified as
unintentional deaths. How these challenges will influence the
future performance of models will require further investigation.
To conclude, the strong performance of our predictive models

in estimating state-level weekly suicide fatalities bears significant
public health implications. Our models may be particularly useful
in times of societal crises, such as the COVID-19 pandemic, to
assess differential impacts on suicide in different geographic
communities, and thereafter preparing the most suitable
response61. In general, implementation of programs and policies
to prevent suicide62 benefits from timely and local data on suicide
trends. This work establishes a leading modeling framework for
estimating such information to guide suicide prevention efforts.

CDC DISCLAIMER
The findings and conclusions in this report are those of the
authors and do not necessarily represent the official position of
the Centers for Disease Control and Prevention.
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