
REVIEW ARTICLE OPEN

Technical and clinical considerations for
electroencephalography-based biomarkers for major
depressive disorder
Leif Simmatis1,2, Emma E. Russo1,2, Joseph Geraci2,3, Irene E. Harmsen1,2 and Nardin Samuel 1,2✉

Major depressive disorder (MDD) is a prevalent and debilitating psychiatric disease that leads to substantial loss of quality of life.
There has been little progress in developing new MDD therapeutics due to a poor understanding of disease heterogeneity and
individuals’ responses to treatments. Electroencephalography (EEG) is poised to improve this, owing to the ease of large-scale data
collection and the advancement of computational methods to address artifacts. This review summarizes the viability of EEG for
developing brain-based biomarkers in MDD. We examine the properties of well-established EEG preprocessing pipelines and
consider factors leading to the discovery of sensitive and reliable biomarkers.
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INTRODUCTION
The lifetime incidence of Major Depressive Disorder (MDD) is
estimated to be 12% in men and up to 20% in women1. In
addition to the immense personal and social impact of this
disease, untreated or refractory MDD represents a major societal
challenge. In 2018, the economic burden of adults with MDD was
$326.2 billion USD2. The standard treatments for depression
include combinations of psychotherapy and pharmacotherapy.
Newer therapies, including psilocybin and ketamine or intranasal
esketamine, are among several compounds being evaluated for
their ability to treat MDD, particularly in treatment-resistant
depression3–5. While novel treatment strategies are emerging for
MDD, objective biomarkers of disease progression and treatment
response are lacking. Inadequate biomarkers are in part due to
MDD diagnostic criteria, which are primarily behavioral and based
on patient-reported symptomatology (DSM6, or Beck et al., 19967).
To develop novel therapies and optimize current treatments,
neurophysiologic biomarkers for MDD are urgently needed.
Various approaches exist to measure local and global neuro-

physiologic changes in neurologic or psychiatric diseases. These
include positron emission tomography (PET), functional magnetic
resonance imaging (fMRI), functional near-infrared spectroscopy
(fNIRS), magnetoencephalography (MEG), and electroencephalo-
graphy (EEG). These modalities all markedly differ with regard to
the temporal and spatial resolution of the derived signals (see
Fig. 1). Among these approaches, EEG may be the most promising
tool for biomarker development owing to its accessibility and
temporal signal resolution, permitting analyses of neuronal
oscillations on the order of milliseconds. Other advantages of
EEG include its noninvasive administration, such that patients are
not exposed to radiation, high magnetic fields, or noise.
Furthermore, EEG devices are portable, which allows for easy
setup. Compared to most other imaging or electrophysiological
modalities, EEG devices are relatively affordable, and commercial
EEG apparatuses are now widely available (Emotiv, San Francisco,
USA). Low-cost data collection using EEG is ideal for studies
requiring many participants8. EEG is ideal for measuring clinically

relevant changes in brain activity in neurologic and psychiatric
diseases, particularly MDD, in which diagnosis and treatment
response are determined clinically.
EEG studies can involve event-related (i.e., task-based) and

resting-state recordings. Event-related potentials (ERP) are well-
established markers of brain responses to external stimuli such as
sensory, cognitive, or motor events9. ERPs reflect the cumulative
activity of postsynaptic potentials produced by the synchronous
firing of cortical pyramidal neurons10. P300 is the most widely
studied ERP, referring to increased activity about 300 milliseconds
after a stimulus, and reflects attention and working memory
processes. Another EEG-based ERP includes the loudness depen-
dence of auditory evoked potentials (LDAEP), which measures
amplitude changes of auditory evoked potentials in the primary
auditory cortex11. It is a surrogate of serotonergic activity (e.g.,
mood, appetite, sleep). Additionally, mismatch negativity (MMN) is
an ERP component generated when a sequence of uniform stimuli
is interrupted by the infrequent presentation of deviant stimuli.
MMN is an important marker in sensory memory and attention12.
In contrast, resting-state EEG data is collected from patients not
engaged in a task and is thought to reflect inherent spontaneous
neural activity13. Resting-state EEG is used to examine functional
connectivity networks, which provide an index of the relationships
between brain regions. Traditionally, EEG functional connectivity is
measured using estimates of correlation or coherence between
neural signals recorded from multiple electrodes14,15. EEG alpha
asymmetry is also widely investigated and is characterized by an
asymmetrical alpha-band (8–12 Hz) in the left and right hemi-
spheres and is known to reflect cortical activity.
This review critically appraises the role of EEG in MDD. Given the

ongoing evolution in our understanding of the pathophysiology
of MDD from a purely chemical imbalance to one incorporating
multifactorial processes, including abnormal brain circuitry,
techniques that quantify brain activity become increasingly
valuable16. As such, EEG represents a promising modality for
discovering and clinically validating biomarkers for MDD.
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EEG SIGNATURES OF MDD
A diagnostic biomarker detects or confirms the presence of a
disease, identifies an individual with a disease subtype, and can be
used to evaluate pharmacological effects (FDA Biomarkers, End-
pointS, and other Tools (BEST) Resource17,). To grant clinical utility,
a biomarker must be specific (i.e., accurately detect patients who
do not have the disease) and sensitive (i.e., identify the presence
of disease in patients who do have the disease)18. Commonly used
clinical biomarkers include glomerular filtration rate (GFR) used to
detect kidney disease19, hemoglobin A1c to diagnose diabetes20,
and blood pressure to detect essential hypertension21. Establish-
ing the clinical use of a biomarker requires fulfillment of several
criteria, including the demonstration that the biomarker is
significantly different in diseased patients compared to control,
the assessment of the diagnostic properties of the biomarker, and
the comparison of the diagnostic properties of the biomarker to
existing tests18. EEG has already fulfilled the initial requirements
necessary to be regarded as a potential biomarker for MDD.
Many studies have demonstrated the utility of EEG in detecting

changes in neural activity in patients with MDD. For example,
alpha band functional connectivity in the default mode network
(DMN) can predict depression severity22 and is more prominent in
MDD patients than healthy controls. Subjects with MDD also had
higher clustering coefficients and local efficiency in both the alpha
and beta bands23. Furthermore, multi-dataset cross-validation
demonstrated that patients with MDD had decreased amplitude
envelope correlation (AEC), a measure of signal coupling
(functional connectivity), within the beta band compared to
healthy controls24. These findings support the use of resting-state
connectivity between the subgenual anterior cingulate cortex
(sgACC) and the dorsolateral prefrontal cortex (DLPFC) to measure
disease severity. In a study measuring phase lag, another
functional connectivity metric, authors observed an increase in
coupling between two regions of the DMN (right superior frontal
gyrus and right parahippocampal gyrus)25. DMN connectivity to
the central executive network (CEN) was also greater in patients
with MDD compared to healthy controls or patients in remission
of MDD. Moreover, patients with MDD had increased delta-band
phase lag at baseline compared to healthy controls, which
decreased following a musical stimulus26. Patients with MDD also
have reduced resting-state gamma current density in the anterior
cingulate cortex27 and increased resting-state complexity of

gamma signaling in the frontal and parietal cortex28. See
Table 1 for a summary of MDD-related EEG findings29–31.
Despite discovering many potential indicators of MDD, there are

some conflicting reports. For example, when analyzing the alpha
band in MDD32, demonstrated that patients with MDD have
decreased alpha power compared to healthy controls. In contrast,
it has also been shown that alpha power is increased in MDD33,34.
For more details, see Table 1.
This is by no means a comprehensive list of the literature

regarding differences in healthy individuals compared to those
with MDD in the context of EEG. For reviews dedicated solely to
discussing these differences, readers are directed to manuscripts
such as De Aguiar and Rosa, 2019,29–31. It should also be noted
that further investigation is needed, given the limitations in
validating findings across other studies. Inconsistent results arise
from differing methodologies, including the frequency range used
for alpha or gamma bands29,31,35,36, eyes open versus closed37,38,
diagnostic criteria (e.g., DSM6, or Beck Depression Inventory, Beck
et al., 19967), and remission criteria37–39.

EEG IN MDD SUBTYPING AND PREDICTION OF TREATMENT
RESPONSE
MDD is a heterogeneous disorder with multifactorial etiologies40.
In addition to the lack of objective measures of disease
progression or treatment response, there is a shortage of objective
approaches to stratify MDD. An understanding of MDD subtypes is
essential to tailor treatment approaches accordingly. Recent
studies have shown that EEG may aid in distinguishing subtypes
of MDD. Zhou et al.41, used EEG to demonstrate three subtypes of
MDD based on alpha and beta left-right asymmetry in the
prefrontal lobe, wherein main clinical symptoms differed between
groups. In another study, EEG resolved two MDD subtypes with
distinct functional connectivity patterns without clinical differ-
ences42. Of the two subtypes, one included significantly more
responders to sertraline than the other. These findings demon-
strate that objective measures of disease subtype may be used to
predict and optimize treatment response.
Although several classes of pharmacological treatments for

MDD exist, only 60–70% of patients respond adequately to two
trials of different classes of antidepressants, after which patients
are considered to have treatment-resistant depression43. Several
studies suggest that EEG can predict which patients with MDD
benefit from conventional medications. A meta-analysis by44 on
treatment response prediction using EEG reported accuracies of
85.7% for estimating response to repetitive transcranial magnetic
stimulation (rTMS) and 81.4% for estimating response to
antidepressants. Another study demonstrated a negative correla-
tion between baseline resting-state EEG connectivity of the right-
lateralized frontotemporal network and response to SSRI treat-
ment after 2 months45. Moreover, EEG may also be used to predict
placebo response. For example46, demonstrated that greater
alpha-band power envelope connectivity (PEC) within parietal,
temporal, and visual regions predicted better treatment outcomes
with placebo but not sertraline.
In addition to the general prediction of treatment response, EEG

has the potential to predict sex-specific treatment response. For
example, an association between better treatment response and
higher right frontal alpha power was observed after two months
in females with MDD but not males38. Arns et al.39, showed similar
findings, such that SSRI response and MDD remission were
associated with greater right frontal alpha in females only for both
eyes open and closed conditions. Predicting treatment responses
with EEG may allow patients and clinicians to make more
informed and personalized decisions regarding the best
treatment plan.
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Fig. 1 EEG is a noninvasive tool to study the human brain with
high temporal resolution but lower spatial resolution. EEG,
electroencephalography; ECoG, electrocorticography; LFP, local field
potential; fNIRS, functional near-infrared spectroscopy; MRS, mag-
netic resonance spectroscopy; fMRI, functional magnetic resonance
imaging; PET, positron emission tomography; SPECT, single-photon
emission computed tomography. Figure adapted with permission
from97 (Fig. 1).
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USING EEG TO DISTINGUISH MDD FROM OTHER PSYCHIATRIC
CONDITIONS
Individuals with MDD often suffer from comorbid psychiatric
disorders, including generalized anxiety disorder, substance use,
and post-traumatic stress disorder. Determining a patient’s correct
diagnosis is essential to guide clinical decision-making. In addition
to differentiating patients with and without MDD, EEG has been
used to discriminate between MDD and other psychiatric
disorders. In a study examining frontal alpha and theta activity
in response to emotional face stimuli in individuals with bipolar
disorder (BD), MDD, or healthy controls, changes in theta activity
distinguished BD from MDD47. Tas et al.48, showed that patients
with BD, compared to those with MDD, had greater discordant
activity in the right parietal cortex, greater central-temporal theta
coherence, and greater parietal-temporal alpha and theta
coherence. Compared to individuals with somatic symptom
disorder (SSD), patients with MDD had greater theta coherence
in the inferior frontal gyrus, dorsolateral prefrontal cortex, angular
gyrus, and supramarginal gyrus49. Lastly50, distinguished between
MDD patients with and without comorbidities. Individuals with
MDD and internet gaming disorder had less alpha coherence in
bilateral frontal regions than individuals with MDD alone.
Combining factors, EEG may predict treatment response to

MDD and differentiate MDD from other disorders. Examining the
response to rTMS51, compared four patient groups: MDD-
responders, BD-responders, MDD-non-responders, and BD-non-
responders. MDD-responders had greater delta and gamma
activity before and after stimulation compared to BD-
responders. In addition, alpha activity in the left frontal and right

centroparietal areas was lower in MDD-non-responders compared
to BD-non-responders.
Despite these promising results, the limitations of EEG must be

considered. EEG spatial resolution is well known to be inferior to
MRI52 due to limited spatial sampling or contamination of the
reference electrode53. The skull also distorts the underlying
electrical activity of the brain over large areas of the scalp54. This
phenomenon, known as volume conduction, leads to an electrical
field detected at multiple electrodes that may not be near the
original dipole55. Olbrich & Arns56, also describe several challenges
regarding inadequate standardization of EEG experiments, which
may hinder progress toward clinically useful and valid biomarkers
for MDD. Some examples include discrepancies in the length of
recordings and data epochs, the definition of regions of interest,
recording environment (e.g., light, noise, temperature, time of
day), and variability in preprocessing pipelines (e.g., differences in
artifact correction or removal).

TECHNICAL CONSIDERATIONS FOR EEG ANALYSIS PIPELINES
Given the strong rationale for using EEG in the clinical setting,
attention should be paid to developing and validating EEG data
processing and analysis pipelines. EEG processing pipelines are
numerous due to the substantial diversity of research objectives
and the potentially large number of processing steps (Fig. 2).
Developing EEG analysis pipelines for depression will require
careful attention to design choices to ensure that robust and
effective biomarker pipelines can be created. This section will
provide an overview of some of the most common processing

Table 1. MDD-related EEG findings in the literature.

Findings Brain regions/Networks implicated Source EEG Paradigm

Alpha band functional connectivity
increased in MDD

Default Mode Network (caudal middle frontal gyrus,
insula, parahippocampal, posterior cingulate, rostral
anterior cingulate)

22 Dataset 1: resting state for 5 min
Dataset 2: resting state for 5 min, EC
Dataset 3: resting state for 16min, EO and
fixated on a low contrast cross on a gray
background

Alpha and beta band clustering
coefficient and local efficiency

Left lingual gyrus and left precuneus 23 Resting-state for 4min, EC

Beta AEC functional connectivity
increased in MDD

sgACC and DLPFC 24 Resting-state 12-min segment, EO for
6min, and EC for 6min; only EC segments
analyzed

Phase lag increased in MDD Within the Default Mode Network (right superior frontal
gyrus and right parahippocampal gyrus); Between Default
Mode Network (left superior frontal gyrus) and Central
Executive Network (right middle temporal gyrus)

25 Resting-state, eight 1-min segments, 4
segments EO, and 4 segments EC; only EC
segments analyzed

Delta phase lag and theta phase
lag

Delta phase lag decreased in MDD in the frontal pole,
frontal lobe, and parietal lobe after musical stimulus; theta
phase lag increased in MDD in the central region after
musical stimulus

26 3 segments for a total of 6min
Part 1: resting state for 1 min
Part 2: Music audio played for 4 min
Part 3: resting state for 1 min

Resting gamma current density in
MDD

Increased in the posterior cingulate cortex (Brodmann
Areas 23 and 31) and decreased in Brodmann Area 25

27 Resting-state for eight 10-min trials, 4 EC
and 4 EO

Resting gamma complexity
increased in MDD

Frontal and parietal cortex 28

Gamma during arithmetic
counting and spatial imagination
tasks increased in MDD

Frontal, anterior frontal, and temporal areas of the cortex
symmetrically, and in the central and parietal temporal
areas of the left hemisphere

98 Resting-state and cognitive task consisting
of arithmetic counting and spatial
imagination while EC for 100 seconds

Alpha power decreased in MDD Areas corresponding to electrodes Fp1, Fp2, F3, F4, F7, F8,
C3, C4, P4, O2, T3, T4, and T6 in the international 10–20
electrodes placement system

32 Resting-state for 2min EC

Alpha power increased in MDD Frontal and parietal regions 33 Resting-state for 3min EC and 3min EO

Alpha power increased in MDD Frontal and parietotemporal regions 34 Resting-state for 2min, EC

AEC amplitude envelope correlation, DLPFC dorsolateral prefrontal cortex, EC eyes closed, EO eyes open, MDD major depressive disorder, sgACC subgenual
anterior cingulate cortex.
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steps used in EEG pipelines and contrast technical considerations
of variants of each processing stage.
A series of common processing steps during the development

of the Boston EEG Automated Processing Pipeline (BEAPP) has
been previously described by57 and is explored in more detail
here. These steps include line noise removal and filtering,
resampling, independent components analysis (ICA) for artifact
rejection, channel selection/removal, re-referencing, epoch

selection, and final output generation. There are numerous factors
affecting analytical choices at each of these steps. Although
innovation is at various stages throughout this process, the field
has converged towards a general set of criteria over the past
decade that appears to balance robustness, efficiency, and ability
to integrate with existing software interfaces.
Early-stage preprocessing typically consists of filtering and

possible line noise removal (depending on frequency ranges of

Fig. 2 Depiction of the processing steps in some commonly used EEG analysis pipelines. Green boxes indicate the start of the pipeline, and
red boxes indicate the end of the pipeline. Boston EEG Automated Processing Pipeline (BEAPP) is used as a reference pipeline because it is the
most comprehensive in terms of processing steps used. APP, Automatic Pre-processing Pipeline; BEAPP, Boston EEG Automated Processing
Pipeline; FASTER, Fully Automated Statistical Thresholding for EEG artifact Rejection; HAPPE, Harvard Automated Processing Pipeline for
Electroencephalography; HAPPILEE, HAPPE in Low Electrode Electroencephalography; ICA, Independent Component Analysis.

L. Simmatis et al.

4

npj Mental Health Research (2023)    18 



interest). These are important steps for preventing overt environ-
mental contamination of true brain-derived signals by electrical
line noise at 50 or 60 Hz and muscle artifact. The first challenge to
address is line noise, which58 demonstrated could dramatically
influence connectivity estimates. Several popular methods exist to
reduce line noise, each with specific strengths and limitations. The
simplest filter option is a notch or bandstop filter that selectively
removes specific frequency bands from the overall signal.
Luck59,60 cautioned against applying notch filters and suggested
that low-frequency high-pass filtering may induce undesirable
signal distortions in frequency bands of interest. Leske and Dalal61

suggest that spectrum interpolation may be more robust for
removing line noise with variable amplitude. Alternatively62,
demonstrated in their PREP pipeline that other methods, such
as CleanLine, were robust if detrending was applied. The same
group also cautioned against using low-frequency (1 Hz) high-pass
filters before removing line noise due to concerns over the impact
on downstream connectivity analyses62.
An additional early preprocessing concern is electromyography

(EMG) noise, which is more difficult to solve than line noise, given
that EMG and EEG may overlap. EMG noise typically occurs at
higher frequencies than EEG noise; therefore, a 30 Hz low-pass
filter could resolve the issue59. However, Goncharova et al.63 noted
that there is variability in the frequency ranges of EMG noise that
depends on the specific scalp region under consideration. For
example, frontal EMG noise may be as low as 20 Hz, whereas
temporal EMG noise occurs at >40 Hz. Fortunately, Zhou and
Gotman64 demonstrated that applying wavelet thresholding and
ICA might be sufficient to remove EMG contamination. ICA can
also address other signal quality challenges by simultaneously
removing EMG.
Next, “bad” channels and epochs resulting from various

technique-related reasons (e.g., cap shift, sweat, poor cap fit) are
identified and then interpolated or removed. Typically, channel
issues relate to global problems with an electrode, whereas epoch
issues arise from transient activity affecting multiple channels,
such as head movement. There have been several methods
developed to handle each of these cases. The FASTER method
developed by65 uses a correlation-based criterion (correlation of a
channel with its neighbors) and a dispersion criterion (the variance
of a given channel) to mark bad channels. Bigdely-Shamlo et al.62,
used a similar set of statistical criteria based on robust correlation,
noise, and a novel method that detects groups of bad channels
using the RAndom SAmple Consensus (RANSAC) subset selection
approach. In FASTER and PREP, whole channels were spherically
interpolated using EEGLAB (Matlab). Newer pipelines, such as the
Automatic Pre-processing Pipeline (APP)66 and Automagic67, built
upon these classic methods. They used Artifact Subspace
Reconstruction (ASR), Multiple Artifact Rejection Algorithm
(MARA), and robust principal component analysis (PCA) for
interpolation. Other improvements were proposed by Kumaravel
et al.68, who used a local outlier factor (LOF)-based approach for
bad channel detection. LOF outperformed FASTER and standard
statistical methods such as Euclidean distance. Dong et al.69 also
proposed a high-performance interpolation method called RESIT
(Reference Electrode Standardization Interpolation Technique)
that yields lower errors and higher correlations with simulated
data than popular nearest-neighbor or spherical spline interpola-
tion methods. Although promising, new channel identification
methods require further testing and validation.
Another essential step in EEG data processing is artifact

rejection to remove eyeblinks or scalp muscle contamination.
Although many artifact rejection methods exist70, ICA is among
the most popular. Briefly, ICA decomposes a signal into individual
components (ICs), identifies and removes noisy ICs, and then
reconstructs the data with the remaining ICs. ICA can outperform
electrooculogram (EOG) regression-based approaches when
combined with a 1–2 Hz high-pass filter71. The simplicity and

effectiveness of ICA have led to its inclusion in automated artifact
removal systems such as MARA72. Grin-Yatsenko et al.73 highlight
the influence of ICA on EEG when comparing MDD patients to
healthy controls.
Lastly, re-referencing is fundamental in pipeline development

and can affect downstream connectivity estimates if not
optimized. Common re-referencing methods include average
reference (AR), robust average reference (RAR), and reference
electrode standardization technique (REST), as well as linked
mastoids (LM), which use fewer sensors. Recent work has
suggested that REST74 or RAR75 performs the best among
referencing methods. Yang et al.76 also suggested that REST is
superior when studying event-related potentials. Furthermore,
both77 and Hu et al.78, suggested that REST is preferred over AR in
cases where electrode density is not very high. However, REST
requires a realistic head model to function, estimated using the
finite element method77. Mumaz and Malik79, suggest that REST
may be the most appropriate reference choice for MDD EEG
research compared to the link-ear (LE) reference and AR. Many
technical considerations for EEG data processing and analysis
must be made to optimize data outputs and the development of
viable and clinically relevant biomarkers for MDD.

EEG ANALYSIS PIPELINES AND IMPLICATIONS FOR MDD
An important factor in selecting specific processing steps for EEG
pipelines for depression is the impact on downstream metrics.
Although assessing features based on the “true” EEG signal is
difficult, we can evaluate the impact of different processing steps
on known datasets and quantify how processing choices affect
the psychometric properties underpinning biomarker develop-
ment and validation. Robbins et al.80 demonstrated that different
EEG pipelines alter channel-level power estimates. Similarly, other
works have explored the effects of various processing strategies
on connectivity features.
There has been considerable research on the effects of different

head models and inverse solutions on connectivity estimates. For
example, Cho et al.81 used simulations to study the contribution of
head models and source estimation on multiple connectivity
measures. They found that modeling the CSF compartment led to
significantly fewer errors in source reconstruction and connectivity
estimates. Furthermore, source localization was least affected
across combinations of datasets and pipelines. In contrast,
effective connectivity (generalized partially directed coherence)
was most affected, and functional connectivity (imaginary part of
coherence) was less so. These findings are particularly relevant to
EEG pipelines for depression, given the volume of previous work
focused on alpha activity in depression-related functional net-
works. Anzolin et al.82, also identified that the choice of inverse
solution (eLORETA vs. LCMV beamformer) impacted Granger
causality, albeit for broadband connectivity. More recently83,
analyzed resting state networks in high-density EEG (256
channels) using different head models to understand the potential
impact of random and systematic errors due to sensor placement.
They reported differences between MRI-guided models and
template head models rather than between different templates.
More specifically, a 3-tissue template-based model performed
comparably to a 12-tissue template model, although both
performed worse than the MRI-guided model. Thus, EEG
connectivity pipelines for MDD should strive to use MRI-guided
models; however, head model and alpha band connectivity
metrics are robust enough if patient MRIs are unavailable.

TECHNICAL CONSIDERATIONS FOR CLINICAL TRANSLATION
OF EEG ANALYSIS FOR MDD
EEG processing can influence the psychometric properties (e.g.,
test-retest reliability) of connectivity measures, which are, in turn,
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used for the analytical and clinical validation of biomarkers in
MDD. As such, processing steps influencing the reliability and
validity of EEG measures have been widely studied. While earlier
works established that EEG power analysis can be highly reliable84,
more recent studies focused on connectivity measures. For
example85, used simultaneous high-density EEG and MEG to
understand the test-retest reliability of source-space network
connectivity in 19 healthy individuals. Using the imaginary part of
coherence (iCOH) and weighted phase lag index (wPLI) for
functional connectivity, they found that reliability was at least
fair (intraclass correlation type (1,1) between 0.4–0.59), with the
alpha band generating the highest psychometric values. In
another study86, analyzed the reliability of high-density (256
channel) resting-state EEG in 21 healthy participants using
different recording conditions (eyes open vs. closed, 32 vs. 256
channel densities), connectivity estimators (PEC vs. iCOH), and
source reconstruction methods (beamformer vs. MNE). Ultimately,
they found that alpha band reliability was the highest among all
frequency bands. These results are promising for EEG-based
connectivity metrics for MDD where alpha activity is of particular
interest, mainly because of the conflicting reports regarding the
alpha band and MDD, discussed above32–34.
Ongoing advancements in EEG analysis may use increasingly

automated and end-to-end processing systems such as machine
learning to transform raw data. Convolutional neural networks
(CNNs) can automatically and adaptively learn and are one of the
most widely used deep learning neural networks (e.g.,87,88).
Already, CNNs have been used to extract features from input
EEG to distinguish healthy controls from patients with MDD. Ay
et al.89, reported classification accuracies of 99.1% and 97.7% for
right- and left-hemisphere EEG signals, respectively. In this study,
the raw EEG waveforms were applied to the CNN model, and the
feature maps obtained from this step were fed to long short-term
memory (LSTM) on which learning was performed. Deep learning
is yet another method to consider implementing in EEG analysis
pipelines for future MDD biomarker development.

DISCUSSION AND CONCLUDING REMARKS
Depression is a debilitating disease at both the personal and
societal levels. It is estimated that 322 million people suffer from
MDD worldwide2. MDD is diagnosed through behavioral analysis
since no clinical biomarkers are readily available in practice.
Moreover, understanding of MDD pathophysiology has shifted
towards the involvement of altered brain activity and connectiv-
ity16. Therefore, applying devices that can detect neural activity
and lead to discovering new biomarkers is timely16 for several
reasons. In particular, there has been a rapid rise of new EEG-
based technologies such as wireless systems90,91 and brain-
computer interfaces92. Furthermore93, emphasize the necessity for
biomarkers that allow for evidence-based choices pertaining to
treatment options for MDD (i.e., personalized medicine). Addi-
tionally, it was estimated that there was an increase in cases of
MDD by 27.6% worldwide from 2020–202194, thus demonstrating
the urgency of this matter.
EEG is the most promising of all neuroimaging and neurophy-

siological modalities since it is portable, noninvasive, and relatively
affordable, allowing large-scale data collection for clinical and/or
research purposes. Already, EEG can detect significant differences
between patients with MDD and healthy controls22,24,28, identify
MDD subtypes41,42, discriminate between MDD and psychiatric
comorbidities (e.g., bipolar disorder)47,48, and predict treatment
response to antidepressants and rTMS44,45.
However, inadequate experimental standardization remains a

major limitation of EEG and can hinder the development and
clinical translation of MDD biomarkers. To generate robust and
effective MDD biomarkers, EEG analysis pipeline development
requires careful consideration. Common processing steps include

line noise removal to avoid environmental contamination, “bad”
channel and epoch identification and subsequent interpolation or
removal, artifact rejection, re-referencing, epoch selection, and
output generation. New processing features will also arise as EEG
analysis incorporates artificial intelligence algorithms to uncover
signals from raw data87. Ultimately, it is important to recognize
that EEG users make choices at each processing step that can
affect results. Careful selection can uncover EEG-based biomarkers
for MDD to refine diagnoses and personalize treatment strategies
to achieve better clinical outcomes.
Other reviews addressing the relationship between EEG and

MDD summarize the findings thus far that distinguish between
MDD patients and healthy controls at the brain-activity
level31,95,96. Thus, this highlights the novelty of this review. Herein,
we address specific technical considerations researchers and
clinicians should evaluate regarding preprocessing steps for EEG
analysis of MDD. Since the diagnosis of mental illness strives to be
more efficient and accurate, it is becoming increasingly crucial to
keep these considerations in mind, particularly because the field
of EEG in MDD research lacks a “golden standard” for preproces-
sing steps. We hope to standardize the field by establishing these
frameworks and creating a unified way forward. Further develop-
ing a better understanding of state-of-the-art processing techni-
ques also allows for advancements in utilizing EEG to detect
biomarkers for MDD. Ultimately, the development of robust
biomarkers for MDD will improve therapeutic outcomes for
patients worldwide.
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