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Systematic review of machine learning in PTSD studies for
automated diagnosis evaluation
Yuqi Wu 1, Kaining Mao 1, Liz Dennett 2, Yanbo Zhang 3✉ and Jie Chen 1✉

Post-traumatic stress disorder (PTSD) is frequently underdiagnosed due to its clinical and biological heterogeneity. Worldwide,
many people face barriers to accessing accurate and timely diagnoses. Machine learning (ML) techniques have been utilized for
early assessments and outcome prediction to address these challenges. This paper aims to conduct a systematic review to
investigate if ML is a promising approach for PTSD diagnosis. In this review, statistical methods were employed to synthesize the
outcomes of the included research and provide guidance on critical considerations for ML task implementation. These included (a)
selection of the most appropriate ML model for the available dataset, (b) identification of optimal ML features based on the chosen
diagnostic method, (c) determination of appropriate sample size based on the distribution of the data, and (d) implementation of
suitable validation tools to assess the performance of the selected ML models. We screened 3186 studies and included 41 articles
based on eligibility criteria in the final synthesis. Here we report that the analysis of the included studies highlights the potential of
artificial intelligence (AI) in PTSD diagnosis. However, implementing AI-based diagnostic systems in real clinical settings requires
addressing several limitations, including appropriate regulation, ethical considerations, and protection of patient privacy.
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INTRODUCTION
Post-traumatic stress disorder (PTSD) is a debilitating condition that
may arise after experiencing or witnessing a traumatic event1.
Symptoms include recurrent memories, negative mood changes,
altered arousal and reactivity, and avoidance of triggers, all of which
can lead to significant mental and physical health problems, long-
term disability, and socioeconomic burden2. Early diagnosis and
intervention are essential for optimizing clinical outcomes and
reducing direct and indirect costs associated with PTSD3. However,
timely diagnosis is challenging due to the complex clinical
manifestations and outdated diagnostic approaches4. Current
diagnostic criteria rely on subjective assessment, while objective
tests are currently unavailable due to the high cost and reliability
concerns1,5. Moreover, the symptoms of PTSD may overlap with
other disorders, making it difficult to establish a causal link. Therefore,
reliable, sensitive, and easy-to-access approaches are needed to
improve PTSD diagnosis.
The recent advent of artificial intelligence (AI) has provided a

promising avenue to surmount current challenges, including
improving the prediction and diagnosis of diseases such as PTSD.
Machine learning (ML), a subset of AI, emphasizes the cultivation of
algorithms and statistical models that enable computers to learn
from data rather than operate under rigidly explicit instructions6. ML
algorithms gain their proficiency by training on extensive datasets.
Subsequently, they make predictions or decisions stemming from
this training. The overarching aim of ML is to devise models capable
of enhancing their precision over time and adeptly handling unseen
data. ML encompasses multiple learning types, including supervised,
unsupervised, semi-supervised, and reinforcement learning7. In
supervised learning, algorithms are trained on datasets with known
outputs. The algorithms are furnished with input data and the correct
output to master a generalized correlation between the two. This
enables the algorithm to predict unseen data via classification or

regression. Established supervised learning methodologies, such as
logistic regression (LR), decision trees (DT), and support vector
machines (SVM), employ various statistical models to understand the
input-output correlations and predict outcomes. To mitigate over-
fitting and augment accuracy, ensemble ML methods like random
forest (RF) and gradient boosting (GB) have been introduced.
Ensemble learning signifies an advanced strategy where a group of
models is trained on a common problem. By integrating their results,
both the performance and predictive capacity are considerably
heightened, surpassing the capabilities of a single model8–12.
Unsupervised learning, conversely, uncovers hidden patterns within
unlabeled data, commonly used for clustering, dimensionality
reduction, and feature extraction13. Analyses of more extensive,
complex, and unstructured data, such as images or textual features,
necessitate deep learning (DL) models.
DL, an extended version of artificial neural networks (ANN),

consists of multiple artificial neuron layers capable of learning more
abstract data representations. DL algorithms, including convolutional
neural networks (CNNs), recurrent neural networks (RNNs), and their
variations, are frequently utilized in the medical domain14–16. Newly
introduced architectures like transformers, designed for natural
language processing (NLP) tasks, use a self-attention mechanism and
encoder-decoder structure to scrutinize long-term dependencies in
temporal samples, such as text or audio clips17. These features have
been extensively adopted in the studies selected for this review and
have yielded exceptional results in automated PTSD diagnosis. A
brief introduction of various typical ML types and models is shown in
the figure below (Fig.1 Machine learning model types).
Previous reviews have been conducted by various groups

within this domain. Their scope predominantly encapsulated a
summarization of existing studies, with a particular emphasis on
the psychiatric aspects while missing comprehensive guideline to
perform automated PTSD diagnosis task, which remains a critical

1Electrical & Computer Engineering Department, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada. 2Scott Health Sciences Library, University of
Alberta, Edmonton, AB, Canada. 3Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. ✉email: yanbo.zhang@ualberta.ca;
jc65@ualberta.ca

www.nature.com/npjmentalhealth

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s44184-023-00035-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44184-023-00035-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44184-023-00035-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44184-023-00035-w&domain=pdf
http://orcid.org/0000-0002-6527-2221
http://orcid.org/0000-0002-6527-2221
http://orcid.org/0000-0002-6527-2221
http://orcid.org/0000-0002-6527-2221
http://orcid.org/0000-0002-6527-2221
http://orcid.org/0000-0002-5637-6635
http://orcid.org/0000-0002-5637-6635
http://orcid.org/0000-0002-5637-6635
http://orcid.org/0000-0002-5637-6635
http://orcid.org/0000-0002-5637-6635
http://orcid.org/0000-0003-0758-5411
http://orcid.org/0000-0003-0758-5411
http://orcid.org/0000-0003-0758-5411
http://orcid.org/0000-0003-0758-5411
http://orcid.org/0000-0003-0758-5411
http://orcid.org/0000-0002-2421-157X
http://orcid.org/0000-0002-2421-157X
http://orcid.org/0000-0002-2421-157X
http://orcid.org/0000-0002-2421-157X
http://orcid.org/0000-0002-2421-157X
http://orcid.org/0000-0001-7925-3729
http://orcid.org/0000-0001-7925-3729
http://orcid.org/0000-0001-7925-3729
http://orcid.org/0000-0001-7925-3729
http://orcid.org/0000-0001-7925-3729
https://doi.org/10.1038/s44184-023-00035-w
mailto:yanbo.zhang@ualberta.ca
mailto:jc65@ualberta.ca
www.nature.com/npjmentalhealth


need for a systematic examination of the computational science
perspective on AI assisted PTSD18,19.
This paper presents a systematic review of 41 recent publications

that apply AI methodologies for PTSD prediction and diagnosis,
comparing the selection of models, datasets, and validation
techniques used. Our systematic review aims to provide an
exhaustive guide for researchers working in the AI-PTSD domain,
thereby enhancing their understanding of the computational
underpinnings and potential directions for future work. This guide
provides strategic insights for the selection of models, the
identification and selection of features, the choice and compilation
of datasets, and the selection of evaluation metrics. These insights
are not solely derived from evaluating the selected studies, rather

they are also informed by the author’s background knowledge and
prior experiences in automated mental disorder detection within
other mental health domains. We have aimed to consolidate the
knowledge base in this evolving field, facilitating more informed
decision-making and contributing to advancements in AI-based
PTSD prediction and diagnosis.

METHODS
PRISMA guideline
This systematic review followed the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines20. The
PRISMA guidelines are designed to enhance transparency and
completeness in reporting and to facilitate the critical appraisal
and interpretation of systematic reviews and meta-analyses. Our
review strategically incorporated items delineated in the PRISMA
checklist, and these were subsequently adapted in accordance
with the available data and the primary objectives of our review.

Search strategy and literature selection
The search for articles for this review included databases such as
MEDLINE, Embase, PsycINFO, Scopus, IEEE Xplore, and Compendex,
covering the period between 1946 and 2022. The search was last
conducted on October 18, 2022, using a query developed by LD,
which included keywords and related terms for ‘PTSD,’ ‘machine
learning,’ and ‘diagnosis.’ Various synonyms for ‘PTSD’ such as ‘PTSI,’
‘PTSS,’ ‘post-traumatic,’ or ‘stress disorder’ were considered. In
addition, ‘machine learning’ synonyms such as ‘artificial intelligence,’
‘deep learning,’ ‘computer-assisted,’ ‘image classification,’ ‘computer
vision,’ or ‘natural language processing’ were included. Papers with
the keyword ‘prediction’ were considered synonymous with
‘diagnosis.’ The entire search filter can be found in the Supplemen-
tary Methods Query. Two rounds of study selection, namely title/
abstract screening and full-text screening, were performed by two
researchers, YW and KM, who independently evaluated each article
based on the inclusion and exclusion criteria outlined in Table 1. In
case of any conflicts, YW made the final decision.

Fig. 1 Machine learning model types. This figure introduced typical types of machine learning, including supervised learning, unsupervised
learning, and reinforcement learning. In addition, most used models were listed based on specific tasks. For reinforcement learning, since it
was not used in any included study, we did not explicitly introduce common models. Abbreviations: NB Naïve Bayes classifier, LR Logistic
Regression classifier, SVM Support Vector Machine, DT Decision Tree classifier, RF Random Forest classifier, GB Gradient Boosting classifier, DL
Deep Learning models, SVD Singular Value Decomposition, t-SNE t-Distributed Stochastic Neighbor Embedding, UANP Uniform Manifold
Approximation and Projection, PCA Principal Component Analysis.

Table 1. Eligibility criteria.

IC # Inclusion Criteria (the following articles should be included):

IC1: The article utilizes a machine learning model to conduct
automatic diagnosis.

IC2: The article pertains to PTSD diagnosis.

IC3: The article explicitly mentions the evaluation metrics used to
report the model’s performance.

IC4: The article is authored in English.

EC # Exclusion Criteria (the following articles should be excluded):

EC1: Articles duplicated across various databases.

EC2: Articles not related to the diagnosis or prediction of PTSD.

EC3: Articles that do not report their evaluation methods and metrics.

EC4: Articles focused on the prediction of future outcomes, risk
factors of acquiring PTSD, or the trajectory of symptoms, rather
than PTSD diagnosis.

EC5: Articles primarily concerned with the feature selection process.

EC6: Case studies.

EC7: Articles not subjected to peer-review (non-journal articles).
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Data collection process
The selected studies were included for data extraction after
passing the abstract/title and full-text screening. A pilot test was
conducted on ten randomly chosen studies to validate the data
extraction approach. YW extracted data from the selected studies,
and KM checked the extracted data. Disagreements were resolved
through discussion, and YW made the final decision. General
information, such as first author, year of publication, title, technical
information, and answers to the questions listed in Table 2, were
extracted.

Quality assessment
The quality assessment of the current study was based on the
reported evaluation metrics in the selected studies. In classification
tasks, the most commonly used metrics to evaluate the perfor-
mances of the models were accuracy (ratio of correct predictions to
total number of predictions), precision (ratio of truth positive to total
number of positive predictions), recall (ratio of truth positive to total
number of actual positive cases; also known as sensitivity), F1-score
(the harmonic mean of precision and recall), and Area Under the
Receiver Operating Characteristics (the capability to distinguish
different classes; also known as AUC-ROC or AUC). The choice of
evaluation method depends on the task’s nature and the dataset’s
distribution. In general, AUC is often used to compare performances
between different models. Hence it is the primary measurement we
will use to compare proposed models. For medical applications,
where the cost of a false negative result can be extremely high, recall
should be the main evaluation metric since a lower recall value
implies a significant portion of ignored actual positive cases. For
imbalanced datasets, where the number of each class varies
significantly, the F1 score is essential since it considers both false
positives and false negatives21. As for regression tasks, measures like
mean absolute error (MAE), mean squared error (MSE), and root
means squared error (RMSE) are significant22.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

RESULTS
Study selection and review process
The PRISMA guidelines were followed in our review of a total of
3186 studies (Fig. 2 PRISMA flowchart of study selection and review
process). The study screening process was efficiently managed by
utilizing Covidence, an online systematic review management
system. On import of these 3186 studies, Covidence seamlessly
and automatically removed duplicate articles across various
databases, yielding 1654 unique studies. Subsequently, a rigorous

screening of titles and abstracts from these 1654 studies ensued,
excluding 1502 studies that fell outside of the scope of this review.
In a full-text screening of the remaining 152 studies, 111 studies
were excluded, based on the inclusion and exclusion criteria
outlined in Table 1. The final selection comprised 41 studies. The
Supplementary Table 1 summarizes data extracted from these
41 studies, including 21 neuroimaging research studies23–43. Six of
the studies used clinical interviews44–49, eight studies used data
extracted from self-reported questionnaires or online surveys50–57,
and six used blood markers, facial features, social media, GPS, or
EMR to diagnose PTSD58–63. ML models were used in all studies to
diagnose PTSD in diverse sample sets, including data collected
from the general population as a heterogeneous group, patients
who witnessed traumatic incidents, online databases, veterans,
firefighters, and healthcare providers.

Neuroimaging
A total of 21 included studies utilized neuroimaging techniques,
including functional Magnetic Resonance Imaging (fMRI), Magne-
toencephalography (MEG), and Electroencephalography (EEG), to
perform automatic PTSD diagnosis across diverse PTSD sample
groups.
Five studies conducted their experiments on heterogeneous

sample groups. Nicholson et al. combined resting-state (rs)
amplitude of low-frequency fluctuation (ALFF) and amygdala
complex connectivity maps to detect PTSD via a multiclass
Gaussian process classifier. Their model achieved a balanced
accuracy of 96.08% for PTSD patients, indicating that increased
amygdala activation was a strong indicator of PTSD25. Harricharan
et al. also employed a multiclass Gaussian process classifier to
identify PTSD cases. Their study used the anterior and posterior
insula as predictive features, achieving an accuracy (ACC) above
0.80. They concluded that healthy controls (HCs) displayed
enhanced connectivity between the insula and higher cortical
brain regions related to environmental monitoring and emotion
evaluation, particularly the left postcentral gyrus and left
dorsolateral prefrontal cortex26. Zilcha-Mano et al. differentiated
PTSD and major depressive disorder (MDD) patients from HCs
using biomarkers from rest-state functional connectivity, achiev-
ing an accuracy of 70.6% and an AUC of 0.87 with an SVM classifier
for PTSD participants. This study indicated that higher executive
control network (ECN) connectivity was associated with more
severe PTSD and MDD symptoms29. Nicholson et al. classified
PTSD versus HCs during real-time fMRI neurofeedback (NFB)
training with an accuracy of 80% and an AUC of 0.85 using the L1-
Multiple Kernel Learning method. They concluded that PTSD and
HCs groups exhibited decreased activity in the posterior cingulate
cortex during neurofeedback (NFB) training and transfer runs33.
Saba et al. compared the performance of various PTSD diagnostic
ML models, discovering that the KNN method with train-dev-test
accuracy rates of 96.6%, 94.8%, and 98.5%, respectively, and SVM
with radial basis function kernel, with train-dev-test accuracy rates
of 93.7%, 95.2%, and 99.2%, respectively, performed the best
using predictive features from various brain regions35.
Four studies focused on diagnosing PTSD in individuals who

had witnessed traumatic events. Gong et al. used an SVM classifier
to differentiate between PTSD patients, HCs, and trauma-exposed
non-PTSD groups (TE) based on gray and white matter predictors,
which achieved an accuracy of 91% between PTSD and HCs and
67% between PTSD and TE, demonstrating that MRI data analysis
can accurately differentiate PTSD participants from HCs24.
Similarly, Zhang et al. employed an SVM classifier to distinguish
PTSD from HCs, achieving an accuracy of 89.19% by using gray
matter volume, ALFF, and regional homogeneity as predictors27.
Using a DL approach, Yang et al. achieved a diagnostic accuracy of
71.2%, with a sensitivity of 0.60 and specificity of 0.83, by utilizing
brain function groups such as frontoparietal areas, cingulate

Table 2. Extraction questions.

EQ # Extraction questions

EQ1: What PTSD diagnostic method was used?

EQ2: What was the data source? What was the sample distribution?

EQ3: What was the best machine learning model reported?

EQ4: What was the objective of the study?

EQ5: What were the main results?

EQ6: What was the sample size?

EQ7: What was the ML validation method used?

EQ8: What were the control group and psychiatric group?

EQ9: What was the conclusion of the paper?

EQ10: What was the limitation and future improvement?

Y. Wu et al.
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cortex, and amygdala as predictors31. Zhu et al. applied a graph-
theoretic approach based on DL to discriminate PTSD from TE. An
accuracy of 80% was achieved achieved with 0.81 sensitivity and
0.79 specificity by utilizing informative sets of brain graph
measures of the central executive network, salience network,
and default mode network34.
Four studies utilized ML to diagnose PTSD in veterans.

Georgopoulos et al. used MEG to extract synchronous neural
interactions (SNI) and differentiate PTSD from HCs using linear
discriminant analysis (LDA) with bootstrap-based classification,
achieving an accuracy of over 90%23. James et al. also employed
SNI and an LDA classifier to identify PTSD in female veterans,
reporting 100% accuracy and concluding that brain functional
connectivity could be an objective indicator of recovery from
PTSD32. Zhang et al. used MEG frequency bands (alpha, gamma)
and an SVM classifier to classify male veteran PTSD, achieving an
AUC of 0.9028. Shahzad et al. utilized the amygdala, hippocampus,
and prefrontal cortex in the left and right brain hemispheres with
an ANN to identify PTSD. The study found that the left
hippocampus was the brain region most impacted by PTSD, and
the right hippocampus was the least affected region. The study
also reported an accuracy of 80.04% and an AUC of 0.88 with a
specificity of 0.81 and sensitivity of 0.78 for the left brain, an
accuracy of 93.03% and an AUC of 0.98 with a specificity of 0.97
and sensitivity of 0.89 for the right brain, and an accuracy of
94.12% and an AUC of 0.98 with a specificity of 0.91 and a
sensitivity of 0.99 for both hemispheres30.
Eight studies, which adopted EEG as the diagnostic tool,

predicted PTSD outcomes based on the electrical signals obtained
from the device. Five studies had heterogeneous subject
populations as their data resources. Shim et al. employed the

P300 feature from EEG at both the sensor and source levels to
differentiate between PTSD, MDD, and HCs using an SVM classifier.
The study yielded an 80% accuracy, with 0.86 specificity and
0.72 sensitivity. The PTSD group exhibited significantly lower P300
amplitudes and longer latencies than the HCs group36. Kim et al.
developed a novel ML classifier, the Fisher geodesic minimum
distance to the mean (FgMDM), based on Riemannian geometry
and combined it with EEG source covariance to distinguish
between PTSD and HCs. The proposed model demonstrated an
accuracy of 73.09% and 0.80 AUC, with 0.69 sensitivity and
0.77 specificity37. Park et al. used EEG parameters in 6 frequency
bands to predict major psychiatric disorders, controlling for
variables such as age, sex, education, and IQ background,
achieving a predictive accuracy of 91.21% for PTSD38. By
integrating microstate-based segmentation of various EEG fre-
quencies with an SVM classifier, Terpou et al. integrated
microstate-based segmentation of different EEG frequencies with
an SVM classifier, distinguishing PTSD with an accuracy of 76%,
AUC of 0.75, sensitivity of 0.79, and specificity of 0.7439. Shim
et al.‘s 2022 study demonstrated that low-frequency EEG
oscillations with an SVM classifier could increase the predictive
accuracy to 86.61%, with an AUC of 0.93, analyzing resting-state
EEG data at the source level in six frequency bands40.
Li et al. utilized EEG signals and features such as startle

potentiation, fear generalization, fear extinction, and stimulus to
predict PTSD in firefighters, achieving an AUC of 0.93 with
sensitivity and specificity above 0.85 using a light gradient
boosting classifier41. Breen et al. employed an SVM classifier to
identify trauma-exposed PTSD by integrating features such as
sleep disturbance, impaired declarative memory, and metabolite
variables from polysomnogram recordings, achieving an accuracy

Fig. 2 PRISMA flowchart of study selection and review process. This figure described the entire procedure of study selection based on the
PRISMA systematic review guideline. We started with 3186 studies from six different databases. After duplication removal, abstract and title
screening, and full-text screening, we finally ended up with 41 studies for this review. Detail selection process can refer to the Methods
section.
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of 80%42. Tahmasian et al. investigated subjective or objective
sleep assessments as tools for automatic PTSD diagnosis. Using an
SVM classifier, they performed a high classification accuracy of
91.6%, sensitivity of 0.93, and specificity of 0.9043.
Neuroimaging studies frequently use SVM (n= 9) for feature

classification due to its ability to handle non-linear data, allowing
high accuracy in models despite limited participant numbers. The
correlation between neuroimaging features and patient psychia-
tric status simplifies feature engineering, reducing the need for
complex methods like neural networks. Some studies demon-
strated high accuracy using LDA combined with SNI, a robust
biomarker for mental disorders such as PTSD.
fMRI scans focus on key brain regions, tissues, networks, and

fluctuations like the global mean ALFF (mALFF). MEG scans study
features from various bands and SNI, often outperforming resting-
state fMRI. EEG measures the brain’s electrical signals correlating
strongly with patients’ psychiatric states, making simpler ML
models like SVM suitable. Predictive EEG features include
frequency bands and their correlations, with several studies
included in this review using quantitative EEG (QEEG) parameters,
such as source-level Power Spectrum Density and Functional
Connectivity, to classify PTSD from HCs.

Structured clinical interviews
Six studies were conducted using interview data to automatically
diagnose PTSD. He et al. utilized an ML product score model with
lexical features to compare detected word scores between PTSD
and HCs, achieving an 82% diagnostic accuracy with a sensitivity
of 0.85 and specificity of 0.7846. Schultebrauck et al. used a DL-
fused model to identify PTSD from individuals exposed to trauma,
achieving a 0.90 AUC, 0.84 precision, 0.84 recall, and 0.83 F1 score
by analyzing visual, acoustic, and semantic features from clinical
interviews47. Two studies focused on using speech markers to
diagnose PTSD in veteran populations. One of these (Marmar
et al.), employed an RF classifier to analyze audio features both of
which achieved an accuracy of 89.1%45. Three other clinical
interviews examined in this review used speech and sentiment
features from natural language to detect PTSD. Banerjee et al.
utilized a deep belief network model (DBN) and transfer learning
method on the TIMIT Speech Corpus to diagnose PTSD64 and
achieved 74.99% accuracy, demonstrating its great potential for
small datasets44. Gupata et al. tested an extreme gradient
boosting (XGB) classifier on TIMIT and FEMH datasets for early
PTSD diagnosis and achieved high accuracies of 97.5% and
96.29%, respectively48. Sawalha et al. utilized an RF classifier with a
Vader semantic analyzer on semantic features from the Audio/
Visual Emotion Challenge and Workshop (AVEC-19) corpus65 and
reached 80.4% accuracy with 0.80 AUC49.
Speech features were the primary predictors in the clinical

interview models, including acoustic features such as frequency
and amplitude, prosodic features like rhythm, stress, and
intonation, features related to the physical characteristics of the
vocal tract, and excitation features associated with the vibration of
the vocal cords. Transcripts from interview recordings were also
utilized in some studies, and semantic features were extracted
using textual analysis techniques such as bag-of-words. Unlike
features extracted from neuroimaging, speech and textual
features are more abstract and less specific for mental disorder
diagnosis. Consequently, significant feature engineering is neces-
sary to extract meaningful information from these features,
making DL techniques suitable for classification. In fact, the
clinical interviews considered here have shown a preference for
DL models (n= 2) due to the sequential nature of speech and
textual analysis. Researchers have used DL models combined with
transfer learning to enhance classifiers’ performance significantly.

Self-report questionnaires and narratives
Eight studies included in our review evaluated the effectiveness of
self-report questionnaires and online surveys in detecting PTSD
based on semantic features. He et al. used NLP and text mining to
develop an automated PTSD screening tool, which incorporated a
product score model and achieved an accuracy of 82% and an
AUC of 0.94. Their findings demonstrated that self-narratives in
text form could accurately assess PTSD, and the inclusion of
higher-order n-grams improved classification metrics and predic-
tion accuracy57.
Three of the self-report studies included patients with traumatic

experiences. Kessler et al. utilized the ensemble ML model super
learner to predict PTSD from data obtained from the World Health
Organization’s world mental health survey, using features such as
personal violence experiences and socio-demographics. They
reported an AUC of 0.9850. Orovas et al. extracted data from
self-report questionnaires, including demographics, prenatal and
mental health variables, and used a multi-layer perception (MLP)
classifier to analyze the data. They reported an accuracy of 92.9%
for the PTSD group, with a precision of 0.83, recall of 0.89, and
specificity of 0.9852. Bartal et al. examined whether a written
narrative of childbirth experience from postpartum women could
predict PTSD. They used an NLP model transformer and reported
an AUC of 0.75, with an F1 score of 0.76, sensitivity of 0.8, and
specificity of 0.756.
Four self-report studies employed ML algorithms to detect PTSD

in high-risk professionals such as veterans, firefighters, and
healthcare workers. Karstoft et al. used an SVM classifier to
identify pre- and post-deployment PTSD in a group of Danish
soldiers, reporting an AUC of 0.84 and 0.88, respectively53.
Portugal et al. developed a regression model to predict the
severity of depression and PTSD in healthcare workers, using
psychometric questionnaires and an SVM regressor with a mean
square error of 0.9051. Campbell et al. utilized a decision tree (DT)
classifier to predict unit-level risk for combat PTSD, achieving 90%
accuracy by surveying veterans about their combat experiences54.
Kim et al. predicted the prevalence of PTSD among firefighters
using information such as suicide incidents and alcohol consump-
tion with an SVM classifier. They obtained an accuracy of 89%,
precision of 0.89, recall of 0.89, and F1 score of 0.89 when the
support vector number was set to 2055.
Despite the abundance of self-reported questionnaire data,

researchers often favored the SVM classifier over DL models. The
most frequently used features in the self-reported questionnaire
were demographics and data related to personal violence
experiences, mental health conditions, PTSD symptoms, and
traumatic experiences. SVM can effectively classify these well-
engineered features obtained from surveys.

Other diagnostic approaches
In addition to traditional interview-based and evidence-based
diagnostic methods, this review includes six studies that used
various innovative approaches as indicators for PTSD. One study
performed automatic PTSD detection through social media. Ismail
et al. applied CNN to PTSD diagnosis through keywords from
Twitter and obtained an accuracy of 0.91 in the cancer survivor
population62. With exon biomarkers, Tylee et al. achieved
predictive accuracy of 90% when applying an SVM classifier58.
Two additional studies used RF classifiers to analyze medical

records for automated PTSD diagnosis. Using similar predictors,
Zafari et al. achieved an accuracy of 99%, specificity of 1.0,
sensitivity of 0.78, F1 of 0.78, and AUC of 0.89. They concluded
that using existing primary care data to detect PTSD can improve
primary care quality, conduct research, and monitor patient
health61. Gagnon-Sanschagrin et al. used an RF classifier with data
on antiadrenergic medication use, bipolar disorder diagnosis,
musculoskeletal and connective tissue diseases, substance use/
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abuse, and physiological symptoms or reactions to identify
individuals with undiagnosed PTSD. An AUC of 0.75 was reported
in this study63.
Gavrilescu et al. introduced a Facial Action Coding System,

which extracts facial expression features from recordings to
determine MDD, anxiety, and PTSD. They adopted an SVM
classifier and obtained an accuracy of 90.2% for the PTSD group59.
Lekkas et al. conducted an experiment on female trauma
witnesses in which they used the daily time spent away from
home and the maximum distance traveled from home to
diagnose PTSD. By feeding the global positioning system (GPS)
information into an XGB classifier, they achieved an AUC of 0.82,
sensitivity of 0.74, specificity of 0.80, and accuracy of 77.1%60.

DISCUSSION
Our review analyzed 41 studies that utilized AI technologies for
PTSD diagnosis. Among the ML models and validation methods
used in these studies, SVM (n= 12) and k-fold cross-validation
(n= 30) were the most commonly employed. Our statistical
analysis indicates that SVM, DL, and combined models outperform
others (Fig. 3 Histogram of various ML models with system
accuracy). SVM, a long-standing ML model, remains preferred for
ML scientists due to its efficacy and suitability for small to
moderate-sized datasets and its relatively low computational
requirements. It is beneficial when the predictive features are well-
known to the researchers. In recent years, DL models have grown
increasingly popular with the expansion of data availability in
various domains. The studies in our review utilized CNN and RNN
models, such as Long Short-term memory (LSTM)16, as their
classifiers, demonstrating the potential when sufficient sample
sizes are available. DL models require less feature engineering
than traditional ML models since the hidden layers can select
informative features.
The sample size varied widely among the reviewed studies,

ranging from 24 participants to 2,124,496 surveys, with a median
of 179 samples. Figure 4 (Sample distribution box plot of different
PTSD diagnostic methods after removing extreme outliers) displays
the sample size distribution for each diagnostic method.
Diagnostic methods like neuroimaging and clinical interviews
tend to have limited sample sizes due to the high costs of using

specialized equipment and trained professionals. Consequently,
the sample sizes for these methods are often small, which can
negatively impact the performance of the corresponding ML
models. Despite this limitation, data collected through these
methods is precise to PTSD as the predictive features strongly
correlate with PTSD diagnosis. Therefore, these models are
valuable in clinical settings where the likelihood of PTSD
symptoms may be high.
In contrast to neuroimaging and clinical interviews, studies

based on self-report questionnaires and other diagnostic methods
generally have larger sample sizes. Many studies in these
categories utilize online datasets or surveys, which are less
expensive and allow for the accessible collection of large datasets.
Other studies have used GPS information and electronic medical
records, which provide access to extensive online databases
containing significant amounts of data. More data available can
often enhance the performance of the classification ability,
particularly for DL models66. However, these data types are less
specific to PTSD, and the samples are heterogeneous. Therefore, it
can be challenging to extract useful predictive features specific to
PTSD screening. The datasets are also at risk of data imbalance as
PTSD-positive cases are often lower in number than HCs, resulting
in overfitting of the ML model and losing the ability to
generalize67. Figure 5 (ML model counts in different PTSD diagnostic
methods) displays a heat map between ML model usage and PTSD
diagnostic methods. Five factors identified from the literature
impact the performance of ML models for PTSD classification:
limited sample size (n= 13), comorbidity (n= 10), lack of general-
izability (n= 7), insufficient study controls (n= 7), and imbalanced
data distribution (n= 6). Overfitting due to limited sample sizes,
particularly in neuroimaging and clinical interviews, decreases
model accuracy, precision, and recall68,69. The impact of comor-
bidities like MDD and anxiety disorders on classifier performance
is often not addressed70. Studies sometimes overlook medication
use, diagnostic tools, or demographic backgrounds, introducing
potential biases. Models lack generalizability when sample groups
such as trauma witnesses or high-risk professionals do not
represent the broader population. Data imbalance can lead to
the under-representation of minority populations71.
Several challenges persist in AI applications for mental

disorder diagnoses, including limited data availability and

Fig. 3 Histogram of various ML models with system accuracy. This figure counted the occurrence of each ML model the authors reported as
the best model from the included studies. The blue bar represents model accuracy between 70–80%, the orange bar represents model
accuracy between 80–90%, and the green bar represents model accuracy above 90%. Abbreviations: EN Elastic Net, SL SuperLearner, PCA
Principal Component Analysis, Cust. Customized Model, LGB light GB, MM Multiple Models.
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quality, the need for diversity in training data to avoid biased
outcomes, and calls for increased AI model transparency and
interpretability. Privacy and security considerations also hold
paramount importance. Digital mental health applications must
comply with ethical and legal guidelines, prioritizing data
security and privacy, particularly for sensitive personal informa-
tion like medical histories and psychological evaluations72.
Unauthorized access, disclosure, and breaches must be pre-
vented to maintain patient trust and promote healthcare
engagement. Researchers are encouraged to share only
extracted features and modify raw images or audio to remove
identifiable information. Regulatory challenges and unresolved
liability issues present another obstacle to adopting AI-powered
mental disorder diagnoses. These considerations underscore the
complex landscape that informs future PTSD classification
research. With this review paper, we aim to guide future
research in automated PTSD diagnosis, detailing ML model
selection, predictive features, sample sizes, and validation
methods. The choice of optimal ML models, primarily an

empirical process, hinges on data suitability and the availability
of computational resources.
Traditional ML models like SVM and ensemble models are

recommended for data strongly correlated with PTSD diagnosis
and requiring minimal feature engineering, such as neuroimaging
data. These models are ideal for initial experimentation due to
limited feature engineering requirements and lower computa-
tional demands. For intricate data like speech, visual, and textual
features which necessitate more feature engineering, DL models
or MLPs are often deemed appropriate. These models can parse
complex features through hidden layers and activation functions,
discerning correlations between the features and PTSD diagnosis
automatically. Recently, DL models such as Transformer17, and its
variant BERT73, have demonstrated outstanding performance in
various NLP tasks, including audio and semantic analysis. These
transformer-based models can understand the long-term depen-
dencies in natural language samples via a self-attention mechan-
ism, significantly improving the model’s ability to understand the
context. Multi-modality ML models, proven effective in mental

Fig. 5 ML model counts in different PTSD diagnostic methods. This figure was the heatmap representation of ML model types vs. PTSD
diagnostic methods. Each cell represented a ML model and diagnostic method pair with number indicating the occurrence in the included
studies. In terms of color scales, darker blue indicated higher occurrence while brighter blue indicated lower occurrence.

Fig. 4 Sample distribution box plot of different PTSD diagnostic methods. This figure visualized the distribution of database sample size
the authors adopted for ML training in log scale for different PTSD diagnostic tools. Outliers were indicated by the black solid diamond
symbol. In each individual box, the upper horizontal line represented maximum sample size (excluding the outliers) while the bottom
horizontal line represented minimum sample size (excluding the outliers). The “whiskers” are lines that extend from the box to the minimum
and maximum values in the dataset. For the box, it represented the region where the majority sample size distribution (fist quartile to third
quartile) with the central line representing median sample size. Different color represented different PTSD diagnostic method.
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disorder-related tasks74, offer a holistic view by integrating visual,
audio, and semantic modalities. This multi-view learning frame-
work significantly enhances the model’s capabilities in mental
health analysis.
Predictive features vary significantly across diagnostic methods.

In neuroimaging, brain regions like the amygdala, hippocampus,
prefrontal cortex, and insula provide robust predictive results
when captured with fMRI techniques. Including SNI as a predictor
is recommended when using MEG scans while exploring QEEG
features such as PSD and FC are advised for EEG features. Various
speech attributes like acoustic, prosodic, vocal tract, and excitation
are important features in clinical interviews. Semantic elements
are recommended for clinical interviews and self-report surveys,
providing a comprehensive understanding of the individual and
enhancing PTSD diagnosis accuracy.
In ML, data sample size and quality are paramount, particularly

in medical applications where data acquisition can be complex
and costly, often limiting the performance of ML models.
Strategies to mitigate these effects include data augmentation
techniques that synthesize new samples to enlarge the sample
set, and transfer learning, which fine-tunes pre-trained models on
smaller datasets. Crowdsourcing is another potential solution,
facilitating cost-effective and time-efficient data collection and
annotation.
Data imbalance is another challenge that can be addressed via

several strategies. Resampling, either through oversampling the
minority class or undersampling the majority class, can balance
class distribution but at the risk of information loss75. Synthetic
Minority Over-sampling Technique (SMOTE) is an alternative
approach that generates synthetic data for the minority class by
interpolating between existing instances76. Ensemble methods,
including bagging and random forests, can alleviate data
imbalance by aggregating predictions from multiple models.
Model validation is pivotal to ensure ML accuracy and reliability.

Validation methods are problem-dependent, with binary classifi-
cation problems frequently using metrics such as accuracy,
precision, recall, and F1 score, and regression problems typically
utilizing MSE and MAE. Alternative metrics such as AUC may be
more suitable in skewed or imbalanced datasets. Particularly in
medical applications, maximizing sensitivity to minimize false
negatives is vital.
Cross-validation, a popular technique, reduces model variance

by partitioning the data and training the model on some
partitions while evaluating others. This provides a robust estimate
of the model’s performance and offers insight into its general-
ization ability. K-fold cross-validation and leave-one-out cross-
validation are popular methods, depending on the size of the
available datasets and the computational resources. A permuta-
tion test is recommended to ensure model reliability and reduce
stochastic effects77. Statistical significance can be determined by
evaluating the model on the original and multiple permuted
datasets, demonstrating that the model’s performance is not
merely by chance.
This review has several limitations that need to be acknowl-

edged. Firstly, the screening process only considered articles
directly related to PTSD diagnosis, excluding those addressing
prediction or identifying individuals at risk of PTSD. Therefore,
further research is needed to understand the entire spectrum of
PTSD diagnosis and prediction. Additionally, the limited number of
articles (n= 41) included in this review restricts the ability to
provide in-depth recommendations on PTSD diagnosis tasks.
Moreover, the variability in sample groups, sample sizes,
performance metrics used, and quality across the studies makes
it challenging to make comprehensive comparisons and reach a
conclusive outcome.
In conclusion, the heterogeneity of the method applied in each

study and the lack of raw data limits our ability to conduct a meta-
analysis for this review. A comprehensive synthesis and review of

41 studies concerning the automated diagnosis of PTSD using ML
techniques were conducted in this study. With the increasing
need for more cost-effective, reliable, and efficient methods for
diagnosing PTSD, AI presents a promising solution to address this
critical challenge, particularly for individuals who face difficulties
accessing quality mental healthcare or experience stigma
associated with seeking psychotherapy. The studies included in
this review demonstrate the potential of AI for improving PTSD
diagnostic approaches. To aid future efforts in automating PTSD
classification, guidelines for model selection, feature selection,
data acquisition, and validation methods are provided. However,
despite advancements in meticulous feature engineering and
model selection, the practical implementation of these systems
still requires improvement. Significant barriers to the widespread
clinical adoption and realization of the full potential of AI in early
PTSD diagnosis include ethical and privacy considerations and the
lack of standard regulations.
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