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Monitoring sleep using smartphone data in a population of
college students
Carsten Langholm1, Andrew Jin Soo Byun1,2, Janet Mullington3 and John Torous 1✉

Sleep is fundamental to all health, especially mental health. Monitoring sleep is thus critical to delivering effective healthcare.
However, measuring sleep in a scalable way remains a clinical challenge because wearable sleep-monitoring devices are not
affordable or accessible to the majority of the population. However, as consumer devices like smartphones become increasingly
powerful and accessible in the United States, monitoring sleep using smartphone patterns offers a feasible and scalable alternative
to wearable devices. In this study, we analyze the sleep behavior of 67 college students with elevated levels of stress over 28 days.
While using the open-source mindLAMP smartphone app to complete daily and weekly sleep and mental health surveys, these
participants also passively collected phone sensor data. We used these passive sensor data streams to estimate sleep duration.
These sensor-based sleep duration estimates, when averaged for each participant, were correlated with self-reported sleep duration
(r= 0.83). We later constructed a simple predictive model using both sensor-based sleep duration estimates and surveys as
predictor variables. This model demonstrated the ability to predict survey-reported Pittsburgh Sleep Quality Index (PSQI) scores
within 1 point. Overall, our results suggest that smartphone-derived sleep duration estimates offer practical results for estimating
sleep duration and can also serve useful functions in the process of digital phenotyping.
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INTRODUCTION
Sleep remains fundamental to all health. Insufficient sleep
duration causes many negative health outcomes, but can be
particularly detrimental to mental health by increasing the
prevalence and severity of depression and anxiety1–3. Therefore,
some consider lack of sleep an under-recognized public health
epidemic4. Properly maintaining mental health, therefore, benefits
from monitoring sleep duration and habits. In fact, sleep
monitoring often comprises the assessment of therapeutic
response to mental health intervention. However, capturing data
on sleep duration continues to be challenging.
While patients can complete detailed sleep logs as a means to

record sleep habits, these logs can be burdensome and often lead
to low levels of engagement. High attrition has driven the search
for new solutions. Some of these proposed solutions involve
actigraphy, due to its simplicity and accuracy. However, actigraphy
devices come at a high monetary cost. On the contrary, cheaper
and more prevalent consumer devices like smartphones and
wearables offer a more scalable potential. Implementing con-
sumer devices in sleep monitoring can be challenging. As a result,
the Sleep Research Society considers smartphone-based sleep
monitoring results to be “premature”5. The challenge to employ-
ing consumer devices to measure sleep habits stems not from a
lack of capability in consumer technologies. On the contrary,
today’s smartphones offer many impressive sensors capturing
high-frequency data relevant to sleep, such as motion, location,
ambient light, screen time, and even LIDAR (laser imaging,
detection, and ranging)6. The Sleep Research Society instead
believes the primary challenge to monitoring sleep habits using
smartphones arises from use and interest outpacing research and
validation5.

While there has been a recent focus on researching wearables
like smartwatches to assess sleep duration, smartphones offer a
more scalable potential. Nearly 90% of the US population uses
smartphones, but only 20% use smartwatches or fitness trackers7.
In addition, the population of wearable users consists mostly of
wealthy, educated, and white demographic groups. This calls into
question whether wearables can equitably reach those with the
highest health needs8. To make matters worse, in studies using
wearables, most users abandon them after only a few weeks of
use9. These results stand in contrast to smartphone usage data,
where the most disadvantaged people may even be smartphone-
dependent, causing rising concern about overuse.
Therefore, while appreciating research on wearables, we instead

focus on what information smartphones can offer. Our 2019
review of smartphones for sleep in mental health noted that
current apps monitoring sleep mostly focus on self-reported data,
such as logging hours10,11. However, we identify new methods,
like digital phenotyping, as opportunities to better capture sleep
duration. Digital phenotyping is defined as the “moment-by-
moment quantification of the individual-level human phenotype
in situ from personal digital devices” (one relies only on
smartphones people already own and use today.
While researchers have already made impressive findings on

digital phenotyping and sleep, much of it relies on actigraphy
work that does not utilize smartphones12 or wearables like
Fitbits13. Although studies using smartphones to monitor sleep
show, this approach to be feasible14results have been challenging
to replicate because study apps are either proprietary or some-
times no longer even available15. To correct these errors, and to
showcase the feasibility and effectiveness of using smartphones to
monitor sleep, we used the open-source mindLAMP app to create
and assess smartphone-based sleep measures.

1Division of Digital Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA. 2John A. Paulson School of Engineering and Applied
Sciences, Harvard University, Cambridge, MA 02138, USA. 3Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
✉email: jtorous@bidmc.harvard.edu

www.nature.com/npjmentalhealth

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s44184-023-00023-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44184-023-00023-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44184-023-00023-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44184-023-00023-0&domain=pdf
http://orcid.org/0000-0002-5362-7937
http://orcid.org/0000-0002-5362-7937
http://orcid.org/0000-0002-5362-7937
http://orcid.org/0000-0002-5362-7937
http://orcid.org/0000-0002-5362-7937
https://doi.org/10.1038/s44184-023-00023-0
mailto:jtorous@bidmc.harvard.edu
www.nature.com/npjmentalhealth


In this study, we analyzed a cohort of 67 technology-enabled
participants who completed various sleep-monitoring surveys and
mental health questionnaires through the mindLAMP app over
the course of 28 days. These participants also collected
smartphone sensor data, including device usage, geolocation,
and accelerometer data. We used this passively collected sensor
data to create daily sleep duration estimates. We compared these
estimates to survey results, and later created a predictive model to
digitally phenotype sleep habits. These participants were recruited
for a separate study involving the digital phenotyping of college
students, but in this analysis, we focus only on sleep. In this paper,
we show how sleep duration, as estimated by smartphones,
proves to be a highly valuable metric in the process of digital
phenotyping.

METHODS
Sleep data for this analysis was gathered from a prior study which
is outlined in a protocol paper accessible in JMIR Protocols, but
has never been reported on before16. We summarize the protocol
below. This study was conducted in accordance with the
Declaration of Helsinki and was reviewed by the IRB / Committee
of Clinical Investigation of Beth Israel Deaconess Medical Center.

Study
Data for this study was collected using mindLAMP, an open-source
app developed by the Digital Psychiatry lab at Beth Israel
Deaconess Medical Center17. Participants were recruited using
social media. After enrollment, participants were given daily
activities (such as mindfulness or gratitude journaling), daily
surveys (daily sleep duration, daily sleep quality), and weekly
surveys (Patient Health Questionnaire-9 (PHQ-9), Generalized
Anxiety Disorder-7 (GAD-7), Perceived Stress Scale (PSS), UCLA
Loneliness Survey, Pittsburgh Sleep Quality Index (PSQI), Digital
Working Alliance Inventory (DWAI), and TAM-related questions).
Patients enrolled completed an informed consent quiz detailing
the expectations of this study and, if they passed, also completed
written informed consent.

Enrollment
Sixty-seven participants were used for this analysis. Of the 108
participants that entered the enrollment period of the study, 34
were discontinued after not completing any activities in the app
for 5 consecutive days. Seventy-four participants completed the
study, but seven participants were excluded from the analysis due
to participation in a previous iteration of this study.

Passive sleep duration estimates
Smartphone sensor data was used to estimate time spent in bed
as a proxy for time spent sleeping. Sensor data collected includes
an accelerometer and device usage data. When a participant turns
on their phone, mindLAMP reports usage data indicating the
status of the phone (on and unlocked, on and locked, off and
unlocked, off and locked.) Accelerometer data was reported as a
three-dimensional vector broken into x, y, and z cartesian
components in units of g (9.81 m/s/s). From the accelerometer,
we computed jerk, the first derivative of acceleration. When in use,
phones report high magnitudes of jerk vectors, suggesting an
active state. To determine the threshold in jerk magnitude, which
distinguishes between activity and inactivity, we employed Otsu’s
method18. The original application of Otsu’s method involves
image processing. Otsu’s method categorizes pixels from images
into foreground and background by determining the threshold,
which minimizes the sum of within-group variances19. Whether
the gray level of pixels falls above or below this threshold
determines whether it belongs to the foreground or background.

In a manner similar to image processing, we instead apply Otsu’s
method to categorize accelerometer jerk values into high and low
states. Participants were assumed to be active and awake when
either accelerometer jerk magnitudes were above the jerk
threshold, or device use data reported an on-event. Other bouts
of inactivity were assumed to be sleep periods. Periods of missing
data were concatenated according to their state. For matching
states separated by missing data (e.g., asleep state -> missingness
-> asleep state), missing periods were assumed to be the same as
the two matching states. For mismatches (e.g., asleep state ->
missingness -> awake state), participants were assumed to be
inactive, because a resumption in data collection would most
likely be caused by user activity and therefore indicates a
transition from an inactive to an active state.

Mixed linear regression
For this study, all regression coefficients were calculated using the
statsmodels package in python 3.8. Because each participant
may report different baseline PSQI scores, we used a mixed linear
model, where we considered the participant to which data
belongs to be a random effect. Therefore, the intercept was
random. We considered the relationships between each variable
and PSQI to be fixed effects.

Predictive model
To evaluate whether PSQI can be predicted from available data,
we constructed a simple linear model using active and passive
data as predictor variables. This model was created in python 3.8
using the scikit-learn package. However, PSQI, daily surveys,
and passive sleep duration estimates were collected on different
schedules. PSQI was administered weekly, whereas sleep duration,
sleep quality, and sleep duration estimates were collected daily.
Patient-reported PSQI was intended to reflect perceived sleep
duration over the course of the previous week. Therefore, for each
reported value of PSQI, we averaged survey scores and sleep
duration estimates between the timestamp when each PSQI was
taken and the timestamp when the PSQI was taken previously.
This resulted in congruent shapes in data between all predictor
variables and the target variable. This model was validated and
errors were reported using leave-one-out cross-validation
(LOOCV).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

RESULTS
Demographics and data quality
Recruited participants were given access to the open-source
mindLAMP mobile application. Using mindLAMP, these partici-
pants completed daily and weekly surveys. Of these participants,
67 successfully completed surveys required for sleep analysis
(weekly PSQI, daily sleep duration, daily sleep quality). The
demographic information of these participants can be seen in
Table 1. Participants had a mean age of 20.0 with a standard
deviation of 2.0. Participants were primarily female (65.7%), with a
slight majority of patients identifying as white (56.7%).
The protocol prompted participants to provide 28 days’ worth

of survey data, with one of each daily survey every day and one of
each weekly survey taken every week. However, due to user error,
such as responding to a daily survey twice in a single day,
participants at times deviated from this protocol. The sleep-
monitoring surveys of interest in this study were daily sleep
duration, daily sleep quality, and weekly PSQI. Participants
provided an average of 28.9 (standard deviation of 5.3) daily
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surveys and an average of 4.6 (standard deviation of 1.1) weekly
PSQI surveys. Phone sensor data (“passive data”), including
accelerometer and screen use data, were collected from the
moment each participant enabled data collection to the moment
data collection was disabled at the end of the study. However,
only passive data collected during the study period was included
in the analysis. The collection of phone sensor data allows for the
computation of many secondary metrics, including time spent at
home, time spent using cell phones, and others. However, for the
purposes of this paper, we will focus only on using an
accelerometer and screen use data to estimate sleep duration
(“passive sleep”).
In order to accurately estimate sleep duration from passive data,

participants had to meet a minimum level of data coverage. For
this analysis, all accelerometer data for each participant was split
into 24-h intervals. Per-interval data coverage was calculated by
determining the number of 5-second bins containing at least one
data point. 24-h intervals with a data coverage of less than 60%
were excluded. After imposing these conditions, 65 participants
remained with at least one 24-h period of applicable data, with an
average of 19.2 (standard deviation 5.7) of these periods per
participant. Using these 65 participants, sleep duration was
estimated on a per-night basis.

Sleep correlations
Participants answered a variety of surveys (“active data”) for this
study in addition to the sleep-monitoring surveys. For the
purposes of this analysis, we considered a number of surveys
that may reasonably be associated in some way with sleep habits.
These included the following: General Anxiety Disorder-7 (GAD-7),
Perceived Stress Scale (PSS), Patient Health Questionnaire-9 (PHQ-
9), Prodromal Questionnaire-16 (PQ-16), and the Pittsburgh Sleep
Quality Index (PSQI). These surveys were conducted on a weekly
basis. As mentioned, we administered a daily survey asking
participants to report time spent asleep the previous night (“active
sleep duration”) and another daily survey to report trouble
sleeping on a scale of 0-10, with higher scores indicating lower
quality (“active sleep quality”), again on the previous night. We
give survey administration details in our associated
protocol paper.
Survey responses were mapped to integer values and averaged

over the course of the study for each participant. In addition, per-
day average sleep duration estimates were computed for each
participant. Correlations, reported as Pearson coefficients,
between each data stream were plotted against each other (Fig.
1). Mean sleep duration as estimated by passive data correlates
with mean sleep duration as reported by daily surveys (r= 0.39,
p < 0.05). Although active data and passive data were collected
over the same study period, neither passive data nor active data
were necessarily available every night over the period. This
introduced a discrepancy where some days included passive data
without active data and vice versa. Therefore, we also computed
correlations between survey-reported sleep duration and passive
sleep duration estimates, including only those nights containing
pairs (i.e., days in which both active and passive data sleep
duration estimates are available). After this change, the correlation
between the two data streams was higher (r= 0.83) and
significant (p < 0.05).

Relationship between passive data, active data, and PSQI
Without adjusting for other variables, out of both active and
passive data, on a week-by-week basis, passive sleep duration
estimates were found to be negatively correlated (r=−0.24,
p < 0.05) with PSQI and active sleep quality was found to be
positively correlated (r= 0.25, p < 0.05) with PSQI. This is not

Table 1. Demographic information of participants passing enrollment
and screening criteria.

Characteristics n %

Gender

Female 44 65.7

Male 15 22.4

Non-binary 7 10.4

No response 1 1.5

Race/ethnicity

American Indian/Alaskan 0 0

Asian 19 28.4

African American 2 2.9

Latino or Latina 8 11.9

White 38 56.7

Fig. 1 Correlation matrix. Correlation matrix between mean
metrics. Values reported in the table are Pearson correlation
coefficients. [color].

Fig. 2 Estimated sleep duration vs weekly survey-reported sleep
duration. Estimated sleep duration is derived from mindLAMP and
presented in hours on the vertical axis. The survey reported sleep
duration is from the PSQI and presented on the horizontal axis
in hours.

C. Langholm et al.

3

npj Mental Health Research (2023)     3 



surprising, as higher daily sleep quality scores and higher PSQI
scores are both indicative of lower sleep quality. We plotted
passive sleep duration estimates against weekly PSQI across all
participants (Fig. 2). Interestingly, the survey reported daily sleep
duration (p= 0.41) was not found to be correlated with weekly
PSQI.

Mixed model regression
To further ascertain the relationships between variables while
accounting for within-subject correlations, we also performed a
linear regression of PSQI using a mixed linear model. We
considered the participant to which data belongs to be a random
effect. As such, we fit the slopes between PSQI and each predictor
variable as fixed effects with the intercept as a random effect.
Predictor variables include initial PSQI, survey scores, and passive
sleep duration estimates. Regression coefficients and p values for
this model were compiled (Table 2).
Out of these results, passive sleep duration estimates were the

most statistically significant factor in predicting PSQI. Interestingly,
only passive sleep duration estimates, and not survey-reported
sleep duration, yielded a negative coefficient. As expected, survey-
reported sleep quality displayed a positive coefficient, but this
result was not significant (higher survey-reported sleep quality
scores indicate lower quality of sleep).

Predictive model
The PSQI encompasses components of both sleep quality and
duration. This raises the question of whether some combination of
daily sleep quality surveys, daily sleep duration surveys, and
passive sleep duration estimates can predict PSQI. We created a
simple linear predictive model, as described in the methods
section of this paper, to determine whether PSQI can be predicted
by the same data streams. This model was validated using leave-

one-out cross-validation. Model results and prediction errors were
plotted (Fig. 3). Mean absolute error across all predicted data were
0.93, suggesting this model predicts PSQI to within a point on
average. PSQI itself ranges from 0 to 14.

DISCUSSION
Our study demonstrates the potential of using smartphone-based
digital phenotyping to capture scalable and actionable data that
can advance both care and research. This analysis of 67 college
students showed how mean passive sleep duration estimates
correlate (r= 0.83) with mean sleep duration reported by daily
surveys. In our mixed model, we found that daily sleep duration
estimated by passive data was most strongly associated with a
decrease in PSQI in comparison to daily sleep duration surveys.
Additionally, our simple linear predictive model gave a mean
absolute error of less than 1, indicating that passive data streams
and active data streams together can accurately predict PSQI.
Our results around estimated sleep duration highlight the utility

of this smartphone-based approach to digital phenotyping. The
correlation between phone-based sleep duration estimates and
self-reported sleep duration rose to a high degree (r= 0.83) for
nights when both data streams were available. In fact, sleep
duration estimates may even outperform self-reported survey
results. Patients may forget to submit surveys, and reported
estimates vary. Patients become disengaged with surveys over
time20. On the contrary, sleep estimates using passive data can be
produced automatically.
While these results require additional validation, our sleep

duration estimates can offer clinical utility today. Given the well-
documented challenges around engagement with sleep logs and
wearables, including actigraphy, offering smartphone-based sleep
monitoring can provide a simple solution accessible to nearly all
patients today with no cost or additional equipment required.
Clinicians can easily start clinical conversations around sleep
results with a patient while reviewing whether these results match
what the patient experiences. Our team currently does this in our
outpatient clinical work.
Our results suggest an alternative path to validating passive

sleep duration estimates outside of direct comparison to survey-
reported sleep duration. In digital phenotyping, the absolute
accuracy of computed metrics is not necessarily the primary
consideration. Rather, we prioritize the utility of this data in
informing actionable metrics around sleep, such as the PSQI. Out
of passive sleep duration estimates, surveys, and wearable devices,
passive sleep duration estimates provided the best option for
digitally phenotyping sleep metrics. Overall, our results suggest

Table 2. Summary of results of mixed model regression to predict
weekly PSQI scores.

Variable Coefficient St. Error p value

Intercept 2.8 2.0 0.17

Active sleep quality 0.21 0.16 0.19

Active sleep duration 0.40 0.23 0.09

Sleep duration estimate −0.31 0.14 0.03

Fig. 3 Linear model results. (left) Predicted PSQI(0-14) vs reported PSQI. (right) error between predicted PSQI and reported PSQI for every
predicted and reported value (mean error in dashed gray).
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sleep duration estimates may be more reliable than surveys in
evaluating sleep habits. For example, on a weekly basis, only
passive sleep duration, and not survey-reported sleep duration,
was found to be correlated with a decrease in PSQI. This result
appears surprising, considering mean survey-reported sleep
duration was highly correlated with mean passive sleep duration
estimates. A possible explanation could be that survey reports are
inconsistent on a week-by-week basis but reliable when taking the
mean over a greater number of days or weeks.
Prior studies have also used smartphone sensors to estimate

sleep duration with varying degrees of success. However, many of
these methods make a priori assumptions about sleep and wake
periods using environmental cues or calendar entries 21). Others
analyzed a small sample size22. On the contrary, our method takes
a data-driven approach, making only the unavoidable assumption
that sleep periods and inactive periods are the same. Cuttone et al.
employed various Bayesian models with varying assumptions23–25.
These models were data-driven and had success, but only used
device usage data. Collecting only screen state data without
accelerometer data ignores periods of activity where the phone
remains in an off state, such as when a phone remains off but in a
participant’s pocket.
Limitations in this method include the assumption that inactive

periods and sleep periods are synonymous. Inconsistent smart-
phone usage may decrease validity. However, this is a challenge
applicable to the greater field of digital phenotyping as a whole;
any method using smartphone data to parse behavioral patterns
will suffer from inconsistent device use. The passive sleep duration
estimates are, therefore, most applicable to populations more
likely to use their smartphones consistently, such as college
students. To mitigate this error in practice, when using this
method for research purposes, participants can be prompted to
turn on or move their phones moments before getting into bed.
Other limitations include that this analysis compared passive sleep
duration estimates to the clinically validated PSQI, but did not
compare passive sleep duration estimates to actigraphy or
polysomnography. Furthermore, our results should be generalized
by replication in other data sets.
In conclusion, our data-driven approach to estimate sleep

duration correlates with survey results. This suggests our method
may be used to capture changes in sleep habits over time. In the
digital phenotyping process, passive sleep duration estimates can
be used in isolation or in conjunction with other data streams to
model actionable metrics such as the PSQI.
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