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Aerodynamic effect for collision-free reactive navigation of a
small quadcopter
Runze Ding 1,3, Songnan Bai 1,3, Kaixu Dong 1 and Pakpong Chirarattananon 1,2✉

The small footprint of tiny multirotor vehicles is advantageous for accessing tight spaces, but their limited payload and endurance
impact the ability to carry powerful sensory and computing units for navigation. This article reports an aerodynamics-based
strategy for a ducted rotorcraft to avoid wall collisions and explore unknown environments. The vehicle uses the minimal sensing
system conventionally conceived only for hovering. The framework leverages the duct-strengthened interaction between the
propeller wake and vertical surfaces. When incorporated with the flight dynamics, the derived momentum-theory-based model
allows the robot to estimate the obstacle’s distance and direction without range sensors or vision. To this end, we devised a flight
controller and reactive navigation methods for the robot to fly safely in unexplored environments. Flight experiments validated the
detection and collision avoidance ability. The robot successfully identified and followed the wall contour to negotiate a staircase
and evaded detected obstacles in proof-of-concept flights.
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INTRODUCTION
Small aerial vehicles have established their presence in several
civilian applications, including additive manufacturing1, logistics2,
and wildlife surveys3. This is attributed to their versatility and
unrivaled accessibility to hazardous or remote locations4. To
accomplish the assignments, the dependence of these robots on
human intervention varies according to their sensing and
computational ability5. Thus far, the levels of control autonomy
achieved by different flying robots strongly correlate with their
sizes. Multirotor vehicles weighing 200−300 g and above have
displayed a certain degree of “cognitive autonomy" as defined in
ref. 5. Equipped with multiple sensors, such as monocular/RGB-D
cameras, LiDAR, or ultra-wideband modules, these robots rely on a
plethora of information to robustly navigate through cluttered
environments and avoid collisions with onboard perception using
visual-inertial odometry6–9.
On the other end of the spectrum, insect-sized aerial robots face

immense challenges when it comes to power and control
autonomy10–14. The aerodynamic and actuation efficiencies, as
well as the energy density of batteries, of small vehicles are
substantially demoted, resulting in limited payload capacity and
endurance5,14,15. This is aggravated by the limitations of sensory
devices in terms of mass, power, and bandwidth. While sensor
quality often degrades with size, the dynamics of small flyers are
inherently faster, calling for sensors with higher sampling rates
and lower latency for stabilization and control14,16. Furthermore,
the hardware and computational power required for vision-based
localization remains too heavy and energy-intensive for small
drones (for example, NVIDIA Jetson Xavier NX module used in
ref. 6 weighs 79 g with the power consumption of 10–20 W while
NVIDIA Jetson TX2 in ref. 7 weighs 154 g with the power
consumption of 8–15 W). For these reasons, sub-gram robots
have yet to exhibit sustained untethered flight even at the level of
“sensory-motor autonomy" (staying airborne or hovering stably).
In between, rotorcraft in the range of 30–100 g can usually

accommodate a minimal sensor suite conventionally deemed

sufficient for sensory-motor autonomy, consisting of an inertial
measurement unit (IMU, including gyroscope and accelerometer),
an optic flow camera, and a range finder (such as a time-of-flight
or ToF sensor)14,17,18. Without using map-based navigation, mobile
and aerial robots can benefit from image motion and optic
flow19,20. Together, an optic flow camera and an emissive ToF
sensor are lightweight and efficient sensors for stabilizing flight
speed and altitude, respectively. At this scale, “reactive autonomy"
has been accomplished. To traverse through cluttered environ-
ments, the robot may employ an insect-inspired wide-field
camera, accompanied by an efficient optic flow-based motion-
sensitive detector21–25 or multiple ranger finders17. Without
dealing with high-resolution images for the construction of
detailed maps, smaller robots with limited payload and computa-
tional capacities can still avoid collisions efficiently.
Recently, other miniature sensory packages have been intro-

duced to supplement or substitute optic flow and a range finder
on top of the minimal sensor suite to enable small robots to sense
the surroundings and evade obstacles. In ref. 26, the authors
developed an audio extension deck, comprising of a piezoelectric
buzzer and four microphones, to imitate bats’ echolocation
method. The strategy has yielded reliable wall detection with a
precision of around 8 cm on a flying robot but with limited
accuracy on the wall direction. Another bio-inspired approach is
based on the behavior of mosquitoes. The authors in ref. 27 cite
the observed nocturnal collision-avoidance mechanism, conjectur-
ing that the self-induced wake, after interacting with a ground or
wall, is a cue of mediated response from mechanosensory
antennae. They assembled a 9.2-g electronic module featuring
five pairs of pressure probes for a palm-sized multirotor platform
and relied on differential pressure data to sense the presence of
floors and walls. Nevertheless, the device in ref. 27 was unable to
measure the distance or direction of the detected surfaces. The
use of differential pressure measurements for surface detection
with a small flying robot is further investigated in ref. 28. The study
shows that multiple pressure measurements, when combined
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with empirical models, provide the ground and wall distance
estimates in free flight with varying degrees of accuracy. However,
the wall distance estimate is relatively imprecise and the detection
alone was not sufficient to prevent the robot from colliding with a
wall due to the destabilizing aerodynamic interactions. Despite
some limitations, unlike ToF sensors and echolocators, the
aerodynamics-based techniques in refs. 27,28 are highly power
efficient as they involve no emission of electromagnetic or
acoustic waves.
Despite the aforementioned developments, robustly avoiding a

collision or achieving reactive autonomy remains a challenge for
small robots with restricted payload capacity. This study offers a
strategy for small rotorcraft to achieve reactive autonomy using a
minimal suite of sensors (an IMU with downward-looking optic
flow and ToF sensors), which has traditionally been regarded as
sufficient only for sensory-motor autonomous flight. In other
words, we efficiently equip aerial robots with the ability to
estimate the distance and direction of a wall without extra sensors
as seen in refs. 17,21,22,26–28. This enables small aerial vehicles to
safely navigate complex environments with minimal sensing.
Similar to refs. 27,28, we exploit the propeller-surface interac-

tions. Previously investigated as ground29–31, ceiling32–36, and
wall37–39 effects (collectively known as the proximity
effect27,28,37,40–42), aerial vehicles exhibit discernible interactions
when they operate near horizontal or vertical surfaces that
oftentimes undesirably lead to crashes if not properly accounted
for28,36,37,39,43,44. Nonetheless, the short-range nature of the
interactions makes it difficult for a robot to robustly detect,
let alone estimate the distance and direction, the presence of a
wall in time for control purposes even when multiple barometric
sensors are used27,28. To overcome the challenge, we introduce a
small quadrotor with ducted propellers as depicted in Fig. 1b and
Movie 1. Through extensive measurements, we demonstrate that
the ducts markedly amplify the wall effect, both in terms of range
and magnitude. The results, after integration with the momentum-
theory-based thrust model and flight dynamics, permit the robot
to reliably estimate the distance and direction of a nearby wall
using solely the sensors required to hover. Subsequently, we
devise a flight controller for the robot to safely regulate its
position against a detected wall without barometers. Hence, the
robot attains reactive autonomy, flying and avoiding collisions in
both indoor and outdoor settings without extra sensors or visual-
inertial navigation.
To summarize, the technical contribution of the work is

threefold. First, we conceive an aerodynamics-based framework

to realize reactive autonomy with a small robot via a minimal set
of sensor suites previously used for realizing hovering flight only.
Second, a physics-based model is combined with experimental
measurements to elucidate the propeller-wall interaction. Third,
the devised thrust model is incorporated with the flight dynamics,
leading to reliable in-flight estimation of wall distance and
direction. This is accompanied by a flight controller that
proficiently stabilizes the robot near a wall, allowing the robot
to react, fly, and navigate safely without a collision in various real-
world settings.

RESULTS
Ducted rotors and proximity effects
We first employ momentum theory (MT) to predict how the thrust
and power of a ducted propeller are influenced by a nearby wall.
This differs from several studies that the wall effect was only
investigated experimentally28,37,41. Then, benchtop experiments
were conducted to validate the derived models.
We consider a propeller of radius R fitted in a duct as featured in

Fig. 2a. The inner radius of the thin duct is assumed marginally
larger than (effectively equal to) the radius of the propeller. This is
to reduce the tip loss and, hence, improve the aerodynamic
efficiency45. A vertical surface is located at the distance d from the
ducted propeller as shown in Fig. 2. In a steady state, thrust T is
generated and the corresponding aerodynamic power is denoted
by Pa. Momentum theory (MT) is applied to derive the relationship
between the propelling thrust and aerodynamic power.
For modeling, the flow is assumed quasi-steady, incompressible,

inviscid, and irrotational with constant density ρ. These conditions
are commonly presumed for similar analyses34. Akin to our
previous work38, the scenario depicted by Fig. 2a differs from a
standard application of MT46 thanks to the presence of the wall,
which is conjectured to break the axial symmetry of the flow. As a
result, it is hypothesized that the infinitesimally thin effective
propeller disk that resides within the duct may not necessarily
coincide with the physical propeller plane, but tilted by θt.
Subsequently, the associated thrust vector T, perpendicular to the
effective propeller disk of area A= πR2, deviates from the vertical
axis by θt. Similarly, the direction of the terminal wake may make a
non-zero angle θ∞ from the vertical. To retain the conservation of
energy assumption, the drags induced by the proximate surface
and the duct are neglected.
As detailed in Methods, the application of momentum and

energy conservation principles leads to the following relation
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Fig. 1 Collision-free navigation by a rotorcraft with ducted propellers. a The robot with only an IMU and ventral optical flow and ToF
sensors is able to avoid a wall collision through the sensing of wall-induced aerodynamic force. Unlike a ToF sensor, the aerodynamics-based
method is multi-directional and is robust against transparent (glass) or reflective (mirror) surfaces. b Photograph of the robot, featuring four
ducted rotors.
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between the thrust magnitude T and aerodynamic power Pa.

T ¼ γ
ffiffiffiffiffiffiffiffi
2ρA

p
Pa

� �2
3
; (1)

where γ ¼ ðcos θ1= cos θtÞ
2
3 can be regarded as a factor capturing

the thrust and wake directions. Without the wall or far away, the
wake and thrust become vertical: θt, θ∞→ 0 and γ→ 1, and the
aerodynamics power reduces to Pa ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
T=2ρA

p
, matching the

result of the classical MT. Near the surface, the value of γ deviates
from unity and depends on the distance d and physical
parameters of the duct and the propeller.

In the context of a multirotor robot, we separately inspect the
horizontal Th and vertical Tv components of the thrust. They can
be deduced from Fig. 2a and (1) as

Th ¼ T sin θt ¼ γh
ffiffiffiffiffiffiffiffi
2ρA

p
Pað Þ23;

Tv ¼ T cos θt ¼ γv
ffiffiffiffiffiffiffiffi
2ρA

p
Pað Þ23;

(2)

where γh ¼ γ sin θt and γv ¼ γ cos θt are the coefficients of
proximity effects defined to capture the effects of the duct and
distance to the surface. Introducing the normalized distance
d ¼ d=R, we may express γh(θt, θ∞), γv(θt, θ∞) as γhðdÞ; γvðdÞ.

Fig. 2 Experimental measurements of the proximity effects. a A schematic drawing shows the effective propeller disk and the wake
interaction when a ducted propeller is in the vicinity of a wall. b Photo of the platform used for the force and power measurements. The
ducted propeller is affixed on a load cell and mounted on a motorized stage. Different driving commands and distances to the surface were
tested. The inset shows a drawing of the setup from another perspective. c Force and power measurements of an unducted propeller. d Force
and power measurements of a ducted propeller. Four command levels were applied. e Normalized forces of the unducted propeller.
f Normalized forces and fitted models of the proximity effect belonging to the ducted propeller.
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Therefore, the relationship between the aerodynamic power and
thrust components are captured by γhðdÞ and γvðdÞ.

Benchtop characterization of the Wall effect
To validate the MT-based model captured by (2), we devised a
benchtop setup shown in Fig. 2. As detailed in Methods, a ducted
propeller was mounted on a load cell next to a vertical surface.
The setup was placed on top of a linear motorized stage. Force,
torque, and power measurements were taken at different
distances d from 1 to 200 mm at the step of 1 mm. Four throttle
commands (from 40 to 70%) were used at each distance. The
experiments were repeated without the duct as benchmark
measurements.
The measurements of thrust and electrical power (product of

the supplied voltage and measured currents) in two cases (with
and without the duct) are plotted against the normalized distance
d in Fig. 2c and d. For both cases, the electrical powers remain
constant for each thrust command regardless of d. At a large
distance (d > 4), compared to the unducted propeller, a slight
increase in the thrust generated by the ducted propellers is
observed, likely due to the reduced tip-loss as reported in ref. 45.
The increase of around 3−5 g somewhat compensates for the 7-g
mass of each duct, making their impact on flight efficiency
insignificant when used with the robot.
Next, focusing on the near-wall measurements (d<3), the

proximity effects slightly affect the overall thrust magnitude T.
The horizontal thrust Th grows as d ! 0 whereas the vertical
thrust Tv remains relatively unchanged. As a result, the thrust
vector tilts towards the wall as described by positive θt. The
proximity effects are noticeably more pronounced with the
ducted propeller (θt as large as 10° versus lower than 5° for the
unducted propeller). In other words, the duct markedly strength-
ens the proximity effects for all throttle commands, making it
possible for the robot to use the effect for reactive navigation as
shown below.
The findings in the form of (2) cannot be readily applied to the

obtained benchtop measurements as the aerodynamic power Pa
is unavailable. Nevertheless, as explained in refs. 34,38, with the use
of an electronic speed controller (ESC), the mappings between the
throttle commands, aerodynamic powers, and electrical powers
are one-to-one. This is in accordance with the experimental
findings in Fig. 2c and d, which clearly demonstrate a constant
electrical power for each throttle command. Furthermore, for each
throttle command (and its associated Pa), we elect T0 ¼ffiffiffiffiffiffiffiffi

2ρA
p

Pað Þ23 to denote the nominal thrust value as the magnitude

of Tv far from a vertical surface. Doing so, (2) simplifies to

Th ¼ γhðdÞT0; and Tv ¼ γvðdÞT0: (3)

Subsequently, γhðdÞ ¼ Th=T0 and γvðdÞ ¼ Tv=T0 can be deduced
from the benchtop measurements. For each throttle command, T0
is evaluated by averaging Tv at large values of d (4:0 � d � 5:0).
As presented in Fig. 2e and f, the values of Th/T0 and Tv/T0 from
four throttle commands collapse together, corroborating the MT
analysis and (3) on the existence of γhðdÞ and γvðdÞ for both
ducted and unducted propellers.
For estimation and control purposes, analytic forms of γhðdÞ and

γvðdÞ are preferred. Unfortunately, they cannot be directly derived
from MT. While it might be feasible to employ blade-element
theory and/or computational fluids dynamics for the task, the
outcomes are likely dependent on the blade geometry and other
physical parameters33,34 and become overly complex due to the
duct and wall interactions. Hence, we propose empirical models
based on the measurements in Fig. 2c and d,

γh d
� � ¼ a1b

d
1 ; γv d

� � ¼ 1þ a2b
d
2

(4)

where ai > 0 and bi∈ (0, 1) are numerical coefficients. In this form,
γh approaches zero and γv approaches one when d ! 1 as
anticipated. The least squares regression gives γh ¼ 0:21ð0:34Þd
and γv ¼ 1þ 0:06ð0:54Þd with the R squared values of 0.95 and
0.71, respectively. The fitted results are shown in Fig. 2c. Despite a
decent fit, the R squared value for γv is relatively low. This is
because the variation of γv (≈0.06) over the entire range of d is
small in comparison to the spread of data points around the best-
fit line (≈± 0.02).

Rotorcraft with ducted propellers
To make use of the proximity effects, a quadrotor with ducted
propellers (R= 38 mm) presented in Fig. 1b is constructed. The
dynamics of the robot when it operates in the vicinity of a vertical
surface are described. Then, the details of the prototype are
provided.
For dynamic modeling, the robot with mass m and four ducted

propellers is assigned the body-fixed frame B ¼ fxB; yB; zBg as
seen from the top in Fig. 3a. Without loss of generality, the inertial
frame, defined as W ¼ fxW ; yW ; zWg, is assumed located on the
wall with yW being the surface normal. The robot’s position with
respect to W is denoted by p= [x, y, z]T. The rotation matrix R
relates the attitude of the body frame to the inertial frame.
With four rotors, we let subscript i∈ {1, 2, 3, 4} label the ith

propeller as illustrated in Fig. 3a. Further, we let ri be the vector
from the center of mass to the ith propeller defined in B and ei’s be

Fig. 3 Wall detection and navigation methods. a Coordinate frames and robot’s configuration. The world frame W is located on the wall,
with yW being the surface’s normal. b Structure of the reactive navigation methods, consisting of the wall distance estimation and control. The
pipeline includes an EKF for wall detection and a flight controller for flight stabilization. The estimation only needs onboard feedback from an
IMU and downward-looking optic flow camera and ToF sensor. In wall following-based navigation, the decision module navigates the robot to
the goal unless it detects an obstructing surface, in which case it directs the robot to travel along the wall to avoid a collision. Alternatively, the
field-based method dynamically evaluates a collision-free path to negotiate obstacles.
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basis vectors. It follows that yi ¼ y þ eT2Rri � R is the distance
between the ith propeller and the wall.
Due to the anticipated rotor-wall interactions, the force and

torque generated by the vehicle are slightly different from
conventional rotorcraft in free flight. For the ith propeller with
the thrust command T0,i, the nominal thrust vector is T0,ie3 with
respect to the body frame. To obtain the actual thrust in W , we
assume only the vertical component (normal to the wall surface)
contributes to the proximity effects (this is valid when the robot is
approximately upright). Hence, T0,ie3 must be not only projected
but also adjusted as

TW;i ¼ T0;i

1 0 0

0 1 �γhðyiÞ
0 0 γvðyiÞ

2
64

3
75Re3 ¼ T0;iΓ iðyiÞRe3; (5)

where we have defined matrix Γi(yi) to reflect the influence of the
wall. Eq. (5) assumes the proximity effects result in the
amplification of the vertical component of the thrust by a factor
of γv(yi) and adds the horizontal force attracting the propeller to
the surface (in the− yW direction) through γh(yi). This wall
attraction may destabilize the robot as mentioned in refs. 27,28,43

if not compensated for. Notating TW ¼ P4
i¼1 TW;i as the total

thrust vector in the inertial frame, the translational dynamics of
the vehicle follows

m€pþmge3 ¼ TW : (6)

As anticipated, TW converges to Re3
P4

i¼1 T0;i when y→∞.
Meanwhile, the generated torque, in the body frame, can be
computed by projecting TW,i back to the body frame and including
rotors’ locations and spinning directions as

τ ¼
X4
i¼1

½ri � ´ þ ð�1Þiþ1cτ I3 ´ 3
� �

RTTW;i (7)

where ½ri� ´ is the matrix representation of ri × and cτ is the thrust-
to-torque coefficient accounting for the rotor drag. Each
propeller’s spinning direction is taken into consideration by
(−1)i+1. The formulation exploits the fact that the proximity effect
does not affect the thrust location as shown in Supplementary
Note 1 and Supplementary Fig. 1. Consolidating with (5), (7) can
be manipulated into the form τ= BT0, where B is a 3 × 4 matrix
and T0 ¼ ½T0;1; T0;2; T0;3; T0;4�T . Due to the proximity effects, B is
not constant but dependent on y and R. Lastly, the attitude
dynamics of the robot is

J _ωþ ω ´ Jω ¼ BT0; (8)

where J is the moment of inertia, and ω ¼ ½ωx ;ωy ;ωz�T is the
body-centric angular velocity.
The prototype with four ducted propellers is shown in Fig. 1b.

The actuation components are identical to the parts used for the
benchtop measurements. With a flight control board (Crazyflie
Bolt), a battery (2S LiPo), and an onboard sensor suite (Crazyflie
Flow Deck V2), the robot weighs 280 g and is capable of
producing over 440 g of thrust.
Without a camera for visual odometry, the robot is equipped

with an IMU. In addition, the Flow Deck consists of downward-
looking ToF and optical flow sensors. Consequently, the ToF
sensor directly measures the robot’s altitude z. Similarly, the
optical flow sensor nominally outputs a two-dimensional robot-
centric perceived velocity [nx, ny], scaled by the distance
(altitude)47, as

nx ¼ ðeT1RT _pÞz�1 � ωy; (9)

ny ¼ ðeT2RT _pÞz�1 þ ωx; (10)

where the contribution from the rotation (ωx, ωy) is taken into
consideration. The integration of the IMU, ToF, and optical flow

sensors enables the robot-centric translational velocity (
eT1R

T _p; eT1R
T _p) to be deduced.

Strategy for wall detection and near-wall flight control
Here, we first present the framework for estimating the distance to
a wall y and its relative orientation ψ. Without a direct distance
measurement or vision, we only rely on inertial and optical flow
sensors. This is achieved by an Extended Kalman Filter (EKF). Then,
a method is proposed to stabilize the robot at the desired position
and orientation with respect to the detected wall.
In order to estimate the distance and direction of a vertical

surface nearby, we introduce the state tuple:

x :¼ p; _p;R;ωf g (11)

where p ¼ ½y; z�T contains the distance to the wall y and the
altitude z. Remark that the position of the robot in the horizontal
direction parallel to the surface of the wall is not included as it is
not observable. Since R is defined with respect to the wall, the
surface direction is implicit. The time evolution of x is provided by
the translational (6) and rotational (8) dynamics as described in
Methods. After each iteration, they are updated via the onboard
feedback through the measurement vector y ¼ ½aTm;wT

m;n
T
m; zm�T

according to the associated measurement model y= h(x)+ v. The
implementation allows us to use only the onboard feedback to
estimate x, including the wall distance and direction. The
estimated distance can be used to stabilize the position of the
robot in the proximity of a wall.
To regulate the position of the robot near the wall, we let pd

denote the desired position and devised a flight control scheme to
minimize the position error p− pd. To do so, the effects of the
surface on the generated thrust shown in (6) must be dealt with. To
simplify the process, we regard the proximity effects as modeling
errors or disturbances. To make up for this, a flight controller based
on the incremental nonlinear dynamic inversion (INDI) is employed
thanks to its inherent ability to compensate for modeling errors48.
This is because the controller re-adjusts the commands based on the
sensory feedback until the errors are eliminated.
Using the estimated wall location, optic flow feedback, and

attitude of the robot, the INDI position controller and the inner
loop attitude controller determines the individual rotor com-
mands for stabilizing the robot as detailed in Methods. In addition,
the yaw control is included for the robot to retain its heading. The
cascaded control loops stabilize the vehicle to the desired position
setpoint pd and heading angle ψd. The approach only requires the
distance and direction of the wall, which are estimated from
onboard feedback by the EKF as explained earlier.
To verify the estimation algorithm and the INDI controller using

the robot depicted in Fig. 1b, the experiments were first carried
out in the laboratory setting for complete ground truth measure-
ments. To do so, the robot communicates with a ground station
computer (Ubuntu 18.04) running Python scripts for the position
control through radio. To accelerate the implementation, the
estimator was first implemented with Python on the ground
computer with a sample rate of 100 Hz. Later, we ported the
estimator over to the onboard flight controller for the final set of
experiments in order to demonstrate the computational efficiency
of the scheme. In the laboratory, a motion capture system
(MoCap) was employed to provide ground truth position and
attitude data.

In-flight distance estimation and INDI position control
To independently verify the effectiveness of the EKF estimator and
the INDI controller, we first carried out a near-wall flight with both
the estimator and the controller. However, the controller used
position feedback from the MoCap. This way, the performance of
the estimator and controller can be separately tested.
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After taking off at ≈40 cm from the wall, the robot was
commanded by the INDI controller at t= 5 s to stay at an altitude
of 1.0 m and the distance yd= 18 cm from the wall while
maintaining the orientation setpoint of ψd= 0° for 15 s. In this
configuration, the distance between the surface and the nearest
ducted propeller was ~5 cm. At t= 25 s, we varied the setpoint
position according to the sinusoidal function yd ¼ 0:18�
0:03 sinðt � 25Þ m for 25 ≤ t ≤ 41 s. Thereafter, the setpoint yaw
angle ψd was varied by 90° in 30 s twice, starting at t= 41 s and
t= 66 s. This translates to the change in the relative wall direction.
In between (when ψd=− 90°), the position setpoint repeated the
former sinusoidal pattern. The estimated and tracking results are
compared with ground truth distance and orientation in Fig. 4a.
The distances from the wall to individual propellers (yi’s) are
shown in Supplementary Fig. 2.
It can be seen that, regardless of the robot’s yaw orientation

(wall direction), the estimated distance and yaw angle (Fig. 4a)
remained accurate when the robot was within 20 cm from the wall
(or ≈10 cm from the wall to the nearest propeller). During this
period, the shortest distance between the tip of the robot to the

wall was ~2 cm. The root mean square errors (RMSEs) of ŷ and ψ̂,
over a 60-s period (t = 10 s to t = 70 s), were 1.8 cm and 13.6°.
When it comes to the flight performance, the position and yaw
errors were also minor for collision avoidance purpose: 1.7 cm and
0.4°. Together, the results manifest the reliability of the proposed
aerodynamic model, devised estimator, and the robustness of the
implemented INDI controller.
To highlight the advantage of our aerodynamics-based method

over the ToF—a lightweight emissive device for detecting nearby
obstacles with high accuracy and low cost, we installed a ToF
sensor (Crazyflie, Multi-ranger deck) on the side of the robot to
measure the wall distance in the direction perpendicular to the
robot’s heading. Since the ToF sensor is directional and vulnerable
to reflective or transparent surfaces, we compared three types of
wall surfaces in this experiment: wooden board, transparent
plexiglass, and mirror.
The previous flight trajectory was repeated with the three

surfaces. The ground truth distance and raw ToF measurements
from these flights are plotted in Supplementary Fig. 3 (yaw angle
omitted). As anticipated, the ToF sensor takes an accurate

Fig. 4 Estimation and control of wall distance and direction. a Plots of the robot’s position and orientation (reference, actual, and estimated)
with respect to the wall. In this flight, the control was based on MoCap feedback. The trajectory highlights the estimation performance at
varying distances and angles. b Plots of the robot’s position and orientation (reference, actual, and estimated) with respect to the wall. In this
flight, the control was entirely from onboard feedback.
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measurement with a wooden surface. Despite of this, the output
was not usable when the robot turned away from the surface
owing to the directionality. It is not surprising that the emissive
sensor cannot correctly detect a plexiglass sheet or a mirror as the
beam is deflected or reflected. These limitations make the
proposed aerodynamics-based strategy a more reliable solution
in particular circumstances.
Then, we conducted several flights to investigate the relation-

ship between estimation performance and distance. During each
flight, the robot remained in place with ψd= 0° for 60 seconds.
The hovering flight was repeated 11 times with different position
setpoints, ranging from 13 to 23 cm. The recorded trajectories are
shown in Supplementary Figs. 4–7 and the statistics are displayed
in Fig. 5. The results indicate that the distance errors were mostly
below 2 cm when the robot was within 20 cm of the wall. As
shown in Fig. 5b, relatively small angle errors were also observed
when the robot was within this proximity to the wall (absolute
errors, instead of signed errors, are shown due to the anticipated
symmetry when ψd= 0°). We believe the errors at large distances
were due to the weakened proximity effect. For instance, a
distance of 0.2 m from the wall corresponds to d ¼ 2:1 for the
nearest propeller when ψd= 0° (Fig. 2f). This limitation in the
sensing range affects the reliability of the estimates beyond 20 cm
from the wall.

Flights with distance estimation and control
The control autonomy is demonstrated by directly using the
estimated state for controlling the distance between the robot
and the wall. In this flight (Movie 2), the robot was commanded to
a start point with MoCap feedback, and the onboard position
controller was activated at t= 5 s. However, yaw angle (ψ) and
position feedback from the MoCap in the direction parallel to the
wall (x direction) were still used in order to restrict the robot to the
flight area. The rest of the reference trajectory is identical to the
flight in Fig. 4a.
We first inspect the estimator’s performance. As detailed in

Fig. 4b and Supplementary Fig. 8, the error of the position
estimate (the difference between ŷ and y) increased noticeably to
more than 3 cm when the actual y is over 20 cm in a few
occasions. This was due to the diminished wall effect as illustrated
in Fig. 5. The estimation errors stayed below 2–3 cm otherwise.
Simultaneously, the yaw estimate generally stayed within 20° to
the actual yaw angle ψ. Since the yaw estimation ψ̂ corresponds to
the wall direction and it was not used for control as indicated by
(35) (Methods), ψ and ψ̂ do not coincide.
To assess the controller’s effectiveness, it can be seen that the

estimated distance closely follows the references (the error was
mostly below 2 cm). Overall, the results validate that the

combined controller and estimator are highly reliable when both
are implemented simultaneously.

Reactive navigation with aerodynamics-based collision
avoidance
We propose two simple navigation methods that leverage the wall
detection capability. The first method is inspired by bug
algorithms49, which use wall-following behavior to reactively
avoid obstacles and explore the environment or reach the goal.
The method consists of a high-level controller that steers the
robot toward the destination. If an obstacle is detected, the robot
maintains a safe distance and follows the surface tangentially until
it can resume its original direction. The second method is based
on attractive and repulsive vector fields50,51. The robot is attracted
to the goal while repelled from any detected surfaces. This
method enables the robot to take more direct paths to its
destination, but it requires marginally more complex computation
than the first approach.
An overview of the wall-following navigation method is

depicted in Fig. 3b. The high-level controller makes the decision
whether the robot is in free-flight or wall-following mode and it
determines the position setpoint (pd and higher order derivatives)
for the INDI controller accordingly. To do so, the EKF estimator
constantly performs wall detection. We adopt the moving average
of the estimated distance as an indicator, defined as yðtÞ ¼
ð1=ΔtÞ R t

t�Δt ŷðτÞdτ with Δt being the time window. The use of a
moving average of ŷ instead of ŷ directly prevents the controller
from erratically switching between the two navigation modes.
When y falls below the threshold, the robot is instructed to enter
the wall following mode by keeping a safe, constant separation
d* < d† from the surface. This is by commanding the setpoint
eT2pd ¼ d�; eT2 _pd ¼ 0 (be reminded that, by our definition, the
orientation of the inertial frame W is with respect to the detected
wall and this may change during the flight). Meanwhile, the speed
parallel to the wall is controlled to be constant v*, with the
direction towards the ultimate goal or eT1 _pd ¼ v�. From the
vehicle’s perspective, this means the robot keeps a fixed distance
in the direction of the estimated surface (described by ψ̂) and a
constant speed in the perpendicular direction.
When no surface is detected nearby (estimated wall distance y

is higher than the threshold d†), the robot is commanded to fly
towards the destination or desired direction. In the experiments,
we present two feasible schemes for the free-flight mode. The first
is when position feedback is available (GPS or MoCap measure-
ments). In this case, the position error p− pd and their time
derivatives required by the controller (Eq. (26)) are directly
available. Second, in indoor settings with no positioning, a pilot
may prescribe the flight direction when there is no collision risk (

Fig. 5 Estimation errors versus distance from the wall. Error bars indicate the range of one standard deviation. a Mean estimation errors of
distance are plotted against the average distance from the wall. b Mean estimation errors of orientation are plotted against the average
distance from the wall.
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y < dy). In this situation, the velocity setpoint _pd is chosen and
other controller gains (Kp and Ki) in (26) are set to zero.
The vector field-based method for collision avoidance is

outlined in Fig. 3b. In this case, the setpoint velocity of the INDI
controller _pd is directly provided as a vector sum of two

components, vþðŷÞ and v�ðŷÞ, directing the robot towards the
goal while repelling it from obstacles.
To pull the robot to the goal, the attractive field is defined as a

uniform velocity vector with vþðŷÞj j ¼ vþ and the direction of v+
points to the goal. The third element of v+ is zero for maintaining

Fig. 6 Wall-tracking maneuvers in both laboratory and real-world environments. a Lateral and frontal photos showing the robot traveling
parallel to a vertical wall with onboard feedback when ψ = 30°. b Trajectories of wall-tracking flights when ψ (wall directions) takes different
values. In each flight, the robot approached the wall and traveled along the wall by about 1.8 m, maintaining a constant distance of d*= 0.17
m to the wall. c Lateral and frontal photos showing the robot flying parallel to a wall along a corridor with onboard feedback. The robot
traveled from right to left by about 2.5 m in 25 s. d Photo of an outdoor wall-tracking flight along a transparent and reflective surface.
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a constant altitude. We chose v+= 10 cm ⋅ s−1. This becomes the
setpoint speed of the robot when it is far from obstacles.
The repulsive field keeps the robot away from a detected

obstacle based on the current estimates fŷ; ψ̂g. The magnitude of
v�ðŷÞj j ¼ v� ¼ ð9 ´ 105 m � s�1Þð1:8 ´ 10�35Þŷ was experimentally
tuned such that v− converges to a very high value, 9 × 105 m ⋅ s−1,
as ŷ ! 0 and diminishes exponentially as ŷ � 1. The vector v− is

normal to the surface direction. That is,

v�ðŷÞ ¼ v�ðŷÞ sin ψ̂ v�ðŷÞ cos ψ̂ 0
� �T

; (12)

such that _pd ¼ vþ þ v� is dynamically evaluated online based on
the current estimates of an obstacle. In the meantime, the
proportional (and integral) component of the INDI position
controller in (26) is modified and saturated so that it only

Fig. 7 Wall tracking flights with a corner in both laboratory and real-world environments. a Composite image depicting the robot
negotiating a corner in a wall-tracking flight. b The trajectory of the flight in (a). c Onboard estimation results of the flight in (a). d Composite
photo showing the wall-tracking flight along a corner in a corridor. e Onboard estimation results of the flight in (d).
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proportionally repulses the robot away from the surface when
ŷ < d� ¼ 19 cm. Unlike the wall-following approach earlier, there is
no force directly attracting the robot to the surface. Neglecting the
proportional component, the expected trajectory can then be
deduced from the vector field: _pd ¼ vþ þ v�. The critical distance
when vþðŷÞj j ¼ v�ðŷÞj j is 17.1 cm. This threshold approximately
determines whether the attractive or repulsive field dominates.

Collision avoidance flight
We experimentally apply the proposed collision avoidance and
navigation strategy in steps. This begins with the wall following

components in both indoor and outdoor settings. After that, a
high-level decision-making controller is added to realize wall-
following navigation. As suggested by the results in Fig. 4d, we set
the time window Δt for y as 1.5 s, the decision threshold as d†= 20
cm, and the wall tracking distance of d*= 17 cm. This ensures the
robot remains sufficiently close to the wall to yield reliable
distance estimates (d<2:1). The wall tracking speed v* is either 10
or 25 cm ⋅ s−1 depending on the experiments. The robot’s heading
angle was kept constant by choosing ψd= 0°. We then present a
real-world example entailing a robot tracking a wall and traversing
a staircase without vision. Lastly, more collision-free flights are

Fig. 8 Collision avoidance and exploring flights in laboratory and real-world environments. a A short flight of the robot bypassing an
obstacle to reach the goal in a laboratory. b The trajectory of the flight in (a). c Plots of the estimated wall distance and direction, covering the
periods of free-flight and wall-following modes. d Photo of a collision-free flight in the corridor. When encountering a wall, the robot traveled
along the contour. e Plots of the estimated wall distance and direction showing two wall-following sections. f A composite image displaying
the robot exploring a staircase by wall tracking. The robot took off on the upper floor and followed the wall to safely travel downstairs. g Plots
of the estimated wall distance and direction illustrating the changing surface direction (relative to the robot’s body frame).
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demonstrated with a field-based algorithm in complex scenes
with rounded and flat obstacles.
We first verify the wall tracking strategy (Movie 3), employing a

sheet of foam board (2.4 × 0.9 m) as an artificial wall. The robot
operated autonomously using only onboard feedback and the
MoCap was only for ground truth measurements except for the
beginning. In the experiment, the robot took off with ~50 cm gap
from the wall and maintained an altitude of 1.0 m with the yaw
angle ψd= 0° by initially relying on the MoCap feedback. It then
approached the wall with a constant velocity of 10 cm ⋅ s−1 and
transitioned to the wall-tracking mode and fully leveraged the EKF
estimates when the surface was detected or y<dy ¼ 20 cm.
As plotted in Fig. 6b, in the wall following regime, the robot

glided along the wall for ≈1.5 m at the setpoint speed v*= 10
cm ⋅ s−1, retaining the distance of 17 cm (a 5 cm gap between the
ducted propeller and wall) using only the onboard feedback.
During this period, the RMS position control error y− yd is 0.4 cm.
To inspect the influence of ψd on the tracking performance, we
repeated the same experiment with ψd= 15°, 30°, and 45°. The
results, presented in Fig. 6a and b, corroborate that the wall
direction does not significantly affect the behavior unless the error
in the angle estimate is prominent. The RMS errors of the wall

distance are 3.2 cm for ψd= 15°, 1.0 cm for ψd= 30°, and 1.3 cm for
ψd= 45°. For the case with ψd= 15° and ψd= 45°, the higher
errors of 3.2 cm and 1.3 cm are likely associated with the
inaccurate angle estimate.
Then, the strategy was applied in the absence of the MoCap

system in both indoor and outdoor environments. For indoor
conditions, the flight was carried out in the corridor of a building.
The robot took off in the middle of the corridor (~2 m wide) and
maintained an altitude of 0.8 m using its ventral ToF sensor. It was
then remotely commanded to fly toward a wall by a user. After the
wall was detected, the robot avoided a collision and followed the
wall contour over 6 m in 27 s (v*= 25 cm ⋅ s−1, ψd= 0°) as shown
in Fig. 6c. A similar flight was replicated outdoors at a building
exterior with a glass (transparent) wall (Fig. 6d). The robot traveled
safely along the surface over 2.5 m in 18 s. Together, the outcomes
confirm that the distance estimation and control method stays
sufficiently robust when the robot moves along the surface. Unlike
emissive sensors (ToF), the aerodynamics-based approach is non-
directional and material-independent.
Next, we investigate the reaction of the robot when it

encounters two surfaces intersecting with an obtuse angle. Since
the proximity effect model and the estimation method assume

Fig. 9 Field-based collision avoidance flights in cluttered environments. a A drawing illustrating the composition of the velocity field (not-
to-scale). The resultant field is an interplay between the attractive and repulsive fields. An example of an expected trajectory is shown. b A
composite image displaying the robot evading three obstacles in the path. c Plots of the estimated wall distance and direction during the
flight in (b). d Plots of the estimated wall distance and direction during the flight in (e). e A composite image showing the robot flying through
rounded and flat surface obstacles.
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the presence of only one wall, it remains unclear how the
estimator and the robot would react when it flies into such corner.
The test was first conducted in the flight arena with two

surfaces formed by 120 × 90-cm foam sheets making a 95° corner
(approximately perpendicular) as seen in Fig. 7a–c. Similarly, the
robot initiated the flight with MoCap feedback, and it traveled
along the first wall with v*= 10 cm ⋅ s−1 at an altitude of 1.0 m
using the EKF estimates, with other operating conditions identical
to previous experiments. As the vehicle neared the second
surface, the estimated ψ̂ gradually shifted (Fig. 7c) from 0° to −90°.
Thanks to the closed-loop distance control, the estimated distance
ŷ did not deviate much from the setpoint d*. The robot kept a safe
distance while it negotiated the corner as shown in Fig. 7b. The
trend continued as the robot departed the first wall and followed
the second wall.
When executed in a building corridor (Fig. 7d), the robot

produced a similar reaction. It detected the corner as a gradual
change in direction while staying away from both walls, resulting
in a collision-free flight. We may conclude that practically the
robot deals with a corner as a progressive change in the surface
direction. This allows the robot to avoid a collision in such
scenarios without explicitly modeling the aerodynamic forces
caused by two intersecting walls.
Having demonstrated reliable wall-following maneuvers, we

expand the flight to include a simple navigation component
through the use of a high-level controller for the robot to avoid
obstacles while traveling to the desired location or in the
preferred direction. A series of experiments were conducted. This
begins with a simulated situation in a MoCap-equipped lab. The
robot was provided with real-time position feedback and
instructed to head towards the goal that is ≈2.8 m away from
the starting point. In between, we placed an obstacle with a
convex corner formed by two surfaces as illustrated in Fig. 8a and
b.
As visualized in Fig. 8b and c, the robot initially headed directly

to the goal after liftoff while the onboard estimation algorithm
was also active. When a surface was detected (y<dy ¼ 20 cm), the
high-level controller enabled the wall-tracking mode using the
estimated distance and the robot glided along the wall with
v*= 25 cm ⋅ s−1. After passing through the corner, the estimated
distance quickly grew beyond the threshold and the robot
reverted back to free-flight mode. Shortly after, it safely reached its
destination. The total flight time of 27 s includes 4 s spent in the
wall-following mode.
A similar flight was enacted in an indoor corridor without

MoCap feedback. As displayed in Fig. 8d and e, the robot
attempted to reach the far end of the corridor based on the
direction provided by a human pilot. However, it was partially
blocked by a wall at the starting location. Without prior knowl-
edge of the surrounding, a velocity command was sent to the
robot to pilot it toward the desired position. When encountering
the wall (t= 3 s), it entered the wall-tracking mode and
circumvented it without crashing at the speed v*= 20 cm ⋅ s−1.
However, without positioning or the Earth’s magnetic field, the
travel direction along the wall was manually provided by the
human pilot. After the wall had disappeared, the robot returned to
cruising and approximately maintained its travel direction until it
faced another surface at t= 27 s. It reliably identified the wall and
adjusted its travel direction accordingly before we terminated the
flight at t= 42 s.
A more challenging navigation task involving an exploratory

flight over a staircase is illustrated. In this instance, the robot
tracked a curved wall before descending a flight of stairs. In this
example, the vehicle followed the wall for an extended period
without leaving the surface. As depicted in Fig. 8f, the robot took
off on the upper floor and it was piloted to fly at a speed of 10
cm ⋅ s−1 to find a nearby surface. After identifying the wall, it
initiated the wall-tracking process and retained the flight speed of

10 cm ⋅ s−1 with d*= 15 cm. The vehicle subsequently stayed
adjacent to the surface for over 70 s. In this period, it flew along a
1.2-m wide glass panel and gradually executed a complete U-turn
(≈1.6 m in radius) in ~30 s. This is feasible as the estimated surface
direction was constantly updated. As plotted in Fig. 8g, the
estimated wall direction changed from 0° to 180°. At the end of
the turn, the robot negotiated the stairs to arrive at the lower
level. During the descent through steps, the downward-looking
ToF sensor stabilized the perceived altitude, resulting in a
relatively choppy motion. Despite this, the distance estimator
and controller remained effective (Fig. 8g). This wall-following
approach can be readily extended for exploring unknown space or
even constructing a simple map as illustrated in ref. 17. Therefore,
this staircase experiment manifests the robustness of the strategy
as well as the capability of the robot to autonomously explore a
less structured environment in the absence of vision.
Finally, we realized collision-free flights in complex scenes with

several isolated obstacles with the proposed field-based algorithm
(Movie 4). Motivated by refs. 52,53, we artificially constructed
cluttered environments with rounded (radius: 0.8 m, relatively
large compared to the size of the robot to comply with the flat-
surface assumption of the estimator) and flat obstacles (Fig. 9).
Unlike previous examples, in which the estimator was implemen-
ted as a Python script on a ground computer for rapid
deployment, we ported the EKF-based estimation scheme over
to the onboard flight controller (Bitcraze, Crazyflie Bolt 1.1
powered by Cortex-M4, with the code written in C) to manifest
the computational efficiency of the method.
In the first scenario, the constant attractive field induces the

robot to fly north and negotiate around three rounded obstacles.
Based on the environment, we can pre-construct the field map
and predict the anticipated trajectory based on the starting
location as visualized in Fig. 9a (without the knowledge of the
surrounding, the robot is deprived of this information). In the
actual flight (Fig. 9b), the repulsive field v− was computed online
based on the current wall estimates (Fig. 9c), permitting it to avoid
a collision in the 35-s flight.
The second demonstration involves one rounded obstacle and

one planar surface. Similarly, the robot stayed away from any
detected surfaces with the minimum ŷ in the 20-s flight of 19 cm
(Fig. 9d). As illustrated in Fig. 9e, the flat surface re-directed the
robot away from the goal direction. The repulsive field forced the
robot to circumvent the obstacle before safely reaching the goal.

DISCUSSION
In this work, an aerodynamics-based collision avoidance strategy
is proposed for a small ducted rotorcraft. This is accomplished by
leveraging the flow interaction between spinning propellers and a
surface. The propeller ducts are shown to significantly reinforce
the proximity effect and the observation from the benchtop
measurements is supported by the momentum theory analysis.
The modeled change in vertical and horizontal force components
enables us to incorporate the contribution of this surface-induced
aerodynamic effect into the flight dynamics. Therefore, we
develop a Kalman filter to estimate the distance and orientation
of a nearby wall without any visual feedback. The robot solely
relies on an IMU and a suite of ventral ToF and optic flow sensors
to localize itself with respect to the wall. Following this, an INDI
controller is devised for the robot to maneuver safely in the
vicinity of a wall, taking advantage of the inherent robustness
against modeling errors. With the ability to localize and regulate
its position against a detected surface, we employ a simple
decision-making rule for the robot to alternate between wall-
tracking and free-flight maneuvers based on collision risk.
Alternatively, a field-based path-planning method can also be
used for obstacle avoidance. Thanks to these, the robot is able to
navigate safely with reactive autonomy, using only the same set of
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sensors required for sensory-motor autonomy. If deployed with
established bug algorithms49 for complete wall-following beha-
viors, the robot has the potential to be used for exploring
unknown environments in swarms as demonstrated in refs. 17,52.
Together, the collision avoidance strategy was thoroughly

verified via a series of demonstrations in both controlled and
field environments, including an exploratory flight in a staircase.
The results convincingly illustrate the reliability and effectiveness
of the method. For other rotorcraft to employ the developed
obstacle avoidance strategy, one must first construct and verify
the near-wall thrust model. This is followed by integrating the
obtained force and torque mapping into the dynamics for
estimating and avoiding collisions. However, wider adoption of
this method is subject to addressing limitations and open
questions that remain, such as the constraint on sensing range,
the ability to deal with moving obstacles, and scaling of
aerodynamic forces to different vehicle sizes. These outstanding
issues are briefly discussed as folows.
As evidenced by the flight experiments, the effective wall

sensing range is restricted to ~2.1 rotor radii (8 cm or less) from a
surface to the nearest rotor. While the range is lower than
conventional ToF sensors, the proximity sensing approach is
insensitive to surface materials and can detect obstacles in all
directions around the vehicle. Therefore, the two sensing
modalities could be used complementarily to overcome their
respective limitations.
The limited sensing range imposes practical limits on safe flight

speed. With only 8 cm of detection range, the robot must have
sufficient time to react upon detecting an obstacle in its path.
Similarly, a fast-moving obstacle approaching a hovering robot
may collide with the robot before it can detect and evade.
To estimate a safe speed limit based on the obstacle detection

range of ~8 cm with 4 cm reserved as safety buffer, the robot
flying at speed v should stop within 4 cm of detecting an obstacle.
Assuming instant detection and no controller delay, decelerating
at −1 m ⋅ s−2 (or ≈0.1g) would stop the robot in 4 cm if v ≤ 28
cm ⋅ s−1. In practice, accounting for response latency, an even
lower safe speed would be prudent. In flight tests, a 25 cm ⋅ s−1

speed yielded collision-free navigation. As outlined, this could be
regarded as the speed limit of moving obstacles for a
hovering robot.
In addition, it is foreseeable that including the impact of wind

on flight dynamics and wind velocity as an unknown state variable
could improve the reliability of the vision-less collision avoidance
strategy in gusty environments. Furthermore, the recorded
trajectory of the robot, in association with the detected surfaces,
could be used for reconstructing a simple map when the robot
explores an unknown environment similar to the approach in
ref. 17.
Lastly, the impact of scaling on the wall effect is considered. The

ground effect, which is another form of the proximity effect, has
been observed in various vehicles and objects across multiple
length scales. Even when using the normalized distance d ¼ d=R
for analysis, the degree of the effect can still vary with the
characteristic length. In a previous study34, it was found that the
ceiling effect was more pronounced for a smaller propeller (with
R= 23 cm) compared to a larger one (with R= 50 cm) after
normalization.
To investigate the wall effect further, we conducted tests on

two smaller ducted propellers with radii of 2.5 and 2 inches, as
described in Supplementary Note 2. The empirical wall effect
coefficients shown in Supplementary Fig. 9 suggest that the wall
effect may be less pronounced for smaller propellers. However,
this is a preliminary finding that warrants further investigation in
future studies.

METHODS
Momentum theory for Wall effect
To apply MT, we let p0 be the atmospheric pressure of the free-
stream quiescent air. The propelling thrust is produced by the
discontinuity in the pressures immediately above (p−) and below
(p+) the effective propeller disk according to

T ¼ ðpþ � p�ÞA; (13)

when A= πR2 is the disk area. Provided that vi is the speed of the
uniform flow across the propeller disk, the upstream and
downstream wakes along the streamline are characterized by
Bernoulli equations as

p0 ¼ p� þ 1
2
ρv2i ; (14)

pþ þ 1
2
ρv2i ¼ p0 þ

1
2
ρv21; (15)

where ρ is the air density and v∞ is the terminal flow velocity far
downstream. Combining (13)–(15) to eliminate p+ and p− leaves

T ¼ 1
2
ρAv21: (16)

To relate vi to T, the conservation of momentum is taken. The flow
rate through the propeller disk is given by ρAvi. Since the wake far
upstream is quiescent and the terminal flow is described by v∞
and θ∞, the difference in the vertical momentum of the incoming
and outgoing air is ρAviv1 cos θ1. Neglecting the skin drags, the
difference in momentum is equated to the vertical component of
the thrust as

ρAviv1 cos θ1 ¼ T cos θt: (17)

Making use of (16) to eliminate v∞ from (17) produces

vi ¼
ffiffiffiffiffiffiffiffi
T

2ρA

s
� cos θt
cos θ1

: (18)

Therefore, we obtain the aerodynamic power of the spinning
propeller in terms of T as

Pa ¼ Tvi ¼ T

ffiffiffiffiffiffiffiffi
T

2ρA

s
� cos θt
cos θ1

: (19)

Inverting the relation of T and Pa results in (1).

Benchtop setup
A single 3-blade propeller with R = 38 mm (AVAN, 3024) and a
brushless DC motor (EMAX, RS1306B 4000KV) were mounted on
top of a multi-axis force/torque sensor (ATI, Nano 17) via a solid
structure. The propeller was fitted with a 3D-printed duct that is H
= 35 mm (0.92R) tall. The space between the propeller tips to the
duct’s inner surface was 0.5 mm (assumed negligible). As depicted
in Fig. 2, the setup was installed above a linear motorized stage.
This allows the distance between the ducted propeller and a wall
(sheet of plywood, 50 × 130 cm) to be varied. The motor was
controlled by an Electrical Speed Controller (Turnigy 20A) with a
constant supplied voltage of 8.4 V. In the experiments, a computer
running Simulink Real-Time Desktop (MathWorks) with the data
acquisition unit (NI PCI-6229) was employed for synchronizing the
driving commands and measurements. The current consumed by
the ESC was recorded through a Hall effect current sensor (LEM,
LTS25-NP). The motorized stage was controlled by a stepper
motor (resolution: 25μm) for altering the distance d from 1 to 200
mm at the increment of 1 mm. At each distance, force, torque and
current measurements were taken at the rate of 2 kHz. Four motor
throttle commands between 40% and 70% were taken. For each
data point, the measurement was taken using the average from a
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10-s duration after allowing the system to reach a steady state for
20 s. Each point represents a particular throttle and distance.

EKF for State Estimation
In the continuous-time domain, elements in the state evolve
according to _x ¼ f ðx; TÞ, in which

_p ¼ ½e2; e3�T _p;
€p ¼ m�1 TW �mge3ð Þ;
_R ¼ R½ω� ´ ;
_ω ¼ J�1 τ � ω ´ Jωð Þ;

(20)

with the expressions of €p and _ω follow the translational and
rotational dynamics described by (6) and (8). The terms TW and τ
therein implicitly include the thrust commands T0 and the wall
effects (in the form of the wall distance and direction) as detailed
earlier. In other words, Tw and τ are dependent on p and R.
Next, the continuous-time equations (20) are discretized using

the forward Euler method to propagate the state:

x�k ¼ xþk�1 þ f ðxþk�1; Tk�1ÞΔt þ wk�1 (21)

where k is the time index, Δt denotes a constant time step. The
superscripts (⋅)+ and (⋅)− indicate a-posteriori and a-priori
estimates. wk−1’s is a vector of zero-mean Gaussian white noise
representing the process noise, with the associated covariance
matrix Qk−1.
Defining P as the covariance matrix of the estimated state, its

propagation follows

P�
k ¼ Ak�1Pþ

k�1A
T
k�1 þ Qk�1 (22)

where Ak−1 is state Jacobian associated with (20).
The predicted state is updated based on the measurements

from onboard sensors, including the accelerometer am and
gyroscopic wm readings, optical flow sensor output nm, and the
ToF reading measurement zm. Omitting the time index, the
measurement model y ¼ ½aTm;wT

m;n
T
m; zm�T ¼ hðxÞ þ v is

am ¼ RT €p� ge3ð Þ þ va
ωm ¼ ωþ vω
nm ¼ ½nx ; ny �T þ vn;

zm ¼ z þ vz;

(23)

where v is zero-mean Gaussian white noise with the covariance
matrices R. Letting H be the Jacobian taken from (23), the Kalman
gain K for timestamp k is given by

Kk ¼ P�
k H

T
k HkP�

k H
T
k þ Rk

� ��1
; (24)

Lastly, we obtain the a-posteriori estimate of the state and its
covariance at time step k as

xþk ¼ x�k þ Kk yk � hðx�k Þ
� �

;

Pþ
k ¼ I � KkHkð ÞP�

k :
(25)

Together, (21), (22), and (25) allow us to use only the onboard
feedback to estimate x.

INDI controller
To stabilize the position error, p− pd, a standard proportional-
integral-derivative scheme is used to evaluate the target accel-
eration €pt that would minimize the position error p− pd:

€pt ¼ €pd þ Kdð _p� _pdÞ
þKpðp� pdÞ þ K i

R
p� pdð Þdt (26)

where K(⋅)’s are positive diagonal gains. It can be seen that if
€p ! €pt; p would converge to pd. Next, to ensure that €p ! €pt , an
INDI framework below is employed to evaluate the desired
angular rate ωd,x, ωd,y, and total thrust Td;0 ¼

P4
i¼1 T0;i as setpoints

for the inner controller loop. The INDI controller updates the
values of ωd,x,ωd,y and Td,0 as long as the target acceleration €pt is
still unequal to the measured acceleration Ram+ ge3, rendering
the method robust to the unmodeled wall effect and other
disturbances.
To begin, we note that the translational dynamics in (6) is

dictated by TW. When the proximity effects are neglected, TW
(derived from (5)) reduces to T0Re3 with T0 ¼

P4
i¼1 T0;i being the

total nominal thrust. Furthermore, the term Re3 is the unit vector
of the zB axis expressed in the inertial frame. Hence, T0Re3= T0zB
can be collectively seen as an auxiliary input. Next, the INDI
method focuses on the increment between the current tk and
previous tk−1 time steps of the dynamics (with tk− tk−1= Δt),
leveraging the discrete-time implementation of the control and
sensing instrument. We re-write (6) for two consecutive time steps:

m€pðtkÞ þmge3 ¼ ðT0zBÞðtkÞ; (27)

m€pðtk�1Þ þmge3 ¼ ðT0zBÞðtk�1Þ: (28)

The difference between the two equations are

m €pðtkÞ � €pðtk�1Þð Þ ¼ ΔðT0zBÞ; (29)

where Δ(T0zB)= (T0zB)(tk)− (T0zB)(tk−1) is the change of the
auxiliary input from the previous time step. The intermediate
goal is to determine Δ(T0zB) that makes the updated acceleration
€pðtcÞ become the target €pt from (26). To accomplish that, it is
assumed that €pðtpÞ can be measured. In this case, €pðtpÞ is
computed from the specific acceleration and current attitude state
provided by the IMU from (23) as €pðtpÞ ¼ Ram þ ge3. As a result,
Δ(T0zB) can be evaluated according to

ΔðT0zBÞ ¼ m €pt � Ram � ge3ð Þ: (30)

Lastly, to generate the setpoints for the attitude rate controller, we
inspect the first-order expansion of Δ(T0zB)

ΔðT0zBÞ ¼ d
dt T0zBð ÞΔt

¼ ωyxB � ωxyB
� �

T0Δt þ _T0zBΔt;
(31)

where we have used the fact that _zB ¼ ωyxB � ωxyB. With three
perpendicular vector elements in (31), three setpoints {ωx, ωy, T0}
for tk can be computed by substituting in Δ(T0zB) from (30):

ωxðtkÞ ¼ � m
T0ðtk�1ÞΔt y

T
Bðtk�1Þ €pt � Ram � ge3ð Þ; (32)

ωyðtkÞ ¼ m
T0ðtk�1ÞΔt x

T
Bðtk�1Þ €pt � Ram � ge3ð Þ; (33)

T0ðtkÞ ¼ T0ðtk�1Þ þmzTBðtk�1Þ €pt � Ram � ge3ð Þ: (34)

Observe that the outcomes are intrinsically robust to modeling
errors caused by neglecting the proximity effects as the setpoints
produced by (32)–(34) would be updated from the previous time
step as long as the target acceleration €pt is unequal to the
measured acceleration Ram+ ge3. This is the consequence of the
incremental and sensor-based approach.
Since {ωx(tk),ωy(tk), T0(tk)} serve as setpoints for the inner

controller loop, they are subsequently be referred to as
{ωd,x,ωd,y, Td,0}.

Inner attitude rate loop
Considering the attitude dynamics, the task is to realize the
desired roll and pitch rate ωd,x,ωd,y obtained from (32) and (33).
For the yaw axis, the angular error from the yaw setpoint ψd can
be quantified as ψ− ψd. The yaw angle is calculated by projecting
xB on to the horizontal plane as ψ ¼ atan2 ðeT2xB; eT1xBÞ. Then, the
rate and yaw errors are simultaneously stabilized if the angular
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acceleration becomes _ωd in the following form:

_ωd ¼ �κd

ωx � ωd;x

ωy � ωd;y

ωz

2
64

3
75� κp

0

0R
ωzdt � ψd

2
64

3
75 (35)

where κd and κp are diagonal gain matrices. Observe that the
proportional error term ∫ωzdt can be interpreted as the yaw angle
relative to the start of the flight. When the gyroscope drift is
insignificant, the robot maintains its absolute (i.e., not with respect
to the wall) heading.
Finally, to determine the nominal thrust commands in the form

of T0, we consolidate (35) with the attitude dynamics from (8).
Then, the setpoint for the total nominal thrust from (34) is
incorporated. Together, we yield

T0 ¼
B

1111

	 
�1 J _ωd þ ω ´ Jω
Td;0

	 

: (36)

The result fully determines the thrust commands. Unlike the
position controller, the influence of the wall is not neglected but
integrated into B.
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