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Reconfigurable IntelligentSurfaceshave recently emergedasa revolutionary next-generationwireless
networks paradigm that harnesses engineered electromagnetic environments to reshape radio wave
propagation. Pioneering research presented in this article establishes the viability of Reconfigurable
Intelligent Surfaces-enhanced indoor localisation and charts a roadmap for its integration into next-
generation wireless network architectures. Here, we present a comprehensive experimental analysis
of a Reconfigurable Intelligent Surfaces-enabled indoor localisation scheme that evaluates the
localisation accuracy of differentmachine learning algorithmsunder varyingReconfigurable Intelligent
Surfaces states, antenna types, and communication setups. The results indicate that incorporating
Reconfigurable Intelligent Surfaces can significantly enhance indoor localisation accuracy, achieving
an impressive 82.4% success rate. Moreover, this study delves into system performance across
varied communication modes and subcarrier configurations. This research is poised to lay the
groundwork for implementing Reconfigurable Intelligent Surfaces-empowered joint sensing and
communications in future next-generation wireless networks.

Next-generationwireless networks (NGWNs) operatingonfifth-generation
and sixth-generation technologies employ high-frequency wireless signals
that are typically in millimetre-waves and sub-millimetre-waves ranges1. In
addition to providing high data rate communication services, NGWNs are
increasingly offering localisation services due to their ubiquitous nature2.
From the context of NGWNs, localisation refers to determining a user
device’s precise location within a pre-defined space. Being able to provide
precise localisation service is crucial because it not only supports new
applications like improved security provisioning but also enhances user
experience and network efficiency3–5. Network efficiency can be improved
by optimising the utilisation of available scarce radio and energy resources
given users’ location6. A number of other state-of-the-art applications and
services, such as asset tracking, space and people management, augmented/
virtual reality programs, etc., also require precise location of users7,8.

Dedicated networks can be used solely to determine users’ location in
global or local space. The Global Navigation Satellite systems (such as GPS,
GLONASS, etc.) can localise an active receiver anywhere in the world.
However, most existing systems require a direct line of sight between space-
borne transmitters (satellites) and land-based user devices to achieve high

localisationaccuracy. Theprecisionof existing localisation systemsdegrades
severally in cases where user devices are located in an indoor environment
(high-rise buildings, shopping centres, sporting venues, etc.). In addition to
demonstrating poor precision in such environments, the Global Navigation
Satellite system requires several satellite signals to perform localisation,
which is often time-consuming and energy-inefficient9.

Stakeholders from academia and industry have conducted and
reported on extensive research on localisation in wireless networks10,11.
Various heuristic and AI-based approaches have been proposed for precise
localisation in indoor environments. The domain of indoor localisation
encompasses two primary methodologies: active and passive localisation.
Active localisation, which is the focus of our considered system, involves
scenarios where the target (a user or a device) is equipped with electronic
means to participate actively in the localisation process10. This method
typically offers higher accuracy and control, as the target actively transmits
or responds to signals, facilitating more precise localisation. On the other
hand, passive localisation, also known as device-free localisation, operates
without necessitating the target to carry any electronic devices11. It exploits
ambient signals and environmental interactions, such as signal reflections or
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distortions, to localise entities. While passive localisation offers the advan-
tage of non-intrusiveness and broader applicability, it often contends with
lower accuracy and greater susceptibility to environmental variables. Our
approach to RIS-assisted indoor localisation specifically leverages the active
approach, capitalising on the controlled signal interactions and the
advanced capabilities of RIS technology. This choice aligns with our
objective to develop a system capable of high accuracy and integrating
seamlessly with the active components of NGWNs.

In the contemporary landscape of indoor localisation technologies, two
predominant categories emerge, namely geometric distance-based algo-
rithms and signal-strength correlation techniques. The geometric distance-
based category encompasses methodologies such as time-of-arrival, time-
difference-of-arrival, and angle-of-arrival12,13. Time-of-arrival and time-
difference-of-arrival, in particular, are grounded in the principles of wireless
signal transmission time, necessitating triangulation from at least three base
stations to pinpoint a location accurately14,15. While these methods have
shown reasonable performance, they require a much higher degree of time
synchronisation, a feat not easily attained16. On the other hand, signal-
strength correlation techniques are primarily grounded in the position
fingerprinting approach. The position fingerprinting approach, which
obviates the need for base station localisation and time-angle measure-
ments, presents amore feasible alternative for indoor implementations. This
method is gaining popularity as the preferred choice for indoor positioning
due to its simplicity, ease ofmeasurement and cost-effectiveness17.However,
while the fingerprinting approach offers notable advantages such as sim-
plicity and cost-effectiveness, it also presents various challenges, such as a
time-intensive training phase and a susceptibility to localisation accuracy
loss in the face of environmental changes. The fingerprinting approach can
be classified into channel state information (CSI)-based fingerprinting and
Received Signal Strength Indicator (RSSI)-based fingerprinting.

TheCSI-based approachprovidesfiner-grainedmultipath profiling by
capturing amplitude and phasemeasurements across orthogonal frequency
divisionmultiplexing (OFDM) subcarriers. In the offline trainingphase,CSI
fingerprints are constructed by sampling CSI parameters like delay and
fading at specific locations. The online localisation phase then employs
algorithms such as k-nearest neighbour (KNN), support vector machines
(SVMs), and deep neural networks to estimate user locations by matching
observed CSI fingerprints18–20. Recently, channel charting approaches have
also gained attention. Such schemes learn tomap CSI to channel charts in a
self-supervised manner21. While promising, the effectiveness of CSI fin-
gerprints is closely tied to the quality of channel impulse responses; there-
fore,CSI profiles can get distortedunder poor channel conditions, leading to
reduced localisation accuracy. However, similar to RSSI fingerprinting,
where a radio map is constructed in an offline training phase by sampling
RSSI from different access points at marked locations, CSI fingerprinting
can also benefit from data aggregated from multiple access points. It is
possible to create a more robust and comprehensive fingerprinting dataset
by utilising CSI data from various sources. This approach can help mitigate
the impact of poor channel conditions on CSI accuracy. After successful
fingerprinting, an online localisation phase matches the observed RSSI/CSI
to the fingerprints in the radio map using algorithms like kNN and neural
networks to estimate the user location22. Similar to CSI-based approaches,
RSSI-based approaches can suffer considerably from multipath fading and
signal fluctuations, and their performance highly degrades when the
channel quality is poor. In the presence of multipath fading, channel fluc-
tuations and other similar parameters, it is not possible to yield accurate
position estimates by employing legacy network approaches.

In addition to the challenges associated with different localisation
techniques highlighted above, the use of high-frequency (millimetre-waves
and sub-millimetre-waves) signals inherently results in poor propagation
characteristics, thereby increasing the complexity of using them in locali-
sation services23. Also, the typicalNGWNshave a restricted communication
range, with a largely unpredictable and often beyond-control radio propa-
gation environment between user devices. To cope with these inherent
shortcomings, Reconfigurable Intelligent Surfaces (RIS) have recently

emerged as a possible method to control various aspects of radio channels,
such as reflection, refraction, and scattering24.With the help of RIS, NGWN
operators can enhance their network footprint by controlling and reshaping
the radio environment’s EMresponse at quite a lower cost. This can be done
by dynamically adjusting the transmitted signals’ amplitude, polarisation,
and phase parameters25. Since RIS can shape radio wave propagation and
boost received signal strength26, it can also potentially enhance localisation
accuracy by overcoming undesirable signal characteristics. More specifi-
cally, as mentioned earlier, techniques such as CSI and RSSI fingerprinting
used in traditional networks often face signal fluctuations and multipath
fading issues, particularly in weak channel conditions, resulting in inaccu-
rate localisation.However, with the assistance of RIS, received signals can be
optimised by intelligently configuring the antenna elements to overcome
undesirable propagation effects. This, in turn, greatly improves the accuracy
of localisation. In our particular context, due to RIS, the improved RSSI
fingerprints could enable more precise matching to radio maps and esti-
mation of user locations. Furthermore, RISs can enable efficient localisation
in contexts where traditional systems falter, reducing infrastructure costs
and power consumption25. Therefore, RIS is expected to be an integral part
of NGWNs not only to improve communications between user devices but
also to localise them accurately23.

Despite the growing interest in RIS-enabled systems, limited works
have delved into RIS for localisation, with the majority relying solely on
numerical simulations. A multi-user 3D passive positioning scheme using
user equipment equipped with RIS is proposed in27. Relying on time-of-
arrival analyses, a low-complexity algorithm that employs orthogonal
sequences in RIS phase profiles for accurate localisation is studied. This
proposed method aims to reduce interference in passive localisation sys-
tems, particularly with RISs not integrated into the fixed infrastructure.
With the help of simulation results, localisation error is evaluated. It is
shown that it reaches the theoretical Cramér-Rao lower bounds (CRLB),
and < 1 meter positioning error bound (PEB) can be achieved around the
transmitter. Likewise, the authors in28 explore the use of RIS in NGWNs for
improving user equipment localisation. In their proposed architecture, RIS
assists in both position and orientation estimation at the gNB. The study
advances beyond traditionalmethods by employingmultiple antennas with
3D beamforming capabilities and a general model for both near- and far-
field localisation in 3D space. It considers both synchronous and asyn-
chronous signalling schemes, analysing their impact on localisation error.
Drawing on the derivedCRLB for assessing localisation and orientation, the
simulation results reveal the notable performance (i.e., up to PEBof 8 × 10−4

meter at 28 GHz band) of the proposed method across various scenarios.
Moreover, in asynchronous signalling contexts, the scheme demonstrates
high efficiency, with the phase design closely approaching the optimal phase
design that minimises the CRLB. Similar to the explorations in28, the study
in29 delves into the impact of hardware impairments (HWIs) on RIS-aided
localisation in NGWNs. It emphasises the use of RISs to mitigate HWI
effects on localisation accuracy, offering a detailed analysis of the Fisher
Information Matrix (FIM) and a robust Maximum Likelihood Estimator
(MLE) for multi-RIS scenarios. The paper underscores the critical role of
RIS configuration and the number of elements in enhancing localisation
performance under HWI conditions. It is concluded that across varying
inter-RIS spacings, the PEB decreased from approximately 0.3 meter to less
than 0.15 meter as the hardware imperfection diminishes.

The study30 explores RIS-enabled near-field localisation in obstructed
LOS environments. It introduces a theoretical framework to optimise the
RIS phase matrix to enhance average localisation accuracy in a specified
area. A solution for effective target localisation is presented using the dis-
cretisation method and iterative entropy regularisation algorithm. It is
shown that the localisation accuracy of the proposedmethod enhances with
the CRLB improving from around 1 meter at− 20 dB SNR to below 0.1
meter at 20 dB SNR. Unlike previous studies, which consider generic scat-
tering environments, the authors in31 have established that RIS greatly
enhance wireless communications in rich scattering environments.
Through experimental case studies, they demonstrate RIS’s ability (in a rich
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scattering environment) to reshape channel impulse responses for
improved communication rates and leverage wave fingerprints for precise
non-LOS localisation of non-cooperative objects. Similarly, in contrast to
most simulation-based studies where perfect hardware is assumed,32 pro-
poses a technique for optimising RIS configurations, considering real
hardware limitations.Utilising a pre-characterised lookup table of reflection
coefficients, their method evaluates performance in terms of beam fidelity
and localisation error across different RIS control strategies. Simulations
reveal the effects of hardware constraints onbeampower and the emergence
of secondary lobes, impacting the localisation performance in non-LOS
conditions. It is concluded that the PEB for the proposed scheme rises from
below 10−3 meters to approximately 10−1 meters as the RIS-user equipment
distance increases from 2 to 16 meters. In33, an innovative RIS system is
presented, which simultaneously performs wireless communications and
target tracking. Smart beam tracking and wireless communication are
realised using a dual-polarized RIS and a pre-trained artificial neural net-
work (ANN). Convolutional neural networks (CNN), along with computer
vision, are used to detect the locations of moving targets automatically. By
performing a series of experiments, the work in33 shows that this approach
can foster intelligentwirelessnetworks andadaptive systems, therebypaving
the way for unified target identification and radio environment tracking
solutions. It is also shown that while tracking the moving object, the pro-
posed approach offers reliable network coverage and achieves a stable Bit
Error Rate (BER) of 10−5.

The specific use of RIS in mmWave technology is also of great interest
and presents critical and unique challenges. In 34, Jiguang et al. have studied
RIS-aided mmWave multiple input multiple output systems for joint
localisation and communication. An adaptive RIS phase shifter design is
proposed based onhierarchical codebooks and limited feedback.During the
phase shifter update process, the combining vector at the mobile station is
sequentially refined. Simulations demonstrate that the proposed method
reduces theMean Squared Error for position error from above 102meters to
approximately 10−1 meters as the SNR increases from −30 dB to 5 dB.
Correspondingly,Moustafa et al. in35 conducted experimental validations of
RIS-aided mmWave indoor positioning, utilising a dedicated frequency-
domain mmWave indoor channel sounding campaign for high-resolution
multipath analysis. The study focuses on the impact of RIS-reflected com-
ponents like delay, angle-of-arrival, andAoDon localisation, benchmarking
results across various user equipment and RIS locations, and identifying
practical limitations such as grating lobes and distance constraints. It is
concluded that the positioning errors for users in various scenarios range
widely, with median errors as low as 0.07 meters and Root Mean Squared
Error values reaching up to 3.22 meters.

Moreover, in36, an inverse semantic-aware wireless sensing framework
is proposed, leveraging RIS technology for efficient data compression and
encoding. The framework distinguishes itself by employing a semantic hash
sampling method, which surpasses traditional uniform sampling in effi-
ciency. Additionally, it introduces a self-supervised decoding method cap-
able of recovering signal spectrums without the need for pre-training. The
experimental findings showcase a 95% reduction in data volume and a 67%
lower Mean Squared Error in sensing parameter recovery. From a tele-
medicine perspective,37 explores a method that combines RIS with
frequency-modulated continuouswave radar for indoor peoplemonitoring.
By directing the radar beam throughRISs fromdifferent angles, themethod
improves the accuracy of locating multiple subjects in a two-dimensional
space and reduces radar ghosting. In the experiments, RIS functions were
simulated usingmanually rotated flat metal plates. The results demonstrate
effective localisation of multiple subjects, with positioning errors ranging
between 10.05 cm and 14.21 cm. Furthermore, in the field of RIS-enhanced
telemedicine systems, a study in38 delves into intelligent indoor robotics
aimed at smart healthcare. This work introduces an intelligent cyber-
physical robotic system, which is empowered by programmable RIS and
augmented byAI tools. Central to this concept is the integration of a robotic
brain that performs complex sensing tasks, including the localisation of
mobile robotic limbs and human posture recognition.

While the above-mentioned studies on RIS-aided localisation provide
valuable insights, they largely focus on simulations and operate under cer-
tain assumptions, such as ideal RIS technology, controlled signal propaga-
tion, RIS integration in user equipment, and precise synchronisation. It’s
important to note, however, that these studies might not fully account for
real-world complexities like environmental variability, hardware imper-
fections, and dynamic user behaviour.

In this article, we introduce a RIS-enabled localisation system for
indoor scenarios, particularly focusing on environments where the direct
received signal strength (RSS) from the transmitter is poor. This work
represents an important step in the practical application of RIS technology
for improving localisation in next-generation wireless networks. Our study
successfully demonstrates the feasibility of using RIS for indoor localisation,
achieving over 82% localisation accuracy. This suggests a promising
direction for enhancing indoor positioning systems, highlighting the utility
of RIS in such applications. We have developed a comprehensive experi-
mental framework that includes various RIS states, antenna setups, and
channel conditions, providing a thorough evaluation of the system’s per-
formance under different scenarios.One of the key aspects of our research is
the development and practical evaluation of a RIS localisation system. This
effort contributes to bridging the gap between theoretical research and
applicable solutions in the field. Alongside, we have rigorously evaluated the
performance of different Machine Learning algorithms (such as Gradient
Boosted Trees (GBT), Naïve Bayes, Random Forest, Support Vector
Machine, Logistic Regression, Neural Networks,18–20 etc.), identifying
effective approaches and hardware configurations for RIS-aided
localisation.

Our detailed analysis provides insights into systemperformance across
various communicationmodes, RIS states, and subcarrier setups. This helps
in understanding the strengths and limitations of the system and highlights
potential areas for improvement. Furthermore, our study examines the
trade-offs in system robustness and performance, offering a realistic per-
spective on the challenges involved. By integrating RIS and localisation
technologies, our work contributes to the evolving discourse on indoor
positioning solutions. Figure 1 depicts a possible application scenario of our
proposed indoor localisationmechanism in RIS-enabledNGWNs. It can be
observed that theRIS can be exploited in an indoor environment not only to
expandnetwork footprint but also to improve localisation accuracy.Overall,
this article contributes to the ongoing research inRIS for indoor localisation,
offering insights and findings that can further enhance our understanding
and application in this area.

Methods
Experimental setup and data collection
This section delves into the intricate details of the hardware-based experi-
mental setup used to implement the proposed localisation scheme and
collect the dataset mentioned above. The section also outlines the equip-
ment,methodologies, and parameters employed, ensuring a comprehensive
understanding of the process.

To prove the practicality of the proposed method, the experiment is
conducted at the creativity lab at James Watt School of Engineering, Uni-
versity ofGlasgow.As depicted in Fig. 2, the experimental setup consists of a
1-bit RIS with 64 × 64 elements and two universal serial radio peripherals
version Ettus X300. The RIS is designed with 4096 elements, structured as
64 × 64 unit cells and segmented into 16 subarrays. Each subarray, mea-
suring 33 × 33 cm2, comprises 256 p-i-n diodes and 16 × 16 unit cells,
interconnected via 16-bit LED drivers in a serial daisy chain26,39. The overall
RIS prototype spans 132 × 132 cm2 or 16.5λ × 16.5λ at 3.75 GHz. It’s
mounted on a 142 × 142 cm2 polycarbonate sheet affixed to an aluminium
frame. Each subarray has five interface lines for voltage, data, and con-
nectivity, facilitating four subarrays per unit of daisy chain configurations.
Data transfer to the RIS employs two SPI connections (SPI0 and SPI1) from
a Raspberry PI 3B+ controller, clocked at 7.8MHz. Over-the-air commu-
nication is achieved via a WiFi link between the MATLAB algorithm on a
host PC and the Raspberry PI, which acts as a hotspot.
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Moreover, the twouniversal serial radio peripherals act as a transmitter
(Tx) and receiver (Rx). The transmitter is equipped with a single-directive
antenna, featuring a 3 dB angular beamwidth of 80∘ in both the azimuth (E-
plane) and elevation (H-plane). During the experiment, variations in the
number of antennas on the receiver side NRxant

¼ f1; 2g are considered to
present a single-input single-output (SISO) and single-input multiple-out-
put (SIMO) communication system. Additionally, the experiment is con-
ducted using directional UWB antennas at the receiver side to assess the
impact of these parameters on the localisation accuracy. More specifically,
the setup utilises log-periodic directional antennas as receiving antennas.
These antennas have a frequency range spanning from 1.35 to 9.5 GHz, a
standing wave ratio below 2.5, directional line polarization, and a gain
ranging from 5 to 6 dB. Additionally, the experiment employs an OFDM
communication system with varying numbers of subcarriers,
N = {64, 128, 256}, and cyclic prefix lengths, CP = {16, 32, 64}. The carrier
frequency is fixed at 3.75 GHz, with a sampling rate set to 200 KHz. On the
receiver side, the experimental setup is divided intoT = 9positions,with two
distinct inter-position spacings, x = {0.5, 1} m, as depicted in Fig. 2. Fur-
thermore, the distance from the transmitter (Tx) to themidpoint of the RIS
is 3 m, while the receiver (Rx) located at position 1 (P1) is positioned 5m

away. The transmitter’s antenna inclination is perpendicular to the RIS
plane (θincident = 90∘), while the receiver’s antenna is angled at
θreflection = 135∘. Both the transmitter’s and receiver’s antennas have a height
of 126 centimetres, consistent with the midpoint of the RIS. The trans-
mitter’s RF output power is 12.1 dBm. LabVIEWwas employed to structure
the OFDM symbols, with 256 subcarriers, of which 105 are allocated for
zero-padding, 26 for channel probing and equalisation, 125 for data
transmission, and 64 for the cyclic prefix. In this experiment, the data
subcarriers are used for channel probing using reference symbols. The setup
utilised the CBX-120 USRP daughterboard, offering a bandwidth of up to
120MHz. The following summarises the steps involved in this experiment.
• Step 1: In the offline phase, the RIS is configured using Algorithm (1),

generating nine optimum configurations Hopt
j ; 8j ¼ f1; � � � ; 9g, allo-

cating the Rx at each Pj.
• Step 2: The channel responses (Ĉhj ¼ ^RSSj; ^CPRj) for each Pj have

been estimated by transmitting a total of 1000 OFDM symbols from
the transmitter (Tx) to the receiver (Rx). Each OFDM symbol com-
prises 256 subcarriers, out of which 125 subcarriers are dedicated to
reference symbols utilised for estimating the received signal strength
( ^RSSj) and the channel phase response ( ^CPRj). This approach yielded

Fig. 2 | The designed experimental setup in
operation. Operational view of the reconfigurable
intelligent surface (RIS) based experimental setup,
showing the access node as a universal software
radio peripheral (USRP) transmitter (Tx) and the
targeted node as a USRP receiver (Rx) in the loca-
lisation grid with different positions (P).

0m

5m

0m 3m

Access 
Node

Fig. 1 | An example of RIS-enabled indoor localisation.A real-life visualisation of a reconfigurable intelligent surface (RIS)-enabled system efficiently localising the indoor
target nodes.
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1000 received channel estimations, each containing 125 readings cor-
responding to the subcarriers in every OFDM symbol. Subsequently,
the process was repeated with the RIS in both On and Off states,
varying parameters such as NRxant

; x, and N subcarriers. This rigorous
procedure ensured a comprehensive dataset for training and classifi-
cation purposes.

• Step 3: In this step, 80%of the channel estimates is allocated for training
the ML algorithm, with the remaining 20% reserved for testing and
evaluation.For a comprehensive evaluation, we used different ML
algorithms (see Table 1) to evaluate localisation accuracy at different
parameter settings.

Results
Envisaged system architecture
The envisaged system architecture depicted in Fig. 3 comprises threemajor
entities: the RIS, the target, and the access node. The functions of these
entities are described in the following:
1. TheRIS: TheRIS inour envisaged system is ametasurface consisting of

Nx ×Ny number of reflective elements. It aims to enhance the wireless
communication link between the target node (receiver) and the access
point (transmitter). The RIS incorporates a programmable controller
that allows it to intelligently manipulate its elements and amplify the
signal strength at the desired receiving (target) node. In addition to
improving and extending the communication range, the key objective
of the RIS is to leverage its distinctive electromagnetic behaviour across
different spatially (≥λ/2) separated target nodes to achieve efficient and
accurate localisation.

2. The Access Point: The access point A acts as a central node, enabling
communication between different network entities. It helps the net-
work optimise RIS configuration by maintaining a reliable commu-
nication link with RIS’s programmable controller. Additionally, the
access point is equipped with an offline-trained ML algorithm on the
channel estimates obtained from different predefined and equally
inter-spaced positions within the designated area of interest.

3. TheTarget: Targets refer touser devices intended for localisationby the
network. A target node can be any device, such as a robot, IoT sensor,
or power generator, actively communicating with the network and
sharing information. Information signals received at these target nodes
are essential in building an RF fingerprinting dataset, which is then
utilised for target localisation with the help of ML. In this process, it’s
crucial to consider various other noisy effects that can influence loca-
lisation accuracy, such as target mobility, interference, and multipath
effects. Acknowledging and addressing these factors can further
enhance the accuracy and robustness of the ML-based localisation
method.

RIS-Assisted Localisation
In this section, we introduce a robust RIS-assisted localisation scheme tai-
lored for NGWNs. It is characterised by two modes of operation: target

localisation mode and RIS-assisted communication mode. Subsequent
subsections unfold a comprehensive technical discussion on each mode,
offering an in-depth understanding of the intricacies involved in this
innovative approach.

Target localisationmode. In this mode, the RIS, comprising a matrix of
Nx ×Ny reflective elements, is partitioned into a series of discrete sub-
RISs Rj, for j = {1,⋯ T} with dimensions Nxffiffiffi

T
p ×

Nyffiffiffi
T

p elements, where the
order of sub-RISs, denoted as ‘T,’ is contingent upon the prescribed level
of localisation accuracy and the desired spatial resolution. Thus, a phy-
sical space spanning 3 × 3m2 can be subdivided into 9 distinct positions
denoted by Pj, where T = 9, with an inter-position spacing, ‘x,’ of 1m.
Alternatively, for T = 18, the same area can be divided into 18 positions,
with x ¼ 1ffiffi

2
p m. Selecting a smaller value of ‘x’ corresponds to enhanced

localisation precision, whereas a larger value of ‘x’ results in coarser
localisation resolution. Note that, in our experimental framework, each
positionPj represents a true coordinate set, corresponding to the centre of
the jth subdivided area within 3 × 3m2 physical space. Refer to Fig. 3 for an
illustrative depiction of mode 1 within the RIS-enhanced localisation
methodology. It can be observed that each sub-RIS Rj is uniquely asso-
ciatedwith one of theT positionsPjwithin the grid, ensuring a direct one-
to-one correspondence between the number of sub-RISs and the number
of locations. Moreover, as depicted in the flowchart provided in Fig. 4,
Mode 1 comprises two distinct phases: the offline phase and the
online phase.
1. The offline phase: This phase serves as the initial configuration process

for the localisation area of interest, considering the desired resolution
‘x’ and the acceptable localisation accuracy ‘α’. This phase encompasses
the following key stages:
• Sub-RISs configuration stage: Given x and α, each sub-RIS Rj is

configured in a way that maximises the signal-to-noise ratio
(‘SNRj’) at position Pj from access point A. To facilitate this, we
have devised a RIS configuration optimisation algorithm
grounded in the principles of the Hadamard matrix codebook40.
This innovative algorithm maximises the average SNRj estimate
derived from optimal configurations. The Hadamard matrix,
which offers a range of orthogonal and binary phase shift values,
can be applied to Rj elements, influencing the reflection patterns
of incoming electromagnetic waves. We also define Ropt

j as the
optimal RIS configuration for the (jth) sub-area that maximises
the SNR.

• Data collection stage: In this stage, a number ofM probing packets
are employed by the access node to probe the channel between itself
and the target node located at each position Pj, ∀ j = {1,⋯ , T}. This
probing process yields estimates of the RSS and channel phase
responses (CPR) estimates. This probing stage can be conducted for
either a single input single output (SISO) systemor amultiple input
multiple output system for an OFDM communication systemwith
N subcarriers.

Table 1 | Evaluation of classification accuracy across various applied machine learning algorithms

Experiment Setup Method Accuracy Loss (cross-entropy)

Directive antennas, x = 1 meter distance, and reconfigurable intelligent surface (RIS) is activated Gradient Boosted Trees (82.4 ± 1.4)% (0.547 ± 0.032)

Naïve Bayes (66.2 ± 0.5)% (7.54 ± 0.21)

Random Forest (71.0 ± 0.5)% (0.85 ± 0.34)

Support Vector Machine (80.4 ± 1.5)% (0.586 ± 0.053)

Logistic Regression (78.5 ± 1.5)% (0.655 ± 0.031)

Neural Network (26.9 ± 2.0)% (13.3 ± 0.58)

Decision Tree (45.8 ± 1.5)% (0.588 ± 0.039)

Class Distributions (64.2 ± 1.9)% (1.87 ± 0.055)

Nearest Neighbors (61.2 ± 0.8)% (1.12 ± 0.0092)
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• Machine learning training and testing stage: In this stage, 80%of the
available M channel estimates are allocated to train the ML algo-
rithm. This training process generates a set of distinct classes
denoted as ‘Clj’ for all positions within the set {1,⋯ , T}. The
remaining 20% of the M channel estimates are used to assess the
proposed algorithm’s performance and generalisation for testing
and validation purposes. It is during this crucial phase of training
and validation that our system’s accuracy is established, which
pertains to the success rate of correctly classifying a target’s location
within predefined zones of the indoor environment. This classifi-
cation accuracy, a keymetric of our system’s effectiveness,measures
howoften the systemaccurately identifies the zone inwhicha target
is located, relying on the RF fingerprinting data that is integral to
our machine learning model.

2. The online phase: This phase is used for real-time localisation of a
specified number of ‘L’ targeted nodes, denoted as ‘nl’, ∀ l = {1,⋯ , L},
within the testing area. In this context,when ‘A’ intends to localise these
target nodes, it broadcasts a localisation request. In response, each
target node ‘nl’ replies with a probing packet, which is subsequently
utilised for extracting the channel estimates. These extracted data are
then employed in theML classification algorithm to localise the target
nodes accurately.Once the localisationprocess is successfully executed,
A proceeds to select nl with which it intends to establish communica-
tion. As explained below, communication betweenA and the intended
device progressed in Mode 2.

RIS-assisted communicationmode. The total RIS elements within this
mode are systematically configured to optimise the RSS for the bidirec-
tional communication link (Pj↔ RIS↔ A). The experimental setup

designed for Mode 2 is depicted in Fig. 3. It is noteworthy that the
optimisation process applied here follows the same procedure as outlined
in Algorithm 1 for determining the optimal configuration of the RIS
associated with each position ‘Pj’, ∀ j = {1,⋯ , T}.

Algorithm 1. Optimise Best Sub-RIS Configuration
Require: Sub-RIS (Rj) with dimension Nxffiffiffi

T
p and

Nyffiffiffi
T

p ; 8j ¼ f1; � � � ;Tg
Ensure: The best configuration for each Sub-RIS
1: Construct Hadamard codebook HD1×Q as a collection of Q

matrices:
2: 7D1HD1×Q = {H1,H2,…,HQ}, where each H

Nxffiffi
T

p ×
Nyffiffi
T

p

i is the ith Hada-
mard matrix with dimensions ðNxffiffiffi

T
p ×

Nyffiffiffi
T

p Þ
3: Set Q ¼ ðNxffiffiffi

T
p ×

Nyffiffiffi
T

p Þ representing total reflecting units in Rj
4: Initialise an empty matrix SNRRj

¼ ½� to store measured
average SNRs

5: for each Sub-RIS index j from 1 to Tdo
6: 7D1 Initialise SNRRj

as an empty matrix
7: 7D1 for each matrix index i from 1 to Qdo
8: 7D17D1Measure average SNRvalue ðSNRRj

i Þ for the i-thHadamard

matrixH
Nxffiffi
T

p ×
Nyffiffi
T

p

i
9: 7D17D1 Append SNR

Rj

i to SNR1× ði�1Þ
Rj

10: 7D1 end for
11: 7D1 Identify the best configuration H

Nxffiffi
T

p ×
Nyffiffi
T

p

Ropt
j

that maximises the

SNR value towards Pj and equalsMax SNR1×Q
Rj

� �

12: end for
Return: Best Hadamard matrix configuration H

Nxffiffi
T

p ×
Nyffiffi
T

p

Ropt
j

for each
Sub-RIS

Fig. 3 | Illustration of the designed experimental setup.Depiction of the designed experimental setup, where both the localisationmode and the communicationmode are
shown. The terms USRP and P in the figure stand for universal software radio peripheral and different positions on the localisation grid, respectively.

Fig. 4 | Flowchart of the proposed localisation
approach. Schematic detailing the reconfigurable
intelligent surface (RIS) configuration steps, from
initial setup and data collection to real-timemachine
learning (ML)-based localisation and channel
adjustment.
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Discussion
This section analyses the plethora of data gathered through themeticulously
conducted experiments outlinedpreviously. The aim is to extract insights by
dissecting the results and drawing comparisons to discern the most pro-
mising methods for localisation in NGWNs, particularly when RIS is
incorporated.

Classification accuracy across various machine learning
algorithms
Central to our analysis is the assessment of the efficacy of various machine
learning algorithms in the context of target node localisation. The primary
metric of interest is classification accuracy, which provides an immediate
sense of howwell each algorithm can predict the correct location of a device
or user based on the received signal characteristics. Anotherpivotalmetric is
the loss, which gives insight into the overall error associated with the pre-
dictions. A lower loss value indicates better model performance, whereas a
higher accuracy percentage underscores the algorithm’s proficiency in
correctly classifying the data points. Table 1 delineates the classification
accuracy and loss for each machine learning algorithm employed under a
specific experimental setup where directive antennas were used, the inter-
position spacing was fixed at 1 meter, and the RIS was activated.

From Table 1, it is evident that the GBT algorithm emerges as the
frontrunner in terms of accuracy, achieving an impressive 82.4 ± 1.4%. This
high accuracy, coupled with a relatively low loss of 0.547 ± 0.032%,
underscores the potency of GBT for localisation in RIS-assisted NGWNs.
Despite its reputation for handling complex patterns, the Neural Network
registers a meagre accuracy of 26.9 ± 2.0%, highlighting the challenges in
deploying deep learning techniques without substantial data or in scenarios
where simpler algorithms might suffice. Furthermore, given the experi-
mental setup and the nature of the dataset, the GBT model’s ability to
capture non-linear relationships, handle feature interactions, and its
robustness to outliers have contributed to its superior performance com-
pared to other machine learning models.

In-depth evaluation of localisation accuracy based on antenna
types, RIS activation and classification performance metrics
Antennas play a crucial role in any wireless communication setup, influ-
encing the propagation characteristics of electromagnetic waves and,
therefore, the received signal quality. In the realm of localisation, where the
essence lies in deriving spatial information from these signals, the choice of
the antenna becomes even more pivotal. In Table 2, we have conducted a
comprehensive analysis to discern the impact of different antenna types on
classification accuracy, using the GBT algorithm for localisation. Specifi-
cally, we have compared the results obtained usingDirective andMonopole
antennas, both in the presence of activated and deactivated RIS. Further-
more, we have considered two inter-position spacings: x = 1 meters and
x = 0.5meters. The results in Table 2 demonstrate clear benefits of RIS
activation, consistently improving localisation accuracy across configura-
tions. Specifically, directive antennas outperform monopole variants, as
their focused propagation leverages RIS enhancements most effectively.

However, reducing inter-position spacing degrades accuracy, given the
more challenging granularity. Loss metrics align with accuracy trends, with
lower losses in higher-accuracy scenarios - highlighting the consistency of
RIS-enabled localisation improvements using directive antennas, albeitwith
reducinggains atfiner granularities.More specifically, the analysis ofTable 2
quantitatively highlights the trade-off between localisation accuracy and
system resolution in RIS-activated environments. With an increase in
resolution from1meter to 0.5meters, the directive antenna exhibits a 10.1%
decrease in localisation accuracy, decreasing from 82.4% to 72.3%. In
contrast, the monopole antenna shows a slight reduction in accuracy of
1.0%. These results also demonstrate the directive antenna’s increased
sensitivity to enhanced resolution and delineate the delicate equilibrium
between achieving finer localisation granularity and sustaining high accu-
racy. This balance is crucial for optimising RIS-enhanced localisation sys-
tems where precision is paramount.

As discussed earlier, localising the positions of nodes in a wireless
network is a classification task where the primary goal is to predict the
correct position of a node based on certain features or measurements. In
such tasks, apart from accuracy, other metrics such as recall and F1Score
provide a more comprehensive understanding of the model’s performance.
Table 3 presents the recall andF1Score for different positions (fromP1 toP9)
using the Gradient Boosted Trees algorithm, with directive antennas and
x = 1 meter distance between positions. From Table 3, several insightful
observations can be made. There appears to be position-dependent varia-
bility in recall andF1Score,with some locations seeminglymore challenging
to localise accurately than others. For instance, P2 and P9 have high scores
while P5 is lower. Additionally, positions with higher recall also tend to have
higher F1Score, suggesting the predictions made for those positions are not
just frequent but also precise. Finally, the generally high recall and F1Score
values with RIS activation provide further evidence that activating the RIS
improves overall localisation capability. In summary, the table highlights
nuances in localisation performance across different positions and the
benefits of RIS. Building upon this understanding, it is essential to mention
that despite our system demonstrating significant accuracy in determining
the general area of a target, the inherent quantisation error embedded in this
approach must be acknowledged. More specifically, in the context of our
approach, quantisation refers to thedivisionof the indoor space intodiscrete
zones, each uniquely represented in our fingerprint database. The granu-
larity of these zones, defined by their size and separation, directly impacts
the localisation accuracy. Opting for finer granularity enhances precision
but, at the same time, increases the complexity and size of the fingerprint
database, which could affect the system’s efficiency and scalability. On the
other hand, coarser granularity simplifies the system but compromises the
localisation precision. This trade-off in quantisation error is a fundamental
aspect of our approach, balancing the granularity of the zones with practical
considerations of system performance and scalability.

The confusion matrix in Table 4 provides granular insights into the
classification performance for each position. The predominance of high
diagonal values representing true positives underscores the model’s profi-
ciency in distinguishing between positions, especially with RIS activation.

Table 2 | Evaluation of classification accuracy across different antenna types (Horn - Monopole) using the Gradient Boosted
Trees machine learning algorithm for x = 1 and x = 0.5 meters distance between target node locations

Method Distance (x) Antenna type RIS status Accuracy Loss (cross-entropy)

Gradient Boosted Trees 1 meter Directive Deactivated (63.3 ± 1.8)% (1.06 ± 0.035)

Activated (82.4 ± 1.4)% (0.547 ± 0.032)

Monopole Deactivated (59.4 ± 1.8) (1.2 ± 0.035)

Activated (69.8 ± 1.7)% (0.953 ± 0.027)

0.5 meter Directive Deactivated (54.5 ± 1.9) (1.28 ± 0.029)

Activated (72.3 ± 1.7)% (0.943 ± 0.035)

Monopole Deactivated (51.4 ± 1.9) (1.4 ± 0.035)

Activated (68.8 ± 1.7)% (0.896 ± 0.036)

https://doi.org/10.1038/s44172-024-00209-0 Article

Communications Engineering |            (2024) 3:66 7



For instance, P1 through P9 had correct predictions for 158, 182, 172, 165,
123, 174, 177, 140, and 180. However, certain positions exhibited more
misclassifications, suggesting potential overlaps in signal patterns. More
specifically, P3 was frequently confused with P1 and P2 (10 times each), P8
withP1 andP5 (14 and 19 times, respectively), andP5 withP4 (21 times) and
P8 (16 times). Since P5 is in a central location and, due to its topological
centrality, it ismore susceptible tomisclassification into adjacent zones. The
unique challenge at P5 arises from its proximity to multiple neighbouring
zones, which increases the likelihood of signal pattern overlaps. As a result,
P5 shows ahigher rate of being incorrectly classified asP4 orP8, as compared
to other positions. In contrast, P2, P6, P7, and P9 demonstrated fewer mis-
classifications, indicatingmore distinct feature sets themodel captures well.
In summary, while the confusionmatrix reveals nuances between positions,
RIS’s overall accuracy remains high, reiterating its critical role in localisation
and the potential for refinements to improve performance further.

Figure 5 depicts a performance comparison between the RIS-On and
RIS-Off schemes in terms of classification accuracy across varying numbers
of subcarriers. As evident, the RIS-On scheme consistently outperforms the
RIS-Off scheme across all subcarrier counts. Notably, as the number of
subcarriers increases, both schemes exhibit a trend of enhanced accuracy,
with the RIS-On scheme maintaining a superior lead. Moreover, Figure 6
compares the RIS-On and RIS-Off schemes regarding classification

accuracy for both SISO and SIMO communication modes. The RIS-On
scheme consistently outperforms the RIS-Off scheme for both modes.
Moreover, when transitioning from SISO to SIMO, both schemes show a
notable increase in accuracy, highlighting the enhanced performance of the
SIMO configuration.

Conclusion
The study presents a pivotal exploration of RIS-enabled indoor localisation,
demonstrating an integration of RIS technology with machine learning to
enhance indoor localisation accuracy in next-generation wireless networks
significantly. Through comprehensive experimental analysis, it is identified
that integrating RIS with various machine learning algorithms, notably
Gradient-BoostedTrees, can achieve up to 82.4% localisation accuracy. This
studymarks a significant advancement in the domain of indoor localisation,
showcasing the innovative integration of RIS technology with machine
learning to markedly improve indoor localisation accuracy within next-
generationwireless networks.A thorough experimental analysis reveals that
the fusion of RIS with variousmachine learning algorithms, especially GBT,
facilitates achieving an impressive indoor localisation accuracy of up to 82.4
Further analysis shows the impact of different antenna types and commu-
nication setups on the localisationperformance, providing insights intohow
these factors can be used to enhance accuracy further. Moreover, the
research also shows an inherent trade-off between accuracy and granularity
in localisation frameworks. The proposed approach, using classification for

Table 3 | For both reconfigurable intelligent surface (RIS)
activated and RIS deactivated modes, the evaluation of the
Recall and F1 score across different positions (P) using the
Gradient Boosted Treesmachine learning algorithm, directive
antennas, and for x = 1 meter distance between positions is
provided

Position RIS is activated RIS is deactivated

Recall F1Score Recall F1Score

P1 0.79 0.772616 0.655 0.680519

P2 0.91 0.903226 0.41 0.404938

P3 0.86 0.841076 0.9 0.841121

P4 0.825 0.800971 0.58 0.552381

P5 0.615 0.664865 0.605 0.596059

P6 0.87 0.863524 0.52 0.551724

P7 0.885 0.885 0.845 0.830467

P8 0.7 0.717949 0.575 0.60686

P9 0.9 0.891089 0.95 0.966921

Table 4 | The confusion matrix of the proposed scheme using
directive antennas at a distance of x = 1 meter between dif-
ferent positions (P), with the RIS in activated states

The highlighted cells in Table 4 represent the number of true positive predictions for each class.
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localisation, creates a discretised spatial model. Although effective, this
approach has a limitation in achieving fine cm-level granularity compared
to non-ML (geometric-based) localisation techniques.

Data availability
The authors declare that all relevant data are available in the paper or from
the corresponding author on request.

Code availability
The custom computer codes utilised during the current study are available
from the corresponding authors on request.
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