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In-sensor computing could become a fundamentally new approach to the deployment of machine
learning in small devices that must operate securely with limited energy resources, such as wearable
medical devices and devices for the Internet of Things. Progress in this field has been slowed by the
difficulty to find appropriate computing devices that operate using physical degrees of freedom that
can be coupled directly to degrees of freedom that perform sensing. Here we leverage reservoir
computing as a natural framework to do machine learning with the degrees of freedom of a physical
system, to show that amicro-electromechanical system can implement computing and the sensing of
accelerations by coupling the displacement of suspended microstructures. We present a complete
wearable system that can be attached to the foot to identify the gait patterns of human subjects in real-
time. Thecomputing efficiency and thepower consumption of this in-sensor computing system is then
compared to a conventional system with a separate sensor and digital computer. For similar
computing capabilities, a much better power efficiency can be expected for the highly-integrated in-
sensor computing devices, thus providing a path for the ubiquitous deployment ofmachine learning in
edge computing devices.

The design flexibility of micromechanical devices has enabled a vigorous
research effort to develop mechanical computing elements1, such as
memory cells2 or logic gates3. These computing elements are built, for
instance, using contact switches or resonators, and they are small, operate at
high frequencies, and dissipate a small amount of energy. They might
outperform their conventional, electronic counterparts in future computing
applications that operate on small power budgets, including battery-
powered sensors that performedge computing inwearable devicesor for the
Internet of Things4.

By virtue of their operating in the mechanical domain, mechanical
computing devices are especially interesting for their integration with sen-
sors thatmeasure sound, acceleration, strain, shape, adsorbedmass, or other
mechanical properties. Ultimately, the mechanical computing device in a
sensor could be driven directly by a measured mechanical stimulus to
producewithout transductionand, in themost efficientmanner, aprocessed
output, such as a detection, classification, or control signal. Examples that
have been discussed in the literature include resonating structures that are
sensitive to sound and can identify certainly spoken commands5,

metamaterial structures that can identify specific shapes from the positions
of a set of contact points6, as well as various proposals for in materio
computing7. The defining characteristic of these devices is that they can
perform complex data processing, including the prediction or the classifi-
cation of time-varying signals, with minimal or no electronic components
that, when they are required, do not contribute substantially to the com-
puting functions of the system. The term in-sensor computing has been used
to refer to the information processing of physical stimuli by devices that
perform both the sensing and the processing of these stimuli in the same
physical domain8. This is a radically different approach compared to con-
ventional systems that use sensors that first convert the physical stimuli to
electrical signals and then perform the processing using analog or digital
electronic computers.

Our work provides strong evidence that machine learning with in-
sensor computing is a viable technological option for real-time, secure,
and highly efficient wearable devices and edge computing devices. We
present a demonstration of a complete sensor with built-in machine-
learning capabilities via a wearable accelerometer that uses neuromorphic
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computing in the mechanical domain to detect subtle gait patterns in
human subjects. Our device implements its sensing and computing
functions using the displacements of mechanical structures, and as a
result, it can perform machine learning on sensor data in an especially
efficient manner. The device is attached to the left foot, and is able to
detect in real-time changes in the gait far better than a linear signal
classifier. Unlike conventional benchmark tasks9, this gait analysis task
provides a difficult real-world testbed to analyze the benefits of in-sensor
computing, as it requires a fully-integrated wearable device that must also
be robust against variability in the gait accelerations, walking speed,
morphology of the test subjects, and noise and non-ideal sensor
characteristics.

Our fully integrated device allows a direct comparison of in-sensor
computing with a conventional solution (i.e., machine learning software
executing on a commercial microcontroller). Building on previous work,
our device uses a custom micro-electromechanical system (MEMS) accel-
erometer that couples the inertialmovement of a suspended proofmass (for
acceleration sensing) to the nonlinear oscillations of a doubly clampedbeam
(for computation)10,11. Here, the MEMS device is additionally shielded
againstmechanical and electromagnetic perturbations, thermally stabilized,
and, most importantly, tightly packaged with all its auxiliary electronics so
that it can be tested as a miniaturized wearable device. As it is commonly
done in the field of physical reservoir computing12,13, the auxiliary electronic
components are used to drive our device and to increase the dimensionality
of its acceleration data representation using a feedback mechanism.

Our prototype device is shown to consume power at a level that is
similar to a heavily optimized commercial micro-controller implementing
the same gait classification task in software (see the section “In-sensor
computing forwearable devices”). The total power consumed by theMEMS
prototype device was measured and compared to a model summing the
calculated power consumed by each subsystem (970 ± 10mW total mea-
sured power, 958mW calculated, see the “Methods” subsection “Power
consumption”). This analysis showed that a simple re-design of certain sub-
systems in our prototype device would further reduce its power con-
sumption by an order of magnitude (down to an estimated 94mW, see
“Methods” subsection “Power consumption”), thus providing a significant
advantage over conventional microcontroller-based solutions and paving
theway for wearable devices that aremuch smaller or functionmuch longer
on abattery charge.Our results thusfirmly establish in-sensor computing in
MEMS accelerometers as a competitive alternative to conventional
embedded software solutions in a device that is integrated and effective
enough for a gait classification task that is difficult and relevant for real-
world applications.

In addition, only the classification labels are transmitted (wirelessly) by
our in-sensor computing device. The raw physiological data (i.e., the
accelerations) are nonlinearly transformed through the dynamics of the
MEMS before they are digitized. The digital data in the electronics feedback
mechanism cannot be inverted to retrieve the raw accelerations because of
the complexity of the dynamics of the MEMS, thus providing built-in data
security. This feature of in-sensor computing could be especially relevant for
wearable medical devices to protect the privacy of their users and to save
energy by reducing the amount of transmitted data and the use of
encryption algorithms.

Themost fundamental challenge for in-sensor computinghas arguably
been the development of an appropriate coupling between the computing
functions and the sensor functions of a device. Our work shows that this
coupling is conceptually simpler to implement in a device when the com-
puting functions are realized using degrees of freedom that can also be
influenced by the physical stimuli that are being measured.We achieve this
by coupling a nonlinear resonator to a suspended-proof mass in a micro-
fabricated accelerometer. Data processing is realized in the acceleration
sensor by leveraging the computing model known as reservoir computing14,
which has been tremendously influential in the development of computing
systems that use the measurable degrees of freedom of physical dynamical
systems (aka. physical reservoir computers9). Recent examples of physical

reservoir computers with in-sensor computing capabilities have included
the coupling of radio-frequency electromagnetic waves to electron-spin
reservoir computers15 and a light-sensitive memristor reservoir computer16.
Our work advances the nascent field of in-sensor computing by demon-
strating the energy efficiency, compactness, and data processing capabilities
of machine learning concepts implemented in the same physical domain as
the sensory information in a highly functional wearable device.

Results
MEMS device with sensing and trainable computing capabilities
We address a human gait classification task (Fig. 1a–c) with a microelec-
tromechanical (MEMS) accelerometer that performs both sensing and
computing in the mechanical domain. The mechanical reservoir computer
is implemented using the dynamical nonlinearity of a thin silicon beam
clamped at both ends, which is similar to the device described previously10.
When the beam is driven by an oscillating electrostatic force that is suffi-
ciently large, the amplitude of its oscillations exhibits complex nonlinear
dynamics (Fig. 2a, b), that are used for reservoir computing. The driving
electrostatic force on the clamped beam is applied through a suspended
proofmass thatmoves when accelerations are applied to the device (Figs. 1a
and 2d), as described previously11. The amplitude of the driving force varies
with thedistance between theproofmass and the equilibriumpositionof the
beam, and the parameters of the system are chosen so that the amplitude of
the oscillations of the beam is a complex nonlinear function of the position
of the proofmass (and therefore, of the accelerations, see Fig. 1b). In order to
increase the complexity of the signals that can be generated from the
amplitude response of the beam, a feedback technique12 is employed to
create multiple different virtual responses using a time-multiplexing tech-
nique (Fig. 1b), each being a different nonlinear function of the accelera-
tions. The virtual responses are sampled at regular intervals with
conventional electronics to generate a vector of ‘activation values’ at each
time interval (a complete block diagram of the system is shown in Sup-
plementary Fig. 2). The scalar product between this vector and a trained
weights vector isfinally computed in a conventionalmicrocontroller at each
time interval toproduce the output classification for the typeof gait (Fig. 1b).

The feedback approach to generate virtual activation values has been
used successfully in a wide variety of physical reservoir computers9, as it
allows to adjust the memory of a physical reservoir (which is often fixed by
the hardware) to the memory required to solve a task10,17, and as it allows to
leverage the fast or energy-efficient physical reservoirs to perform complex
nonlinear computations, that are then efficiently processed by conventional
electronics. As we demonstrate in this work, even sub-optimized physical
reservoir computers that rely on a feedback technique can achieve perfor-
mance levels that are competitive with conventional electronics18–20.

A different weight vector is used for each of the two gait patterns (toe-
out, TO, and trunk-lean,TL, Fig. 1b), so thedevice candiscriminate between
a normal gait (N) or an abnormal gait with either (TO or TL) or both
(TOTL) of the TO and TL patterns. The MEMS device was packaged and
integrated on a small printed circuit board (Fig. 2e) so that it could be
attached to a shoe with minimal interference to the gait. Additional details
about theMEMSdevice and theweights training process are provided in the
“Methods” subsections “MEMS design and fabrication” and “MEMS
packaging and board integration”. Similar MEMS devices have also been
described elsewhere21–27.

For our MEMS device, the in-sensor computing that is done in the
mechanical domain is the result of the modulation of the high-frequency
driving voltage (around 250 kHz) that is the input to the beam reservoir
computer by the low-frequency displacement (below 400Hz) of the proof
mass, which is sensitive to external accelerations. As the electrostatic driving
force is proportional to the square of the drive voltage, the beam is driven
into fast in-plane oscillations (around 500 kHz). As displayed in Fig. 1b and
Supplementary Fig. 1, gait acceleration signals have a low-frequency content
(0.5–15Hz) and small amplitude (~1 g) as a result of the biomechanics of
thehumanbody28,29. The inertial sensing componentof ourMEMSsystem is
designed to respond to these acceleration signals (see the sensitivity curve in
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Fig. 2d). By coupling the inertial proofmass to thedriving force acting on the
doubly clamped beam, efficient computing is achieved on a timescale set by
the short (τ = 150 μs) decay timeof the beamoscillator (Fig. 2a). Thedelayed
feedback loop (details in section Supplementary Note 3) and leaky inte-
grator (details in the section “Training the MEMS system”) are used to
increase this relatively short intrinsic memory, to match the frequency
content of the gait acceleration signals. For the virtual networkwithN = 100
nodes that were used in this work, the envelope of the beam oscillation was
sampled at a rate of θ−1 = 1/70MHz > τ−1 to produce the activation signals
so that the raw classification signals were updated from the linear combi-
nation of the activation signals at a rate of 142.85Hz. Since this update rate is
too high for the frequency content of the biomechanical task, a moving
average was performed over 300 time steps. This resulted in an effective
computing timescale of ~2.1 s, which was well matched to the gait accel-
erations, and also filtered noise at frequencies higher than the bandwidth of
the acceleration signals.

In-sensor identification of human gait patterns
In-sensor computingwith ourMEMSdevicewas applied to the detection of
the four different gait patterns (N, TO, TL, TOTL) using a single device

attached to the left foot.The automated identificationof these gait patterns is
relevant clinically, as it may be used for the management of certain mus-
culoskeletal diseases, such as knee osteoarthritis, for instance, via gait
retraining using real-time biofeedback30. While gait pattern identification
can be performed in laboratories equippedwith 3Dmotion capture systems
or usingmultiple inertialmeasurement units 31–33, the difficulty of the task is
compoundedbyouruse of a single accelerometer,which ismotivated byour
objective to develop the simplest, lowest cost, andmost unintrusivewearable
device.

In our study, ten healthy subjectswere instructed towalk on a treadmill
with theMEMS system attached to their left shoe while alternating between
the four gait patterns (see the “Methods” subsection “Gait analysis protocol”
and Supplementary Note 2 for details). Relatively slow walking speeds,
between 0.36 and 0.72m/s, were set on the treadmill to correspond to a
range of speeds in a population with knee pain. This range (±33% around
themedian) ismuch larger than the expected range of natural variations for
a given person (e.g., ±3%)34. The virtual activations from the MEMS
reservoir computer and the accelerations measured by a conventional
accelerometer co-located with the MEMS were sent to a computer in the
laboratory. The training and the testing phases were performed

Fig. 1 | General description of the MEMS gait analysis system. a Schematic
description of the MEMS gait analysis system, showing the position of the MEMS
and reference accelerometers on the foot, the MEMS accelerometer sensing element
coupled to the non-linear beam resonator, and the network of virtual activations
used to generate the output signal y(t). b Schematic representation of the gait pat-
terns (top row), accelerations measured by the reference accelerometer (second
row), virtual activations for 18 randomly selected nodes (third row), and gait dis-
crimination output signals yTO for the toe-out gait and yTL for the trunk-lean gait

(fourth and fifth rows, respectively, gray for the raw signals, and color lines for the
time-averaged signals), together with the threshold levels (fourth and fifth rows,
black dashed lines) and detector binary outputs (fourth and fifth rows, dashed color
lines). c Receiver operating characteristic curve for both walking patterns. MEMS
micro-electromechanical system, Nnormal gait, TL trunk-lean gait, TO toe-out gait,
TOTL toe-out and trunk-lean gait, a.u. arbitrary units, TPR true positive rate, TNR
true negative rate.
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independently for each participant to obtain personalized classifiers with
good performance. For each participant, we used a four-fold cross-valida-
tion (see the “Methods” subsection “Training the MEMS system” for
details). For each of the four splits of the cross-validation, the training was
performed on three folds using a ridge regression, and the testing
was performed on the remaining fold. The classification performance was
assessed by computing the average of the area under the curve (AUC) of the
receiver operating characteristic (ROC) curve, computed over the four splits
(an AUC of 0.5 corresponds to a random classifier while an AUC of 1.0
corresponds to aperfect classifier). See Fig. 1c for an example of aROCcurve
and Fig. 3 for a characterization of the performance of the MEMS system.
Figure 3 also presents for comparison the performance of two conventional
software solutions (an echo-state network, ESN, and logistic regression, LR,
details in the “Methods” subsection “ESNand logistic regression”) that were

not implemented using in-sensor computing and that instead used the data
acquired from the conventional accelerometer. Theweight vectors obtained
in training couldfinally be transferred back to theMEMS system,whichwas
thenused to classify gait patterns in real-time. The real-time performance of
the system was then evaluated while a subject was walking on the treadmill
with different gait patterns (see Supplementary Movie 1 for a
demonstration).

Our results show that the TO and the TL gait detectors could both
perform very well, with a typical probability for correctly identifying the TO
pattern while the subject was walking with that pattern (TPR) above 99%
and a typical probability for incorrectly identifying the TOpatternwhile the
subjectwasnotwalkingwith that pattern (FPR)below1%(respectively, 90%
and10% for the harderTLpattern, see Fig. 1c). This level of performance for
training customized to a single subject could be useful in the context of

Fig. 2 | Mechanical response of the gait analysis system. a Frequency response
curves for the silicon beam for a drive voltage amplitude that is increased from 30 V
(red) to 109 V (black) in steps of 5 V (up to 105 V, black curve at 109 V). TheDuffing
stiffening nonlinearity of the silicon beam can be observed in the asymmetry of the
frequency response curves. bDrive amplitude voltage sweeps for the silicon beam for
a forcing frequency that is increased from 493.4 kHz (black curve) to 501.0 kHz (red
curve) in steps of 400 Hz. These sweeps show that the deviation from the linear
regime is increased as the drive voltage amplitude and forcing frequency are

increased. c Photographs of the packaged MEMS and its main electronics board.
d Inertial response of the MEMS, where the sensitivity is displayed as the amplitude
of the oscillation signal (in V) per unit of acceleration applied (in standard gravity g),
converted to decibels (dB) using a reference level of 1 V per g (at 0 dB). eManually
colored scanning electron microscope images of a device (red: inertial mass and
spring suspension, blue: anchors, green: clamped beam, yellow: inertial mass stop-
pers, orange: strain gages).
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personalized medicine35, where a device could be trained in a clinical
environment to provide a high-accuracy gait classifier to achieve a specific
therapeutic objective. Figure 3a further shows the AUC for subtasks with
various levels of complexity. It can be observed that the MEMS classifica-
tions were robust against variations in the gait patterns across individual
subjects when they all walked at the same speed, even if there were sub-
stantial differences within the group of subjects (10 participants, age 33 ± 15
years, height 173 ± 8 cm and weight 75 ± 13 kg, reported as mean ±
standard deviation). When the difficulty of the gait identification task was
further increased by using a single set of weight vectors for all walking
speeds, the performance for theMEMS classifications was reduced (median
AUC of 90% for TO and 84% for TL), principally due to an increase in the
frequency of errors between the normal and TO patterns, and between the
TL and TOTL patterns (Fig. 3b).

This level of classification performance with the MEMS device is very
good compared to what can be achieved with linear classifiers, especially for
the harder TL identification task. Figure 3a shows, for instance, that the
median AUC for the TL pattern with all participants and all speeds is much
better with theMEMS device (84%) than with a logistic regression classifier
that did not perform significantly better than random guessing (median
AUC of 56%). A similar logistic regression classifier could perform well for
TO identification at a fixed speed, but its performancewasmuch lower than

the performance of the MEMS device on all other tasks (TL and TO with
combined speeds). This establishes that only nonlinear classifiers can per-
form well under the conditions of our gait identification task and further
illustrates the usefulness of sophisticated in-sensor processing for this
application.

In-sensor computing for wearable devices
In order to have a relevant technological impact, in-sensor computing
devices need to generalize while performing complex computations, i.e.,
they must be robust against variations in the inputs that were not seen
during training, as well as a certain level of noise. This robustness is a
hallmark of neuromorphic computing techniques, including reservoir
computing. In addition, these techniques can oftenmodel the nonlinearities
in sensor systems36–38, so theyperformwell evenwithnon-ideal sensors.This
couldbe leveraged to alleviate thedesign requirements ofmany sensors, thus
potentially lowering their cost of fabrication or calibration.

The performance of our prototype device as a pure sensor (Fig. 2d)was
far from the state-of-the-art for MEMS accelerometers, with a sensitivity
between 0.05 V per g and 0.1 V per g in a bandwidth of 400 Hz, some in-
band resonances andotherproblems (seeSupplementaryNote1 fordetails).
Nevertheless, the beam reservoir computer was able to learn these perfor-
mance limitations, to classify gait patterns as well as a neural network

Fig. 3 | Performance of in-sensor classification. a Areas under the receiver char-
acteristic curve for the toe-out (blue) and trunk-lean (green) gaits, for the MEMS,
ESN, and LR classifiers, for a single participant walking at a steady pace (top panel),
for all participants walking at a single speed of 0.63 m/s (middle panel), and for all
participants, all walking at five different speeds (bottom panel). The box plots dis-
played in the bottom two panels show the first and third quartiles (boxes), the
median (orange lines), 1.5 times the interquartile range (whiskers), and the data

points outside the whiskers (circles). b Corresponding confusion matrices for the
MEMS classifier showing the probability (in percentages) of the detector to predict a
gait pattern (columns) for a prescribed gait pattern (rows). MEMS micro-
electromechanical system, ESN echo-state network, LR logistic regression, ROC
receiver operating characteristic, AUC area under the curve, N normal gait, TL
trunk-lean gait, TO toe-out gait, TOTL toe-out and trunk-lean gait.
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operating on data from a commercial accelerometer. Figure 3a shows a
comparison of the classification performance of the MEMS device and of a
conventional system built using a commercial accelerometer and software
ESN39 executed on a microprocessor. It can be observed that the MEMS
device and the ESNboth learned the variability between subjects and speeds
to achieve similar classification performance and to perform better than the
linear classifier. The MEMS device further had to learn the non-ideal
behavior of its acceleration sensor so that it was arguably solving a more
difficult task. It could, of course, be expected that more elaborate classifier
software could achieve better performance with the commercial accel-
erometer data; the comparison was performed here with an ESN with
optimizedhyperparameters andwith the samenumber of reservoir nodes as
the number of virtual activations in the MEMS device (see the “Methods”
subsection “ESN and logistic regression” for details).

This demonstration that theMEMSsolves the gait classification task, as
well as an ESN, further allows a direct comparison of the energy consumed
by our system and by a conventional electronics system. The MEMS was
packagedon a small electronic board thatwas used to implement somenon-
essential functions such as data logging, subsystem control, wireless com-
munication, voltage level conversion, and parameter tuning for the signal
processing chain. It was also used to implement the functions that are
essential for the current MEMS, including the battery, a high voltage drive
with an amplitude modulator, an analog-to-digital converter, a micro-
controller implementing a buffer of activation values, and a scalar product
with a weight vector, a digital-to-analog converter, and a signal processing
chain to measure the position of the beam. With all functions active, the
power consumed by our prototype system was measured to be
970 ± 10mW. A system executing the ESN on a state-of-the-art micro-
controller andusingdata fromacommercial accelerometerwasmeasured to
similarly consume 280 ± 40mW of power. By breaking down the power
consumption of our prototype by subsystems, eliminating the non-essential
functions, and improving some simple elements of the MEMS design, we
can calculate that a better-optimized version of our system could consume
only 94mWof power, alreadymuch better than the heavily optimized ESN
system built with commercial components. More complex design mod-
ifications could further reduce the power consumption below 12mW, for
instance, by co-integrating the control electronics with the MEMS40 or
increasing the quality factor of the MEMS resonator with vacuum
packaging41 (see the “Methods” subsection “Power consumption” for
details). The lowest power consumption could arguably be achieved by
eliminating the feedback circuitry to create activations entirely in the
mechanical domain and by forming the linear combination of the activa-
tions in the analog domain, as discussed in the “Methods” subsection
“Power consumption”.

Discussion
We have described a device that is both an acceleration sensor and a neu-
romorphic computer and that performs its sensing and nonlinear com-
puting functions in the mechanical domain via the displacement of
suspendedmicrostructures. This wearable device was shown to successfully
implement the concept of in-sensor computing for the difficult task of
identifying the gait pattern used by a human subject, using only the accel-
eration measured on one foot. The most important characteristics of the
device that enabled this successful demonstration were its computing cap-
abilities (linear classifiers cannot solve the gait classification task), robust-
ness against data variations and non-ideal sensor behavior, small size, and
lowpower consumption. These characteristics are natural benefits of the co-
integration of the sensing and neuromorphic computing functions in a
single device. Another benefit of in-sensor computing is that the sensor data
never leave the device or are never actually converted to the electrical or
digital domains, thus offering a high level of privacy that could be especially
relevant for medical devices.

These benefits that are important for medical devices are also highly
desirable for edge computing devices in applications for the Internet of

Things. In these applications, in-sensor computing could further allow the
amount of data transmitted by the edge sensors to be drastically reduced,
from the full (compressed) bandwidth at theNyquist frequency of the signal
down to the rate of identification of relevant features in the signal. In
addition to alleviating the data congestion issues that are typical of Internet
of Things applications42, this could greatly increase the battery life of edge
sensors, thus facilitating their field deployment at a large scale. Our
demonstration of a single device that solves a complex real-world task by
performing both sensing and neuromorphic computing functions directly
in the mechanical domain can thus be considered an important milestone
for the broad deployment of sensors and machine learning capabilities in
emerging applications for wearable medical devices and for the Internet of
Things.

Methods
MEMS design and fabrication
The suspended inertial mass and doubly clamped beam were defined by
photolithographically patterning their shapes in the AZ MIR 701 photo-
resist, deep reactive-ion etching (Bosch process) of the 50 μmdevice layer of
a P-type (borondopant, 0.02Ω cm) siliconon insulator (SOI) substrate, and
then releasing byHF vapor etching of the 4 μmburied oxide (BOX) through
perforations in the proof mass (10 μm-side squares on a pitch of 20 μm),
while their anchors (minimum width of 35 μm) remained attached to the
350 μm-thick handle layer due to their larger surface area and absence of
perforations. The device was finalized by a metallization step where a
stainless steel laser-cut stencil attachedover the die allowed the depositionof
a Cr–Au film over the electrical traces using electron-beam evaporation.
More details of the fabrication process are given elsewhere11.

The 50 μm thickness of the device layer provided sufficient out-of-
plane stiffness to prevent the pull-in of the inertial mass towards the handle
across the 4 μmair gap left by the release step (etchingof theBOX), butmore
importantly, provided substantialmass (49 μg) in a small footprint (1mm2),
thus providing a sufficient sensitivity to uniaxial accelerations. Four pairs of
3 μm-wide folded flexure springs (436 and 488 μm long segments) were
used to suspend the inertial mass. They were tuned to provide sufficient
longitudinal displacement in reaction to accelerations (6.8 N/m spring
constant) while restricting transverse and rotational displacements. An
8 μm-wide electrostatic transduction gap separated the inertial mass from
the beam oscillator. The beam width (4 μm) and length (300 μm) were
adjusted10,11 for fast oscillations (much above the resonance frequency of the
inertial mass, in a range where the resonator is not sensitive to inertial
forces), as well as to easily achieve nonlinear dynamics throughmechanical
stiffening at large displacements. Thin 1.5 μm× 12 μm piezoresistive strain
gauge pairs attached to the beam were included in the design to allow the
differential piezoresistive measurement of its oscillations. Sets of stopper
structures (18 μmdiameter half-discs) surrounded the inertialmass in order
to limit its range of motion to 5 μm, to protect the device from shocks and
electrostatic pull-in, which could otherwise damage the device by short-
circuiting the capacitive transduction gap.

MEMS packaging and board integration
A schematic description of the system is shown in Fig. 4. The beam oscil-
lation amplitude signals were preprocessed by an analog measurement
circuit before being sampled by the analog-to-digital converter. The digi-
tized samples were then fed to a leaky integrator which outputs the virtual
node activations that were used during inference by the output layer, which
was trained using a ridge regression. The activations were also delayed and
fed back to the MEMS through the high-voltage drive circuit driven by a
digital-to-analog converter. The detected gait pattern was obtained by
thresholding the temporally averaged linear combinationsof the activations.

The MEMS die was wire bonded to a 20mm× 20mm printed circuit
board (PCB) chip carrier, and a plastic cover was attached to the PCB in
order to protect the device from its environment (see Fig. 2c for a photo-
graph of the packagedMEMS). Fine-pitchmale headers soldered on the flip
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side of the chip carrier PCB allowed for its mechanical and electrical
interfacing to the control electronics board (see SupplementaryNote 3 for a
detailed description of the electronic modules) while matching mounting
holes allowed the stacking of a reference accelerometer for characterization
purposes. After mounting the packaged MEMS device, control electronics,
and batteries in a 3D-printed wearable plastic enclosure, the enclosure was
shieldedwith copper tape over the areas containing sensitive or high voltage
signals for safety and to improve the integrity of electrical signals (see
Supplementary Note 4 for details).

Gait analysis protocol
Ten healthy adults participated in the study. All participants gave written
informed consent to participate in the study, according to experimental
procedures approved by the IRDPQ-CIUSSS-CP research ethical com-
mittee (2021-2269).

The participants were instructed to walk on a treadmill (SuperFit
2.25HP). The participants were equipped with a 3D-printed enclosure
attached to the top of the left shoe. The enclosure included the MEMS device
as well as a commercial reference accelerometer (Analog Devices ADXL326
accelerometer, ± 16×g, bandwidth of 0.5–1600Hz, sensitivity of 51mVper g).
The signals produced by the MEMS and the reference accelerometer were
both sampled at 14285 Hz by a National Instruments PCIe-6374 16-bit data
acquisition card using shielded coaxial cables for electrical connections. The
reference acceleration signal was then downsampled by a factor of 100 after
applying a linear-phase, finite impulse response low-pass filter at the Nyquist
frequency. The cables were attached to the lower leg of the participant up to
the knee and were fixed on the treadmill with enough slack to let the par-
ticipants walk comfortably.

After explaining the gait patterns to the participants, participants
walkedwith eachpattern for 15 s, for every treadmill speed considered in the
study, from slow to fast, while feedback was given by a supervisor. For the
trunk lean pattern, participants were instructed to stand on the left foot only
to balance their trunk to keep this posture and then to apply this posture for
every step takenby the left leg. For the toe-out pattern, theywere required to
angle their left foot outwards at an angle that was comfortable for them.
Once their gait patterns were deemed stable by the supervisor, the partici-
pants eachwalked 20 sequences of 90 s duration, with different gait patterns
and speeds. Thefirst, second, third, and fourth sequenceswere in thenormal
(N), toe-out (TO), trunk-lean (TL), and toe-out+trunk-lean (TOTL) gait
patterns, respectively, at afixed speed of 0.36m/s. Four additional sequences
in the N, TO, TL, and TOTL gaits were then sequentially obtained at speeds
of 0.45, 0.54, 0.63, and 0.72m/s. For each recording, the first 10 seconds of
data were discarded (this 10 s segment served to give enough time to the
participants to adopt each gait pattern). If the supervisor judged that the gait
pattern was not respected for the full duration of a given sequence, that
sequence was discarded and reacquired.

Training the MEMS system
As shown in Fig. 4, the virtual node activations x used by the output layer to
classify gait patterns in real-timewere obtained through leaky integration of

the beam oscillation envelope samples ~x :

xðnÞ ¼ ð1� αÞxðn� 1Þ þ α~xðnÞ; ð1Þ

where α is the leaking rate and ~xðnÞ is a vector containing
N = 100 successively digitized samples at timestep n of the detector output
time series, with each sample corresponding to a different virtual node. In a
training phase, these activations, which are non-linear transformations of
the physical acceleration signals, were input to a ridge regression in order to
obtain the output layer weights Wout. These weights were then used, in
inference mode, as coefficients of linear combinations of the virtual node
activations.Amoving average of over 300 timestepswas applied to the result
of the linear combinations to produce the detection signal. The moving
average and leaky integration increase the short-term memory of the
system,which has been shown to be useful formotion classification in other
in-sensor systems43. This detection signal was thresholded at different levels
to characterize the detector through its ROC, which in turn allowed the
selection of a suitable threshold, chosen as the value that minimized the
difference ∣TPR–TNR∣. This threshold was finally applied during the test
phase to output one of four possible classes (N, TO, TL, TOTL) for each
timestep and subsequently construct the confusion matrices of Fig. 3.

During the training phase, the activations of the virtual nodes of the
MEMS reservoir computer were stored after an initial 1000 timesteps
transient was discarded, in a matrixX 2 Rð1þNÞ ×M , withM the number of
timesteps (an extra rowof oneswas added tohave a constant bias in addition
to the activation values). Based on the gait pattern prescribed to the parti-
cipant, a target output matrix Y 2 R2×M was constructed. The first and
second rows corresponded to a one-hot encoding for TO and TL, respec-
tively. At timestep n, the nth column of Y thus corresponded to the N, TO,
TL or TOTL gait pattern for the patterns [0, 0], [1, 0], [0, 1] and [1, 1],
respectively. An output weight matrix Wout 2 R2× ð1þNÞ was obtained by
ridge regression,

Wout ¼ YXT XXT þ βI
� ��1

; ð2Þ

where β is a regularization parameter used to control overfitting, and I is the
identity matrix of sizeN+ 1. To use the output weight matrixWout for the
classification of the walking pattern at the timestep n, the matrix–vector
productWout�xðnÞwas computedwith the activation values x(n) at time step
n and a constant term for the bias, arranged in a single vector �xðnÞ. Finally,
some of the parameters of theMEMS systemhad to be tuned to obtain good
performance. The tuning procedure for these MEMS hyperparameters is
described in Supplementary Note 5.

A k-fold cross-validation procedure was used for training and testing.
Each recording was split into four folds. Three folds were used for training,
and the remaining fold was used for testing. The procedure was repeated
four times (resulting in four splits), each time using a different fold for the
testing so that each foldwas used exactly once for the testing. In all splits, the
testing fold was never used during the training phase. All of the reported
classification performance metrics were averaged over the four splits.

Fig. 4 | Detecting gait patterns from MEMS virtual node activations. Schematic
description of the gait classification system. ADC analog-to-digital converter, AUC area
under the curve, DAC digital-to-analog converter, MEMS micro-electromechanical

system, ROC receiver operating characteristic, ~x digitized samples; x virtual node
activations, �x activation vector augmented with a constant bias term, Wout output
weight matrix.
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ESN and logistic regression
The ESN was implemented in the software. It used the single-channel
acceleration signal u(n) from the reference accelerometer as input and
produced a state x(n) according to

~x ¼ tanh W in

1

uðnÞ

� �
þW r xðn� 1Þ

� �
ð3Þ

xðnÞ ¼ 1� αð Þxðn� 1Þ þ α~xðnÞ; ð4Þ
where the hyperparameter α is the leaking rate, W in 2 RN × 2 is the input
weight matrix, and Wr 2 RN ×N is the reservoir weight matrix. Both Win

andWr were initialized randomly from uniform distributions (between−1
and +1), then sparsified by randomly replacing entries by 0 (with a prob-
ability given by the hyperparameter called the sparsity probability) and
finally scaled by multiplying by a scaling hyperparameter (for Win, one
scaling hyperparameter was used for the input and another was used for the
bias). The ESN hyperparameters were taken from an earlier study on a gait
event detection task44 and are given in Supplementary Note 6. In that study,
the hyperparameters with the largest influence on the performance (the
input scaling, the bias scaling, the spectral radius, and the leaking rate) were
optimized by the CHARC method45, and the other hyperparameters were
taken from previous studies and not optimized further since they did not
have much influence on the performance. In the CHARC method, the
hyperparameters were selected to maximize the ratio between the kernel
rank (which measures the ability of the ESN to distinguish distinct inputs)
and the generalization rank (whichmust be decreased to improve the ability
of the ESN to recognize similar inputs). After discarding the initial 1000
timesteps to account for the initial ESN transient, the states froma recording
withM timestepswere assembled in amatrixX 2 Rð2þNÞ×M , togetherwith
a rowof ones to add a bias term and a row corresponding to the acceleration
signal. The rest of the procedurewas then the same as for theMEMS system:
for each split of the cross-validation, a matrix Wout was obtained by ridge
regression, predictions were generated using the matrix-vector product of
the state-bias-acceleration vector with Wout and a moving average of 300
timesteps was applied.

For the logistic regression, a digital low-pass filter (FIR filter with a
Hammingwindow, cutoff frequencyof 71.5 Hz, order 40)was applied to the
acceleration signal from the reference accelerometer. The first 1000 accel-
eration values were removed in order to keep the same training data length
as for the MEMS and ESN methods. Then, at each timestep n, the last 715
acceleration values (a window corresponding to the last 5 s) were down-
sampled by a factor of 2, and the resulting 358 acceleration values, as well as
the mean of the last 715 points, were used as features for the logistic
regression. These featureswere standardizedby subtracting theirmeans and
by dividing by their standard deviations, with the means and standard
deviations obtained from the training dataset. A two-row matrix Yp con-
taining the probabilities for the TO and TL classes was calculated by
applying the logistic function to a linear combination of the features plus a
bias term. The parameters of the linear combination and the bias were
obtained during training by a coordinate descent algorithm implemented in
the liblinear solver in the scikit-learn package46. In this algorithm, the reg-
ularization parameter C was set to 1.0, and the maximum number of
iterations was 100. The same procedure as for the MEMS and the ESN was
then followed (for each split of the cross-validation, Yp was computed, a
moving average over 300 timesteps was applied, and performance was
evaluated).

Power consumption
In order to compare the power consumption of the MEMS system to a
conventional implementation that uses separate sensor and processing
components, the ESN described in sectionM4was also implemented on an
Adafruit Industries HUZZAH32 Feather board, that is built around a
Espressif Systems ESP32 microcontroller. The board was connected to an
STMicroelectronics ISM330DHCX inertial measurement unit. The WiFi,

radio, and Bluetooth functions were deactivated to save power. Power was
supplied through the boardUSBconnector, and everythingwas packaged in
a 3D-printed plastic enclosure similar to the one of the MEMS system.

Powermeasurements were performed on ourMEMSprototype aswell
as on the ESN running on the Feather system by connecting an ammeter in
series with a 5 V benchtop power supply replacing the batteries or USB
power of either system. Power dissipation wasmeasured in inferencemode,
without data transmission. For the MEMS system, a simple LED board
addressed by the microcontroller was used to provide real-time feedback
about the detected gait pattern.

Current andprojected energy requirements for theMEMSsystemwere
calculated by summing the power dissipation contribution of every elec-
tronic and electromechanical subsystem. These individual contributions,
shown inSupplementaryTable 3 andSupplementaryTable 4,were obtained
by first measuring the signal characteristics (root mean square (RMS) vol-
tage (Vout) and dominant frequency) at the output of each active device that
powers these subsystems. For operational amplifiers, the dominant fre-
quency of signals was then used to compute equivalent load impedances
(Zload) from nominal values of passive load components. This in turn,
allowed the conversionof themeasured voltages into currents being sourced
and sinkedby the amplifiers (Iload). Finally, an estimate of power dissipation
of all subcircuits (Ptotal) was obtained by adding the integrated circuit
quiescent power dissipation (Pquiescent =VsupplyIquiescent, whereVsupply is the
supply voltage difference, and Iquiescent is the quiescent current, taken from
the datasheet) to the power dissipated due to the application of a signal
(Pload =VsupplyIload/2, since analog signals are bipolar and biased at 0 V).
Power dissipation values for the microcontroller, the voltage-controlled
oscillator (VCO) and the three voltage regulators were obtained from their
respective datasheets. The power outputs of the voltage regulators, calcu-
lated using values from Supplementary Tables 3 and 4, were used to deduce
their power dissipation through the efficiency curves obtained from their
respective datasheets. The high-voltage amplifier power dissipation was
deduced by disconnecting it from the system and by measuring the sub-
sequent drop in the power supplied to the system.

A total power requirement of 958mWwas calculatedwith thismethod
for the current version of the MEMS system (see Supplementary Table 3),
consistently with the measured value of 970 ± 10mW. This level of agree-
ment validates our power analysis methodology, which thus provides a way
to identify subsystems that can be optimized and to calculate expected
power requirements for future designs. As detailed in Supplementary
Table 4, a large reduction in power consumption could be achieved by
simply changing the currently supplied voltages (+3.3,+5, and−5 V) to a
single 2.5 V power rail, selecting lower power active chips and scaling
component values accordingly, and eliminating unnecessary or data logging
subcircuits such as the EEPROM chip, some voltage offset and pre-
amplification stages. In addition, the multiplier integrated circuit, which
dissipates an order ofmagnitudemore power than other active components
in our current implementation, could be replaced by a digital potentiometer
controlling the gain of a voltage amplifier in order to implement amplitude
modulation more efficiently. With these straightforward modifications, the
power consumption would be reduced from its current value of
970 ± 10mW (measured) down to 94mW (calculated).

Lower power consumption levels could arguably be achieved by
eliminating the feedback circuitry to create activations entirely in the
mechanical domain. This could be achieved using multiple resonators47 or
multiple proofmasses48. A completelymechanical implementation with the
number of activations (approximately 100) and memory (on timescales on
the order of seconds) required for complex time-series processing (such as
gait analysis) has yet to be experimentally demonstrated, but hybrid systems
with a few resonators or proof masses25,49 could be a stepping stone toward
this goal, that proportionally reduces the power consumption of the feed-
back electronics. Any fully integrated system should also have efficient drive
and read-out mechanisms with efficient electrical implementations50.
Finally, a completeMEMS system should implement amechanism to adjust
the weights in the linear combination of all its activation functions, to

https://doi.org/10.1038/s44172-024-00193-5 Article

Communications Engineering |            (2024) 3:48 8



support learning. It is unlikely that this could be achieved by tuning the
structure of theMEMS, due to the economical costs of creating lithographic
masks and,more fundamentally, to the inherent variability of the fabricated
devices. An intriguing possibility would be to perform the linear combi-
nation on analog signals instead of in the digital domain, using an array of
adaptable elements to adjust the weights, such as memristors51. The non-
linear processing of the physical signals could be performed efficiently by
MEMS resonators with a high-quality factor, while low currentswould flow
from the memristor array into a summing amplifier with a high input
impedance.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The recorded reference acceleration signals and the virtual activation signals
for all participants, gait patterns, and walking speeds are available online52.
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