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The uncertain stability of deep reinforcement learning training on complex tasks impedes its
development anddeployment, especially in intelligent vehicles, such as intelligent surface vessels and
self-driving cars. Complex and varied environmental states puzzle training of decision-making
networks. Here we propose an elastic adaptive deep reinforcement learning algorithm to address
these challenges and achieve autonomous navigation in intelligent vehicles. Our method trains the
decision-making network over the function and optimization learning stages, in which the state space
and action space of autonomous navigation tasks are pruned by choosing classic states and actions
to reduce data similarity, facilitating more stable training. We introduce a task-adaptive observed
behaviour classification technique in the function learning stage to divide state and action spaces into
subspaces and identify classic states and actions. In which the classic states and actions are
accumulated as the training dataset that enhances its training efficiency. In the subsequent
optimization learning stage, the decision-making network is refined through meticulous exploration
and accumulation of datasets. The proposed elastic adaptive deep reinforcement learning enables the
decision-making network to effectively learn from complex state and action spaces, leading to more
efficient training compared to traditional deep reinforcement learning approaches. Simulation results
demonstrate the remarkable effectiveness of our method in training decision-making networks for
intelligent vehicles. The findings validate that our method provides reliable and efficient training for
decision-making networks in intelligent vehicles. Moreover, our method exhibits stability in training
other tasks characterized by continuous state and action spaces.

The autonomous navigation techniques of intelligent surface vessels and
self-driving cars are epoch-making achievements, which is a key link in
achieving inexpensive unmanned transportation1. It aims to improve
operation efficiency, strengthen operation safety, and liberate manpower
through the abilities of perception and independent decision-making2–5.
Autonomous navigation is the premise of realizing the intelligent surface
vessel and self-driving car. However, achieving high-quality autonomous
navigation requires abundant computational power and time costs, which
hinders the rapid iteration of intelligent surface vessels and self-driving cars

technologies. Moreover, restricted by the limitation of human experience
and the difficulty of massive experience data acquisition, the existing
autonomousnavigation technologies are far fromthehuman level. Thepoor
efficiency of the navigation system, the inadaptability to complex navigation
situations and unknown situations, and the instability of controller
switching have not been effectively resolved, which impediments the
practical application of autonomous driving technology. Due to the DRL-
based approaches being limited by computational power and training
samples, traditional control approaches still dominate in autonomous
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driving technology6–8. Yet, deep reinforcement learning (DRL)-based
approaches have great potential by their abilities of learning and end-to-end
feature extraction9.

Although DRL performs satisfactorily in various tasks, there are still
problems in its application to autonomous driving of intelligent surface
vessels and self-driving cars, such as hardly explored environment states10,
verbose obstacle information, unprecise collision risk assessment, and
reward functionswithnegative internal interaction11,12.Moreover, due to the
complexity of environments and tasks13, the commonly used exploration
strategies such as ϵ− greedy algorithm and Ornstein Unlenbeck stochastic
process are inefficient and useless to explore the navigation environment.
Furthermore, for the collision risk assessment, the distance at the closest
point of approach and the time to the closest point of approach are difficult
to accurately quantify and compare the collision risks of vessels in multi-
vessel encounter situations, although they are the most popular assessment
indicators of the vessel collision risk14. Furthermore, changes in obstacle
situations can result in suddenfluctuations in input values and control gains
for the control system. These fluctuations can have a serious impact on the
stability and operational efficiency of the control system, potentially leading
to accidents or crashes. Therefore, it is attractive and valuable to achieve
autonomous navigation of intelligent surface vessels.

Autonomous navigation of intelligent vehicles is confronted with
enormous challenges. Taking an intelligent surface vessel as an example, the
path following15,16 can sometimes hinder the vessel from effectively per-
forming collision avoidancemaneuvers in complex situations.Nevertheless,
the complex environment and situations are hard to explore, predict, and
quantify17–19, which affects the decision-making efficiency and success rate
of vessels in multi-vessel encounter scenarios. More importantly, the
training of decision-making networks cannot guarantee stability due to
changes in environment states. The reward value can reflect the training
effect of the decision-making network in a certain20,21. It can be found that
reward values are prone to fluctuations during training in some complex
tasks, which reflects the instability of decision-making network training.
Although extensive navigation practices have accumulated rich collision
avoidance experiences and theories regarding vessel collision avoidance22,23,
there is a difficulty to get the ability formachines, especially in the coexisting
scenarios of intelligent surface vessels and manned surface vessels. There-
fore, it is particularly meaningful to train intelligent surface vessels to follow
the Convention on the International Regulations for Preventing Collisions
at Sea (COLREGs). The existing collision avoidance methods, including
artificial potential field (APF), dynamic path planning24,25, and commu-
nication negotiation, are restricted by efficiency, equipment and computa-
tion cost, which are incapable of making optimal collision avoidance
decisions in time. Solutions based on machine learning with prominent
behavior learning and feature extraction ability are becoming new hot
technologies in various fields7,26,27. Among them, DRL has been the most
potential solution for intelligent surface vessel autonomous navigation28–30,
which can autonomously and independently learn and make decisions in
complex environments without communication31–33.

In this Article, we address the autonomous navigation of intelligent
vehicles by an elastic adaptive deep reinforcement learning (EADRL) with
consideration of the versatility and practicability of the decision-making
algorithm. The essential idea of the proposed EADRL lies in its unique
methodology for streamlining the complexity of environmental exploration.
This is achieved through a strategic partitioning of state/action spaces based
on observed behavior classifications. The key innovation of EADRL is to
replace a large number of non-classic behaviors with a small amount of
classic behaviors fuzziness, in order to achieve pruning of the state space and
action space. This differentiation allows for a more efficient and targeted
learning process, where neural networks are trained predominantly with
classic behavior data, recognized for their relevance and utility in decision-
making scenarios. The architecture of EADRL is bifurcated into twodistinct
stages: the function learning stage and the optimization learning stage
(Fig. 1). At the function learning stage, the technique of observed behavior
classification plays a pivotal role. It not only helps in segregating the data

into more manageable and relevant subsets but also reduces the order of
magnitude of environment states need to be explored. A meaningful
advantage of EADRL is its efficient and stable exploration to notably reduce
the number of states needed to be explored and the uncertainty of
exploration experiences, surpassing traditional DRL methods. (The
uncertain stability and complex tasks in the navigation of autonomous
vehicles are discussed in Supplementary Note 1.) Our approach can be
applied to complex navigation environments of different type of vehicles,
including multiple intelligent surface vessels encountering, intelligent sur-
face vessels path following and self-driving cars passing multiple highways
and intersections, which cannot be achieved by previous scenario-based
approaches. The structure of EADRL is summarized in Fig. 1.

Results
To demonstrate the effectiveness of the proposed EADRL approach, we
trained individual decision-making networks for intelligent surface vessels
and self-driving cars with large-scale naturalistic navigation datasets and
conducted simulation experiments. For the sake of explanation, we will use
intelligent surface vessels with greater difficulty in control as the research
object to explain EADRL in the context. The self-driving car is introduced as
an extended application scenario.

EADRL guarantees intelligent surface vessels to navigate in a
multi-vessel encounter situation
Intelligent surface vessels autonomously navigate in a realistic multi-vessel
encounter situation that happened in early March 2022 near the Eastern
BoardingGroundof Singapore. Thenearest encounter distancewas only 1.3
times that of the length of the vessel, which had seriously violated the safe
domain of other vessels and threatened navigation safety.

The intelligent surface vessel autonomous navigation environment is
exceptionally complicated in themulti-vessel encounter scenario. Figure 2a,
b show the bridge view and top view of intelligent surface vessels autono-
mousnavigation in a virtual-real environment, respectively.As illustrated in
Fig. 2c, five intelligent surface vessels formed different encounter situations
constantly. At t = 1 min, five intelligent surface vessels navigated on their
preset paths with collision-free. At t = 10min, five intelligent surface vessels
gradually approached each other, IntV4 and IntV5 appeared on the preset
paths of IntV2 and IntV4, respectively. Figure 2d shows that encounter
distances were safe enough for the intelligent surface vessels. Therefore,
IntV2 and IntV3 did not change their navigation states. At t = 10min, IntV2

detected IntV4 and took a deceleration action, and then IntV2was out of the
encounter situation with IntV4 at t = 13min. At t = 12min, IntV4 detected
IntV5, and IntV4 decelerated to giveway to IntV5. IntV1 and IntV3 formed a
new crossing encounter situation at t = 20min. IntV3 took actions to pass
around the stern of IntV1. Figure 2e–g present the velocities, headings, and
along-track angle errors of intelligent surface vessels, respectively. In the
whole process of collision avoidance, intelligent surface vessels navigated at
the velocity of up to 17 knots, and the lowest velocity was 8.9 knots. The
nearest encounter distance between the five intelligent surface vessels was
859.3557m, generated by IntV1 and IntV3 at t = 24min. (More detailed
verification results are shown in Supplementary Note 3.).

EADRL drives car on complex roads
Figure 3 shows the results of the three-lane highway environment for the
EADRL. As shown in Fig. 3a, there are interferences from other cars on the
test roadwhich consists of straight lanes, bends, and intersections. Figure 3b
shows the test road. Figure 3c shows that the velocity of the self-driving car is
smoothly transforming, except that the velocity slows down during turns
and encounters. As shown in Fig. 3d, the self-driving car steers its wheels
following the lane turning. Figure 3e, f show the yaw rate and off-center
distance in a lateral position, respectively. The yaw rate and off-center dis-
tance are fluctuated when the self-driving car turns near intersections.
Figure 3g, h show the encounter situation between the self-driving car and
other cars (relative direction (g) anddistance (h)). It canbeobserved that the
self-driving car navigates autonomously in busy traffic environments.
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Result analysis
Qualitative results of EADRL in intelligent surface vessel and self-driving car
test scenarios are shown in Fig. 4. As shown in Fig. 4a, g, during the training
process, the reward values gradually increase and converge to certain values.
In contrast to the general DRL, reward values of the optimization stage of
EADRL converge more stably, where the standard deviation of EADRL is
2.132, reduced than DRL 10.94 by ~80%. Worthy, compared to the dense
deep reinforcement learning (D2RL)1, EADRL learns higher reward values
faster in the function learning stage of training and exhibits more stable
reward variations in the optimization learning stage (Details can be found in
Supplementary Fig. 12). Figure 4d, h illustrate that the training loss of
EADRL has two convergence processes, corresponding to the function

learning stage and the optimization learning stage. Figure 4b, c, e, f show the
velocities, headings, closest encounter distances, and trajectory length errors
of intelligent surface vessels, respectively. It can be observed that EADRL
navigates intelligent surface vessels safely. Figure 4i demonstrates that our
approach can guarantee that self-driving car drives on highways safely.
Moreover, we tested the performance of the EADRL to navigate self-driving
cars under adverse conditions. Figure 4j–l confirm that EADRL can effec-
tively ensure self-driving cars avoid collisions with other vehicles. For
intelligent surface vessel scenarios, the trajectories comparison of intelligent
surface vessels using EADRL and other high-performance algorithms are
shown in Supplementary Figs. 2–8. APF can be used in collision avoidance
rather than line-of-sight (LOS) or pure pursuit (PP). EADRL yields similar
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Fig. 1 | Overview of elastic adaptive deep reinforcement learning. Bc and Ac

represent the sets of classic states and classic actions, respectively. nbc and nac denote
the number of classic states and classic actions, respectively. sF and sO are the input
states of the decision-making network in the function and optimization learning
stages, respectively. a is the performed action, ra is the reward. sF0 and sO0 are the

input states after performing action. aF and aO are the output actions of the decision-
making network in the function and optimization learning stages, respectively. u, v, r
are the surge velocity, sway velocity, and yaw angle rate of the intelligent surface
vessel.

https://doi.org/10.1038/s44172-024-00182-8 Article

Communications Engineering | (2024)3:37 3



performance for velocity and heading maintenance to APF, but EADRL is
prominently better than APF in encounter distance and trajectory length,
where the trajectory length error of EADRL reduces 31% less than APF.
Moreover, EADRL performs behaviors as conforming as possible to
COLREGs, while APF is not.

Discussion
Autonomous navigation plays a crucial role in the advancement and
deployment of intelligent surface vessels and self-driving cars. While
existing research has made notable contributions to realizing autonomous
navigation, certain limitations persist. One prominent challenge in
achieving autonomous navigation for intelligent surface vessels and self-

driving cars is the abrupt changes in input and control gain resulting from
dynamic alterations of obstacle scenarios. Such changes detrimentally
impact controller performance, system stability, and can even lead to system
failure. Moreover, the complex navigation environments encountered by
intelligent surface vessels and self-driving cars introduce challenges related
to theuncertaintyof situational changes and the expansionof the state-space
dimension. These factors pose serious obstacles for control theory-based
approaches in accurately analyzing and predicting situational trends.

We have successfully demonstrated the applicability of EADRL in
achieving autonomous navigation in multi-vessel encounter scenarios and
self-driving car scenarios. Considering the stochastic and intricate nature of
navigation environments, EADRL employs a staged approach to

Fig. 2 | Qualitative results of elastic adaptive deep reinforcement learning in
intelligent surface vessel scenario. a Bridge view of intelligent surface vessel in
simulation. b Top view of intelligent surface vessels. The evolution of the encounter
situation of five intelligent surface vessels. c Trajectories of intelligent surface vessels
and encounter situations at different moments. “nm" means nautical mile.
d Encounter distances of intelligent surface vessels. Encounter distances between
every two intelligent surface vessels are safe enough. Velocities of intelligent surface

vessels are maintained in [6.4, 8.8] m ⋅ s−1. e Velocities of intelligent surface vessels.
The lowest velocity appears during the collision avoidance process between IntV1

and IntV3. f Headings of intelligent surface vessels. Headings of intelligent surface
vessels are maintained steady. g Along-track angle errors of intelligent surface
vessels. Along-track angle errors of intelligent surface vessels fluctuate when turning
for collision avoidance and near path points and maintain steady at other times.
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exploration and learning. By effectively categorizing observed behaviors,
EADRL facilitates exploration and learning processes. Ultimately, EADRL
enables the autonomous navigation of intelligent surface vessels and self-
driving cars without the need for system or controller switching, thereby
mitigating the risk of faults resulting from inaccurate situation assessment.
Furthermore, even in multi-vessel encounter situations, EADRL can per-
form real-time collision risk assessment and adhere to COLREGs (Inter-
national Regulations for Preventing Collisions at Sea) to execute
deceleration and steeringmaneuvers, ensuring safe collision avoidance. This
aspect provides a valuable reference for machine learning algorithms
addressing surface vessel collision avoidance challenges. Distinguishing
itself from conventional Deep Reinforcement Learning (DRL) methods,
EADRL incorporates a two-stage approach that includes preliminary
exploration and training in the function learning stage, followed by opti-
mization learning employing DRL techniques. This staged methodology
considerably streamlines the complexity of environmental exploration.
EADRL initially classifies navigation behaviors to find a series of repre-
sentative classic behaviors. By focusing on these representative classic
behaviors, EADRL effectively reduces the uncertainty often associated with

exploratory processes. This strategic approach not only ensures more tar-
geted and efficient exploration but also enhances the overall effectiveness of
the training. The decision-making network is thus trained more effectively
on these classic behaviors, leading to more reliable and accurate training
outcomes. This two-stage training process inherent in EADRL marks a
prominent advancement in ensuring the effectiveness of training results
while simultaneously reducing the complexity and uncertainty of envir-
onmental exploration.

In addition, EADRL has a certain promotion of autonomous
navigation technologies. It brings intelligent surface vessels and self-
driving cars the ability to autonomously navigate without human
intervention. Especially for the intelligent surface vessel, EADRL allows
intelligent surface vessels autonomously cruise, transport, and survey in
scenarios where intelligent surface vessels and manned vessels coexist.
We have proved that EADRL can be applied to shipping, and has broad
prospects in maritime supervision, scientific research, aquaculture,
marine resources exploitation, water environment detection and other
fields. And potential advantages include cutting down the cost of cargo
transportation, reducing the risk of the transnational transmission of

Fig. 3 | Qualitative results of elastic adaptive deep reinforcement learning in self-
driving car scenario. a Front view and top-down view of self-driving car on road.
The self-driving car is driven in a test environment where other cars exist. bTest road
of a self-driving car. The test road consists of straight, curved, and intersection roads.

c Velocities of self-driving car. d Steerings of a self-driving car. e Yaw rates of self-
driving car. The light gray shaded regions in c–e represent the 85% confidence level.
f Lateral positions of self-driving car. g Relative orientation between self-driving car
and other cars. h Encounter distance between self-driving car and other cars.
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infectious diseases, improving navigation efficiency, and saving man-
power. Intelligent surface vessels abide by common rules with human-
crewed vessels, which would liberate manpower and avoid losses
resulting from personnel operation errors, which exceedingly promotes
the process of autonomous navigation from theory to practice. More-
over, our proposed method can provide a reference for other unmanned
system control. Furthermore, the proposed staged training mechanism
is suitable for resolving DRL tasks with complex navigation state space
and action space. The development of intelligent vehicles autonomous

navigation technology will certainly promote the process of the indus-
trial intelligent revolution.

Overall, EADRL has accomplished autonomous navigation of intelli-
gent surface vessels and self-driving cars. It improves the training stability of
the decision-making network and simplifies the dimension of input states.
Experiment results verified its effectiveness on natural supply vessels and
self-driving cars, providing a vital reference and evidence for applying our
EADRL in practice. The proposed method has the adaptability to complex
and unknown environments, has the ability of self-evolution, and can be

Fig. 4 | Quantitative results of elastic adaptive deep reinforcement learning in
intelligent surface vessel and self-driving car test scenarios. aRewards of decision-
making agent training in intelligent surface vessel scenario. The light orange and
light blue shaded regions in (a, g) represent the reward standard deviation of deep
reinforcement learning and elastic adaptive deep reinforcement learning, respec-
tively. b Velocities of intelligent surface vessels. c Heading angles of intelligent
surface vessels. d Losses of decision-making agent training in intelligent surface
vessel scenario. The light orange and light blue shaded regions in (d, h) represent the
loss standard deviation of deep reinforcement learning and elastic adaptive deep
reinforcement learning, respectively. e Encounter distances between intelligent

surface vessels. f Trajectory length errors of intelligent surface vessels. g Rewards of
decision-making agent training in self-driving car scenario. h Losses of decision-
making agent training in self-driving car scenario. i Quantitative results of self-
driving car. Numerical evaluation and various metrics (velocity, lateral error, and
yaw rate) of self-driving cars. In the violin plots, the horizontal line mark indicates
themedian, and the bottom and top edges of thewhite box indicate the 25th and 75th
percentiles, respectively. The white vertical line extends to the most extreme data
points not considered outliers, and the outliers are plotted individually using the
dots. The internal dots indicates the distribution density of data. j Time to collision.
k Bumper-to-bumper distance. l Crash rate of each crash type.
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updated in the application, which saves the cost of accumulating datasets. In
the future, we will use more DRL verification tasks to demonstrate the
efficiency improvement of EADRL on tasks with complex states and
action space.

Methods
In this work, we (1) propose an EADRL to achieve autonomous navigation
of intelligent surface vessels and self-driving cars; (2) use the function
learning stage and the optimization learning stage to explore state space and
train the decision-makingnetwork in stages,where a task-adaptive observed
behavior classification technique is presented in the function learning stage,
and the function learning stage acts as a foundation of optimization learning
stage; (3) develop a test environment of autonomous navigation for intel-
ligent surface vessels, and the experimental results validate the effectiveness
of our method for autonomous navigation of intelligent surface vessels and
self-driving cars.

In the following paragraphs, we present EADRL architecture and
functional modules, including the function learning stage, the optimization
learning stage, and the observed behavior classification technique. (The
implementation details of EADRL are shown in Supplementary Note 4.).

EADRL architecture
We found that in the realm of reinforcement learning tasks, a notable
overlap in features exists within the state space and action space, which can
impede the environment-explored efficiency of the decision-making net-
work. It is particularly noticeable that if an observed state yields a low
reward, similar states are likely to produce similar outcomes. This insight
has led us to the strategy of selecting ’classic behavior states’ to represent
clusters of similar observed states, thereby streamlining the complexity of
state space and action space (Details can be found in SupplementaryNote 2
and Supplementary Fig. 1).

The proposed EADRL consists of the function learning stage and
optimization learning stage. In the function learning stage, EADRL uses the
observed behavior classification technique to carry out a rough exploration
of observation states to find the classic observed behavior states and learns
essential functions. The classic observed behavior states are extracted from
observed states. In the optimization learning stage, the decision-making
network delicately explores observed states based on the knowledge learned
in the function learning stage. The function learning stage is conducive to
the decision-making network to explore the correct policy gradient descent
direction, and the optimization learning stage can optimize the decision-
making network parameters through delicate exploration and learning.
After training, the decision-making network can output reasonable action
with inputting environment states. Compared to D2RL1

filtering critical
states based on a comprehensive exploration of the state space, EADRL
prunes the state space and action space during decision-making network
training (Details can be found in Supplementary Fig. 11). Moreover, we
employed themotionmodels34 of intelligent surface vessels and self-driving
cars to perform the output action, and built some adverse scenarios to assist
decision-making networks training for intelligent surface vessels and self-
driving cars (Details are shown as Supplementary Figs. 9–10).

Function learning stage
In the function learning stage, environmental states exploration of EADRL
is called classic behaviors exploration. The classic behaviors experience pool
saves only the states and actions that can represent a series of observed states
and actions. For classic behaviors exploration, the decision-making network
chooses an actionaccording to a classic behavior state.Moreover, the chosen
action would be replaced by the classic behavior action. Then, classic
behavior states and classic behavior actions canbe accumulated in the classic
behavior experience pool. Notable, the observed behavior classifier only
works in the function learning stage. Classic behavior experiences are used
to train the essential functions of the decision-making network. Happening
collision, departing from the preset path without encounter, arriving at the
destination, or finishing exploration will lead to task termination.

Optimization learning stage
In the optimization learning stage, environmental states exploration of
EADRL is called observation states exploration. For observation states
exploration, the decision-making network randomly samples action in
normal distribution to explore and saveobservation states. It isworthnoting
that classic behavior states are selected from the continuous observation
states and can represent certain states with the same evaluation trend.
Meanwhile, the decision-making network weights trained in the function
learning stage are further trained andoptimized in theoptimization learning
stage. The method delicately explores the environment state space in the
optimization learning stage tofindbetter decision-makingnetworkweights.

Observed behavior classification technique
EADRL addresses the complexity of state spaces by segmenting the large
state space into several sub-state spaces. In each sub-state space, a repre-
sentative state is chosen to symbolize all states within that subset. This
approach effectively compresses the originally vast state space, reducing the
number of states that need to be processed during training. Selecting
representative states for each sub-state space simplifies the training process
of the reinforcement learningmodel. These representative states capture the
characteristics of their respective sub-state spaces, enabling more effective
generalization of the knowledge learned during training.

The process of selecting representative states essentially concentrates
attention on key areas within the sub-state spaces, thereby reducing the
expanse of exploration. This focus on representative states targets states that
have a more important impact on the task, diminishing the need for
exhaustive exploration of the entire state space during training. Effective
segmentation of the state space and the selection of representative states
allow for more targeted exploration. This focused exploration improves
efficiency, enabling the agent to discover and learn important knowledge in
the environment more quickly.

By reducing the number of environmental states and focusing on the
areaof exploration,EADRL lowers theuncertainty in the explorationprocess.
The agent explores the known representative statesmore intensively, thereby
enhancing the predictability and stability of the exploration process.

Data availability
The scenario data used for training and testing the EADRL is available on
Figshare35.

Code availability
All the training and testing codes used in this study are available within the
Article. Original codes for training and testing the decision-making net-
work, and example codes for executing autonomous navigation of intelli-
gent surface vessels and self-driving cars are available on Zenodo36.
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