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Smart polarization and spectroscopic
holography for real-time microplastics
identification
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Optical microscopy technologies as prominent imaging methods can offer rapid, non-destructive,
non-invasive detection, quantification, and characterization of tiny particles. However, optical
systems generally incorporate spectroscopy and chromatography for precisematerial determination,
which are usually time-consuming and labor-intensive. Here, we design a polarization and
spectroscopic holography to automatically analyze the molecular structure and composition, namely
smart polarization and spectroscopic holography (SPLASH). This smart approach improves the
evaluation performance by integrating multi-dimensional features, thereby enabling highly accurate
andefficient identification. It simultaneously captures thepolarization states-related, holographic, and
texture features as spectroscopy, without the physical implementation of a spectroscopic system. By
leveraging a Stokes polarization mask (SPM), SPLASH achieves simultaneous imaging of four
polarization states. Its effectiveness has been demonstrated in the application of microplastics (MP)
identification. With machine learning methods, such as ensemble subspace discriminant classifier,
k-nearest neighbors classifier, and support vector machine, SPLASH depicts MPs with anisotropy,
interference fringes, refractive index, and morphological characteristics and performs explicit
discriminationwith over 0.8 in value of area under the curve and less than0.05 variance. This technique
is a promising tool for addressing the increasing public concerning issues inMPpollution assessment,
MP source identification, and long-term water pollution monitoring.

Microplastic (MP) particles, which may be ingested and remain in living
organisms, have recently been reported to cause gastrointestinal dysmotility,
obstruction, and death1,2. Plastics, as a significant source of water
contamination3, emitted 1.7 billion tonnes of greenhouse gases per year in
2015 and are expected to emit 6.5 billion tonnes by 2050, accounting for
approximately 15% of the global carbon budget4. Optical microscopy
technologies are the dominating methods for the detection and identifica-
tion of MP, i.e., scanning electron microscope (SEM) and transmission
electronmicroscope (TEM)5,6, which capture the texture andmorphological
features of MPs. Nevertheless, the effectiveness of texture or morphological
features in MPs’ identification can be affected by various factors, such as
environmental weathering and aging7.

Accurate chemical determination by spectroscopies, such as Raman
microscopy, and Fourier transform infrared spectroscopy (FT-IR), provide
qualitative analysis forMP identification8,9. Molecular structural differences
may result in the influenceonabsorptionor reflectionof the light source and

can be reflected in the spectroscopic information.Weak signals and the long
processing time are several main drawbacks of spectroscopic methods6,10.
Last but not least, sample preprocessing in some microscopic and spec-
troscopicmethods is demanding and cumbersome, such as sample filtering,
isolation, purification, dying11,12, limiting their developments for in situMPs’
detection, early-stage MP pollution warning and real-time monitoring7.
Therefore, promising methods, providing molecular structural and
material-related features, are highly needed for MPs’ identification.

Non-contact and non-invasive imaging systems, such as polarization
imaging (PI) and digital holography (DH), can record physical features and
may be alternative solutions for MPs identification. For example, PI cap-
tures the changes in the polarization state of the incident light introduced by
the specimen. The polarization modification includes both phase and
amplitude of the oscillating electric field vectors13, related to the anisotropy
and birefringence characteristics of the specimen14,15. However, the manual
configuration of the polarization states in PI systems limits their usage in
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real-time field detection16. The polarization camera is an emerging techni-
que that is specifically designed to detect the polarization state of incoming
light. It typically comprises a conventional imaging sensor integrated with
either a polarization filter array or a dedicated polarization sensor, for
example, the division-of-focal-plane (DoFP) sensor17. In contrast to the
Stokes mask-based polarization camera, the DoFP system incorporates a
micro-lens array with the sensor. Leveraging advanced image reconstruc-
tionmethods, the DoFP system achieves high imaging quality18. It has been
applied in three dimensional HSI color space imaging and skylight polar-
ization measurement19,20. It is worth noting that the application of polar-
ization cameras for spectral function is still an area that requires further
exploration.

DH is an emerging and advanced optical technology for small object
detection21–24. It records the full complexwavefieldwith both amplitude and
phase information25 and is capable of measuring the morphological and
optical parameters, such as the optical path difference (OPD) and refractive
index (RI). In addition, DH is non-contact and non-invasive optical
microscopy without the need for sample filtering and dyeing. Powered by
machine learning (ML) and deep learning (DL)26, DH presents outstanding
capabilities in quick and accurate particle detection and analysis27–29. It was
implemented as a portable device for in situ detection. However, single
holographic features are easily influenced by environmental changes and
weaken their reliability inMPs’ identification24,30,31. Prior works with PI and
DH classifyMPs’ categories based on the reconstructed holographic images
and extract limited effective features32,33. Bianco et al.24 proposed a method
for identifying MPs in holographic images using fractal parameters. The
primary and secondary fractal features were analyzed based on recorded
data and sorted using ML methods. However, the experimental results
revealed that the accuracy of identification was limited by morphological
variations in the samples. The recorded features may not provide sufficient
information for determining the material composition of MPs. Robust
identification of MPs requires the inclusion of chemical or dominant
structural-related features. Additionally, Bianco et al.30 presented a related
work in which they employed an off-axis DH system for MP identifi-
cation. This method extracted a set of image features, including size,
shape, and phase jumps. However, the identification performance of this
method was compromised in real-world detection scenarios or when the
holographic features were blurred. Valentino et al.32 developed a
polarization-sensitive holographic flow-cytometer for the determination
of microfibers. In the polarization holographic system, interference is
caused by two orthogonally polarized waves34. A polarization-sensitive
material is required to record the polarization state of the light field,
allowing for the precise retrieval of the object’s amplitude and phase
information. In this study, the effectiveness of the system is demonstrated
in identifying fibers such as PA6, PA6.6, PET, PP, cotton, and wool.
However, the system’s capability has not been presented for Daphnia
magna, Chlorella, stones, glasses, metal films, etc., which limits its
practicality in real-world detections. Compared with the system in32, our
proposed system does not require an orthogonally polarized light source
and is more compact, with fewer optical component requirements.

In this work, we firstly design a smart polarization and spectroscopic
holography system, termed SPLASH, to simultaneously capture polariza-
tion, holographic, texture features, such as angle of polarization (AoP),
degree of linear polarization (DoLP), phase retardation, and accomplish a
molecular structure and composition-related discrimination without phy-
sically implementing a spectroscopic system. Rich features are extracted
from the recorded synthetic experimental images and improves the system’s
discriminative power todistinguish amongdifferentMPmaterials, aswell as
other natural biological and microalgae specimens. In addition, SPLASH
achieves four polarization states simultaneous imaging with a Stokes
polarization mask (SPM) and automatic identification with ML methods.
Qualitative and quantitative experimental results and analysis indicate the
disclosed features as a physical fingerprint for material analysis. This work
opens new routes for realizing spectroscopic holography and is a promising
tool for addressing the increasing public concerning issues in assessing risks

ofMPpollutionon ecosystems andhumanhealth,MPsource identification,
and long-term water pollution monitoring

Results
SPLASH visual inspection
Experimental imagesofmicroplasticmaterialswith thepolarization statesof
0∘, 45∘, 90∘, and 135∘ are presented in Fig. 1a–d for the imaging results
visualization, which are recorded by the optical system in Fig. 1e. Selected
MP specimens are polyethylene terephthalate (PET), polypropylene (PP),
polycarbonate (PC), and polyvinyl chloride (PVC). The brightness in each
polarization plot represents the intensity values in the underlying polar-
ization states. The distinction of the intensity values and the holographic
patterns in four polarization states performs the modulation in optical axis
orientations and is related to the molecular structure and the optical
properties of the material, such as birefringence, and anisotropy. Distin-
guishable characteristics of MP specimens demonstrate the discrimination
capability of our system.

Feature correlation analysis
Four categories of features are selected and grouped among the rich feature
information encoded in SPLASH images. They are texture features, Fourier
power spectrum features, holographic features, and polarization features,
according to the feature description categories. Specifically, holographic
features describe the holographic fringes’ contrast and transparency.
Polarization features describe theAoP,DoLP, phase retardation, and optical
axis orientation values. Texture features include neighborhood gray-tone
difference matrix35 and gray level size zone matrix36 features. Fourier power
spectrum (FPS) features describe the radial summation and angular sum-
mation characteristics. Texture and FPS feature calculation definitions are
presented in Supplementary Note S2 and S3.

We show the correlation circular plot of selected feature groups in
Fig. 2a. The outside annular regions describe the feature categories. The
thickness and color of the inside ribbons describe the correlation among
feature groups. Thick and dark ribbons express high correlation values.
Most polarization features, including optical axis orientation, phase retar-
dation, and AoP present a positive correlation with texture, holographic,
and FPS features. DoLP performs negative correlation values related to the
part of texture features. One of the possible reasons is DoLP may fluctuate
with the specimen thickness. Texture features vary in correlation values.
Texture features are susceptible to weathering and aging process of the
specimens, and are not defining characteristics in material identification.
Transparency demonstrates a relatively strong negative correlation with
other feature groups. This relation may be ascribed to that rich texture and
structural information are prone to drop down the material transparency.

We present the violin plots of neighborhood gray tone difference
matrix features, gray level size zone matrix features, and FPS features in
Fig. 2b. Several texture features, for example, coarseness, strength, small
zone emphasis, and zone size non-uniformity, show similar distributions
among material specimen groups. Features, such as busyness, large zone
high gray level emphasis, zone size entropy, perform specific feature dis-
tributions. After conducting data analysis and statistical evaluations, we
summarize that sole discrimination with a single texture feature provides
weak material identification. More physical or chemical features may
improve the discrimination performance.

All the extracted features are set in calculating the correlation matrix.
We inspect the correlation matrix in Fig. 2c. Detailed feature groups are as
follows, C1:Neighborhoodgray tone differencematrix features: Coarseness,
Contrast, Busyness, Complexity, Strength; C2: FPS features: RadialSum,
AngularSum; C3: Gray level size zone matrix features36; C4: Polarization
features: Degree of linear polarization; C5: Polarization features: Angle of
polarization; C6: Polarization features: Phase retardation; C7: Polarization
features: Optical axis orientation; C8: Holographic features: Fringes con-
trast, Transparency. The violin plots of polarization as well as holographic
features are presented in Fig. 2d. It is noticed that polarization features and
holographic features demonstrate small variances compared with texture

https://doi.org/10.1038/s44172-024-00178-4 Article

Communications Engineering |            (2024) 3:32 2



features. Significant characteristics are presented in AoP, DoLP, and
transparency.

MP classification investigation
To inspect the method’s capability for material analysis and MP identifi-
cation, we train classifiers on the features of theMPdataset. Dataset consists
3221 images with a structure of 518 in PC class, 240 in PET class, 232 in PP
class, 535 in PVC class, 573 in PMMA class, 208 in Chlorella class, 126 in

Daphniamagna class, 789 in young root of plant T.S. class. Every image has
a size of 1028 × 1232 pixels. Receiver operating characteristic (ROC) curves
are plotted to evaluate the classification performance, quantitatively, as
shown in Fig. 3a. Measurements of AUC and ROC are based on the results
of 500 repeated training. All the classification tests used SVM classifiers.
Random strategy separation and five-fold cross-validation are applied
during the training stages37. Classification with polarization and weighted
summation features gives higher TPR values than the classification with

Fig. 1 | Visualization for the experimental images with different material
samples in. (a) 0∘, (b) 45∘, (c) 90∘, and (d) 135∘. The scale bar is 0.5 mm. Colorbar is the
value of the intensity. The material samples of polyethylene terephthalate, poly-
propylene, polycarbonate, and polyvinyl chloride perform various in the different
polarization directions when passed through by the same incident light. (e) System
schematic of SPLASH. Unpolarized light emitted by a laser diode with 532 nm

wavelength. A convex lens is used for beam collimation. A linear polarizer is combined
with a quarter-wave plate and inserted in the light path to adjust the laser intensity
without introducing phase modulation. Then, the laser light goes through the sample
plate, arriving at the sensing plane, and is analyzed by a polarization camera. A full
Stokes polarization mask is mounted in front of the camera imaging sensing plane to
record the sample images with four Stokes states (S0, S1, S2 and S3) in one shot.
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texture and FPS features. A higher TPR value on a given FPR in the ROC
plot demonstrates a better classifier capability. Another distinct note in the
plot is that polarization, holographic, and weighted sum features have small
variances and provide relatively reliable identification cues. The calculation
equations for TPR and FPR are provided in Supplementary Note S5.

We further investigate the identification capability of features with
different classifiers andpresent their areaunder the curve (AUC)valueswith
a box plot in Fig. 3b. Four stable and general-used classifiers are chosen for
experimental evaluation, which is ensemble subspace discriminant (ESD)
classifier, k-nearest neighbors (KNN) classifier, neural network (NN), and
support vectormachine (SVM). AUCmeasures thewhole two-dimensional
area under the ROC curve. A higher AUC value evaluates a better classifier
distinguishing capability38. In Fig. 3b, ESD classifier with texture features
reaches the lowest accuracy slightly higher than 0.6. KNN, NN, and SVM
performhigherAUCswhich are around0.65 and reach0.7. The overall level
of AUC values with texture features is in the range of 0.6 to 0.7. FPS features
make a similar performance with a larger variance with the ESD classifier

and smaller variances with KNN, NN, and SVM classifiers. Classifications
with holographic features have AUC values between 0.63 to 0.7. Classifi-
cationwith polarization features shows obvious improvements reaching 0.8.
It is believed that polarization features offer aids in classification. The pro-
posed SPLASH system and method provide discriminative features for MP
identification and material analysis. Finally, we explore the classification
performance on multi-dimensional features. Features are combined with a
4:2:2:2 ratio of polarization, holographic, texture, and FPS category, based
on their single classification performance. It gives the best overall AUC
performance at 0.85 with ESD, 0.83, 0.81, and 0.805 with KNN, NN, and
SVM classifiers. The above results suggest that the polarization features are
dominant in the classification tests.

Discrimination experiments with natural particles
Extensionexperimentswithnatural specimens aredemonstrated to evaluate
the distinguishing capability of the SPLASH system. In detail, specimens
include the young root of plantT.S.,Chlorella, andDaphniamagna.MPs are

Fig. 2 | Feature groups correlation and independence testing. aCorrelation circular
plot for selected feature groups. Pearson correlation matrices are calculated among
each of the feature groups. The thickness and color of the ribbons respond to the
correlation values. Positive correlation shows in blue. The negative correlation shows in
green. b Violin plots of different textures and Fourier power spectrum features show
detailed differences between all five material considered categories. Inside box plots
show the median and variance values. It is evident that texture features present various

feature distributions for the same material categories. Parts of the features (i.e., coar-
seness, strength, small zone emphasis, zone size non-uniformity) show similar dis-
tribution among different material categories. c Correlation matrix of all selected
features. Detailed feature groups are listed in the discussion section. d Violin plots of
different polarization and holographic features show detailed differences between all
five material considered categories. Material categories demonstrate less variance in
polarization features compared with texture features.
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found in aquatic and airborne environments39. They frequently mix with
gravel, microorganisms, microalgae, and other natural particles40,41. Inves-
tigations on classifyingMPswithnaturalmaterials and biological specimens
can make contributions to the understanding of the distribution and
abundance of microplastics in the environment, as well as their potential
impacts on ecosystems and human health42–44.

The experiments are conducted both in aquatic and airborne envir-
onments. We show the specimen intensity images and their AoP plots in
Fig. 4 for the young root of plant T.S., Fig. 5 for Chlorella and Fig. 6 for
Daphniamagna. In Fig. 4a, four kinds ofMPs are presented, sequentially (i)
PP, (ii) PC, (iii) PETand (iv) PVC.Ayoung root of plantT.S. specimen (v) is
placed in the middle. All the samples are placed on a colorless and trans-
parent glass plate background. As we can see, the AoP plots, shown in
Fig. 4b, demonstrate discriminate differences for qualitative material ana-
lysis. In Figs. 5 and 6, MP samples, Chlorella and Daphnia magna are in
distilledwater for image recordingwith aliveChlorella andDaphniamagna.
In the field of view of Fig. 5a, specimens are (i) polystyrene (PS), (ii)
Chlorella, and (iii) PET. The corresponding AoP plot is demonstrated in
Fig. 5b for inspection. Figure 6 shows the discrimination among MPs and
Daphniamagna. Sequentially, specimens are (i) PS, (ii)Daphniamagna, (iii)
PP, and (iv)PC, as shown inFig. 6a.Differences shown inAoPplots (Fig. 6b)
among specimens are related to the distinctions in molecular structures
between MPs and natural particles. MPs may provide a surface for micro-
organisms to attach to and grow on, potentially altering the microbial

community structure and function. Experiments are helpful for under-
standing the interactions between MPs and natural particles, and the
potential impacts ofmicroplastics onmicrobial communities and ecosystem
processes2.

Discussion
For the first time, we have presented smart polarization and spectroscopic
holography as a simultaneous polarization-texture-holographic character-
ization method for MPs’ identification and discrimination with natural
particles. This method combines molecular structure and composition-
related image features, providing rich information formaterial analysis. The
proposed optical system andmethod enable effective imaging analysis with
spectroscopic capabilities, eliminating the need for a separate spectroscopic
system.ML algorithms enhance system reliability and automation for large
amounts of data processing. SPLASH is well-suitable for various environ-
mental MPs’ identification, making contributions to the understanding of
MPs’ migration, and interaction with micro-organisms in complex
environments.

To evaluate the capability of SPLASH onMP identification, we inspect
the experimental results of MP with different morphology characters and
materials, combined with various natural particles, to simulate real-world
MP existence situations. Specifically, classification experiments and tests are
conducted among MPs, including PC, PET, PVC, and PP, with the young
root of plant T.S., Chlorella, and Daphnia magna. To visualize the feature
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Fig. 3 | Receiver operating characteristic (ROC) and classification area under the
curve (AUC) results. a ROC plot with extracted training features. Y-axis performs
the true positive rate (TPR) and the x-axis gives the false positive rate (FPR). b Box

plot for the classification AUC results with different classifiers, referring ensemble
subspace discriminant (ESD) classifier, k-nearest neighbors (KNN) classifier, neural
network (NN), and support vector machine (SVM).

Fig. 4 | Intensity image and angle of polarization plot of microplastics and young root of plant T.S. specimen. a (i) polypropylene, (ii) polycarbonate, (iii) polyethylene
terephthalat, (iv) polyvinyl chloride, and (v) young root of plant T.S. b Angle of polarization plot of the specimens in a. Scale bar: 0.5 mm.
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distribution and correlation, we measure the correlation matrix among
feature groups and present the violin plots of extractedMP features for PC,
PET, PMMA, PP, and PVC. Classification tests show that polarization
features and the weighted sum features provide over 0.8 AUC accuracies
with less than 0.05 variance. Compared with the classification with texture
and FPS features at 0.6 AUCs, polarization and holographic features
enhance the system’s discriminative powers and reliability for MPs’ iden-
tification. Additional experiments with natural particles indicate that MPs
canbe identifiedby extracted featureswithplant specimens,microalgae, and
micro-organisms.

Multi-dimensional evaluations and tests show a clear distinguishing
capability amongMPsand frequently encounterednatural particles,making
it a versatile technique for studying the distribution and impact of MPs in
different environments. The non-destructive and non-invasive imaging
setup provides an alternative for living and intact sample analysis. In
addition, integrated ML methods are time and labor-saving45. The intelli-
gent feature analysis and classification technique allows quick MPs identi-
fication, which is helpful for in situ MP detections. Multi-dimensional
features, such as polarization, holographic, textural, morphological, and
FPS, describe themolecular, structural, outline surface, andmaterial-related
characters of MPs to identify them with discriminative fingerprints. In the
aquatic environment, image quality could be disturbed by the water scat-
tering, especially in a turbid water environment. Image descattering

processing is a promising direction for future development27. By identifying
the types and concentrations ofMPs in different environments, researchers
can obtain multi-dimensional assessments of the risk of MPs to human
health and wildlife.

This system gives a reliable method for automatic MP identification.
Future works could aim at developing high-throughput microfluidic46 sys-
tems for non-contact, quick MP quantification47,48. Low-cost, compact, and
portabledevices are alsoof interest to researchers in thefield andunderwater
MP detection49. Last but not least, the salient discriminative capability of
SPLASH can be applied to industrial and medical material analysis, facil-
itating the identification of medicinal components and aiding in tissue
diagnosis50,51.

Methods
System setup
A compact optical system is designed in SPLASH, as shown in Fig. 1e.
Unpolarized532nmlaser light is emitted froma laser diode.Aconvex lens is
placed in the light path for beam collimation. A linear polarizer is combined
with a quarter-wave plate to adjust the light intensity without introducing
phase modulation. The uniform-distributed circularly polarized light then
goes through the sample plate and encodes the sample feature information
with wavefront deformation. Formed patterns are finally recorded by a
polarization camera (Crevis MG-A500P-22, monochrome, 2464 × 2056

Fig. 5 | Intensity image and angle of polarization plot of microplastics and Chlorella. (a) (i) polystyrene, (ii) Chlorella and (iii) polyethylene terephthalate. b Angle of
polarization plot of the samples. Scale bar: 0.5 mm.

Fig. 6 | Intensity image and angle of polarization plot of microplastics and Daphnia magna. a (i) polystyrene, (ii) Daphnia magna, (iii) polypropylene and (iv)
polycarbonate. b Angle of polarization plot of the samples. Scale bar: 0.5 mm.
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resolution, 3.45 μm× 3.45 μm pixel size). A PSM is mounted to capture
images with full Stokes states (0∘, 45∘, 90∘, and 135∘) in a single shot. The
spatial resolution of the recorded hologram is 1232 × 1028 pixels. The
smallest detectable particle is 20 μm. The holographic polarization images
with 4 polarization states are recorded simultaneously in a continuous
recording format to realize the real-time data recording. The system takes
around 2ms to capture a group of data. This compact system optimizes the
typical polarizer and analyzer pairs formodulation of the polarization states
and eliminates manual adjustment of the polarizers during experiments. It
improves the system imaging efficiency and offers a high-throughput
hardware backbone. The omitting of lens pairs also reduces system
aberration.

Feature calculation, statistics analysis, and machine learning
Every experimental image recorded by the SPLASH system has been cal-
culated andprocessedwith feature extraction.As demonstrated in Section2,
multi-dimensional features are calculated at the aspect of texture, FPS,
holographic, andpolarization.We list the calculation equations of all feature
categories in detail in Supplementary Note S1–S4.

The calculation and statistical analysis principles for ROC and AUC
values are presented in Supplementary Note S5. The ensemble subspace
discriminant (ESD) classifier, k-nearest neighbors (KNN) classifier, neural
network (NN) classifier, and support vector machine classifier are trained
with 5-fold cross-validation. MATLAB machine learning packages and
classification learner toolbox are used for the assistance of training and
predictions.

MP and biological specimen preparation
PVC, PP, PS, PC, PET, and PMMA are purchased from Xinsheng Plastic
Material Company, China. PVC, PP, PS, PC, PET, and PMMA specimens
are in the size range of 1 to 3 mm. The young root of plant T.S. specimen is
purchased from YuanHang Voyage, China, with the lab specimens set 100
PCs prepared microscope histology teaching slides. Chlorella contains
Chlorella salina, Chlorella pyrenoidosa, and Ankistrodesmus falcatus var.-
tenuissimus Jao var. nov.Chlorella andDaphniamagna are purchased from
Benchongyiya Company, Hunan, China. Daphnia magna is cultured in a
round transparent glass tankwith a diameter of 20 cm, placed in a light-dark
incubatorwith a light-to-dark ratio (L:D) of 16: 8. The light intensity is 3000
lx. The temperature is (24 ± 1) ∘C. Daphnia magna is fed by the Chlorella
daily at 10 am and cultivated with tap water that has been aerated for more
than 2 days.Chlorella is cultured in BG-1152medium. The culture condition
is temperature (25 ± 1) ∘C. The light-to-dark ratio is 12h:12h. The light
intensity is 5000-8000 lx. Shake the culturebottle 3–4 times aday, and switch
every 1–2 weeks to make the algae grow into the logarithmic growth phase.
During the whole cultivation process, all were sterilized. Including the
natural particles and MP samples, this work presents a system detectable
range in 0.6mm–5mm.

Data availability
All data needed to replicate these results are available at https://github.com/
ymzhu19eee/SPLASH.

Code availability
All code needed to replicate these results is available at https://github.com/
ymzhu19eee/SPLASH.
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