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Deep learning-based optical coherence
tomography angiography image construction
using spatial vascular connectivity network
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Alfa Rossi 1, Behrouz Ebrahimi 1, Albert Dadzie1, Guangying Ma1, Jennifer I. Lim2 & Xincheng Yao 1,2✉

Optical coherence tomography angiography (OCTA) provides unrivaled capability for depth-

resolved visualization of retinal vasculature at the microcapillary level resolution. For OCTA

image construction, repeated OCT scans from one location are required to identify blood

vessels with active blood flow. The requirement for multi-scan-volumetric OCT can reduce

OCTA imaging speed, which will induce eye movements and limit the image field-of-view. In

principle, the blood flow should also affect the reflectance brightness profile along the vessel

direction in a single-scan-volumetric OCT. Here we report a spatial vascular connectivity

network (SVC-Net) for deep learning OCTA construction from single-scan-volumetric OCT.

We quantitatively determine the optimal number of neighboring B-scans as image input, we

compare the effects of neighboring B-scans to single B-scan input models, and we explore

different loss functions for optimization of SVC-Net. This approach can improve the clinical

implementation of OCTA by improving transverse image resolution or increasing the field-of-

view.
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Optical coherence tomography (OCT) enables the non-
invasive visualization of individual retinal layers with
micrometer-level resolution. As one modality extension

of OCT, OCT-angiography (OCTA) provides unparalleled cap-
ability for depth-resolved visualization of retinal vasculature at
the microcapillary level resolution. OCTA is label-free and thus is
completely non-invasive, compared to traditional fluorescein
angiography. Studies have shown that OCTA provides improved
capability for detecting subtle vascular distortions associated with
the progression of retinal pathology, such as vessel dropout,
foveal abnormalities, and increased vessel tortuosity1,2. Studies
demonstrate that OCTA could even detect microaneurysms that
were undetected on dilated clinical examination3.

The principle of OCTA is that repeated OCT scans from one
location are acquired for temporal vascular connectivity (TVC)
processing to map retinal vasculature at the microcapillary
resolution. Therefore, OCTA can be obtained from existing OCT
systems with the addition of unique scan protocols and data
processing algorithms4. However, the fundamental similarity
between all OCTA instruments is that repeated OCT scans from
one location are required for correlation analysis of sequential
images to identify regions with active blood flow. Therefore,
OCTA requires higher imaging speeds than most currently
available OCT systems can provide in order to obtain a densely
sampled volume. Conventional OCT device scanning speeds
would result in too much trade-off between decreased field of
view, lower image quality, and greatly increased scanning time.
Additionally, the prolonged scanning time may also increase the
potential effect of motion artifacts, such as blinking and
microsaccades 5.

A potential solution lies in the use of deep learning algorithms.
In recent years, deep learning, a subset of machine learning and
artificial intelligence, has been making strides in ophthalmic
research6–10. The principle behind deep learning is that the
algorithm can learn directly from the training data and can
objectively perform the required task. An example application is
deep learning for artificial intelligence screening of
retinopathies11–15. Current screening procedures require clin-
icians to manually examine retinal photographs. This can,
therefore, lead to inter- and intra-rater variability; the same
clinician could classify the same image differently on different
days. Furthermore, to manually screen retinal photographs is a

time-consuming process. Therefore, the deployment of artificial
intelligence algorithms could alleviate these problems. Recent
studies in deep learning OCTA have primarily been focused on
the classification of eye diseases such as diabetic retinopathy16–18,
age-related macular degeneration19–21, and glaucoma22–24. Other
applications include improving the image quality of OCTA25,26

and artery–vein segmentation27–31. Recently, deep learning has
also been explored for OCTA construction32–35. While deep
learning algorithms can detect large blood vessel branches in
OCT readily, it is technically challenging to identify micro-
capillaries reliably.

We hypothesize that deep learning could leverage spatial vas-
cular connectivity (SVC), i.e., brightness connectivity along the
vessel direction, in a single-scan-volumetric OCT for OCTA
construction. In this study, we train a convolutional neural net-
work, titled SVC-Net, that leverages SVC inputs for OCTA
construction. We show that SVC can be used reliably to predict
microcapillary structures. We verify the feasibility of a deep
learning approach using a dataset composed of single-scan-
volumetric OCTs from animal and human eyes. In addition, we
compare the differences between TVC and SVC-based signals in
traditional OCTA construction and perform ablation studies on
the optimization of deep learning models by different loss
functions.

Results
The deep learning framework. In this section, we provide an
overview of our deep learning-based method for OCTA con-
struction from a single-scan OCT volume. A conceptual diagram
of our proposed methodology is shown in Fig. 1a. Our hypothesis
is that the blood flow should affect the reflectance brightness
profile along the vessel direction (Fig. 1b). In other words, spatial
intensity variance among the vessels in a single-scan-volumetric
OCT, as shown in Fig. 1c, can be equivalent to the temporal
intensity variance of the same vessel location in the sequential
images in the multi-scan-volumetric OCT for conventional
OCTA construction. Our deep learning-based OCTA construc-
tion framework, which we term SVC-Net (for details of network
architecture, see “Methods” section), was trained and tested using
spectral domain-OCT images acquired from mouse and human
retina. The ground truth is based on conventional speckle var-
iance OCTA construction from four repeated OCT B-scans. The

Fig. 1 Illustration of the deep learning framework for OCTA construction from single-scan OCT volume. Illustration of the concept and signal source of
spatial vascular connectivity (SVC) are shown. a An illustration of the deep learning pipeline for OCTA construction using an SVC network (SVC-Net). The
input is derived from a singular OCT volume and is comprised of three neighboring OCT B-scans outlined in blue. The output is a single OCTA B-scan. In
the training process, the ground truth is derived from conventional OCTA construction, i.e., speckle variance. b An illustration of the vascular spatial
connectivity information found in the OCT B-scans. The white circles highlight how retinal vessels are connected via the neighboring OCT B-scans. c A
representation of the spatial and temporal information in neighboring B-scans, outlined in blue, in a single OCT volume. The yellow scale bar in b represents
100 µm.
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input into SVC-Net will be comprised of OCT B-scans from
single-scan OCT volume, and the output of SVC-Net will be the
OCTA B-scan.

Optimization of neighboring scans. To leverage deep learning as
a potential strategy for reliable OCTA construction, we first
determine if SVC can provide the required information that the
model can learn from. Therefore, we performed an ablation study
to evaluate the effects of the different numbers of B-scans used for
OCTA construction using the TVC, i.e., repeated B-scans, and the
SVC, i.e., adjacent neighbor B-scans. To compare TVC and SVC,
we use intensity-based speckle variance to generate OCTA. This
procedure will help to determine the optimal number of neigh-
boring B-scans to be used as input into SVC-Net. We illustrate
the effect of the number of B-scans used on OCTA image quality
using TVC and SVC. In our dataset, each volume contains four
repeated B-scans. For qualitative comparison, we calculate OCTA
for different numbers of B-scans, namely two, three, and four,
which we refer to as 2 N, 3 N, and 4 N, respectively. The results of
this ablation study are illustrated in Fig. 2 and Fig. 3 for animal
and human datasets, respectively.

For TVC-based speckle variance (SV) processing, visual
observations show as the number of repeated B-scans increases,
the noise is reduced, as illustrated by Fig. 2 and Fig. 3. Therefore,
the four B-scans for TVC-based SV processing have the best
image quality. On the other hand, for SVC, there is a different
trend; it can be observed that there is an optimal number of
B-scans for SVC-based SV processing. For the animal dataset, we
can observe that the SVC-2N has the worst image quality and that
the SVC-3N and SVC-4N have comparable image quality.
However, in the human dataset, SVC-4N, as compared to SVC-
3N, decreases the vascular detail due to the increase in a blur
effect, which can be visibly observed in the representative en face.
This type of artifact is commonly described in OCTA as ‘vessel
doubling’ due to poor registration. In the case of SVC-4N, since
the vessels are not completely duplicated, we can refer to this
artifact as pseudo-vessel doubling.

For the quantitative comparison, since the TVC-4N has the
best qualitative performance, it will be the ground truth for
comparison. We quantify the multi-scale structural similarity
index measure (MS-SSIM) and the peak-signal-to-noise-ratio
(PSNR) for the TVC 2 N and 3 N, and the SVC 2 N, 3 N, and 4 N
en face images. The statistical information of this analysis is
summarized in Tables 1 and 2. For the animal dataset, we confirm
our qualitative observations that increasing the number of
B-scans improves performance, as the TVC-3N has the best
overall MS-SSIM and PSNR. Meanwhile, for the SVC, we observe
that for the animal dataset, there is a decreasing trend for the MS-
SSIM from SVC-2N to SVC-4N. However, we observed for the
PSNR, the optimal number of B-scans was the SVC-3N. For the
human dataset, we observe similar trends as compared to the
mouse dataset, with the TVC having an improved performance
on both metrics when using more B-scans. For the SVC metrics,
we observe that for both the MS-SSIM and PSNR, the optimal
number of B-scans was using SVC-3N since it has better
performance than SVC-2N and SVC-4N. Therefore, for SVC-Net,
based on qualitative observation and quantitative analysis, we will
use a 3 N input, i.e., comprised of three adjacent neighboring
B-scans.

Microcapillary vessels visualization. The primary usage of
OCTA is to observe the en face projections of the retinal vascular
layers. Therefore, we perform both qualitative and quantitative
analyses for the en face projection of the superficial vascular
plexus (SVP) and deep vascular plexus (DVP). To compare the
effects of the SVC, we qualitatively compare the 1 N and 3 N
models to the ground truth en face of the SVP and DVP for the
animal eye in Fig. 4. For the SVP, we observe that large vessels
were constructed in both the 1 N and 3 N models. However, an
example of a large vessel that progressed to a smaller vessel was
observed to have poor construction in the 1 N model. Whereas in
the 3 N model, the same vessel was constructed properly.
Showing that SVC helped preserve the details of smaller vessels.
For the DVP, we observed that the 1 N model was able to predict

Fig. 2 Comparison of conventional speckle variance OCTA construction in the mouse eye. The temporal vascular connectivity (TVC) and spatial vascular
connectivity (SVC) for varying numbers of B-scans in speckle variance processing are shown. Representative OCTA en faces for temporal and spatial
approaches for superficial vascular plexus (SVP) and deep vascular plexus (DVP) layers. Zoomed regions of the images are outlined in blue. The yellow
scale bar represents 300 µm.
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some capillary structures. However, due to the poor contrast, it
has a noisier appearance. When compared to the 3 N model, the
capillaries are reconstructed in finer detail.

Example visualization of the deep learning results on the effect
of SVC on human eyes are shown in Fig. 5. On the en face OCT
of both the SVP and DVP, as shown in Fig. 5, we can observe that

there are distinct capillary structures with less contrast as
compared to OCTA. Therefore, it explains why we can observe
that the 1 N and 3 N models are able to predict both the large and
small vessel structures in the SVP, as both the intensity and
structural information are present for the model to learn from in
order to predict the vessels. In the DVP, we can observe that the

Fig. 3 Comparison of conventional speckle variance OCTA construction in the human eye. The temporal vascular connectivity (TVC) and spatial vascular
connectivity (SVC) for varying numbers of B-scans in speckle variance processing are shown. Representative OCTA en faces for temporal and spatial
approaches for superficial vascular plexus (SVP) and deep vascular plexus (DVP) layers. Zoomed regions of the images are outlined in blue. The yellow
scale bar represents 600 µm.

Table 1 Evaluation metrics on conventional speckle variance OCTA using temporal and spatial scans.

Dataset Metric Layer Temporal 3 N (I) Temporal 2 N (II) Spatial 2 N (III) Spatial 3 N (IV) Spatial 4 N (V) ANOVA

Mouse (n= 6) MS-SSIM SVP 0.9728 ± 0.0070 0.934 ± 0.0093 0.8291 ± 0.0213 0.8193 ± 0.0286 0.7938 ± 0.0322 <0.001
DVP 0.9487 ± 0.0278 0.8696 ± 0.0460 0.7422 ± 0.0430 0.7526 ± 0.0337 0.7285 ± 0.0268 <0.001

PSNR SVP 30.03 ± 0.85 25.06 ± 0.77 20.25 ± 1.07 20.42 ± 1.23 19.84 ± 1.27 <0.001
DVP 24.46 ± 2.06 19.71 ± 1.93 16.52 ± 1.79 17.16 ± 1.84 16.91 ± 1.86 <0.001

Human (n= 6) MS-SSIM SVP 0.9467 ± 0.0117 0.8737 ± 0.0244 0.6251 ± 0.0446 0.6658 ± 0.0426 0.6318 ± 0.0407 <0.001
DVP 0.8719 ± 0.0161 0.7295 ± 0.0270 0.546 ± 0.0270 0.5811 ± 0.0303 0.5356 ± 0.0271 <0.001

PSNR SVP 18.22 ± 0.73 14.68 ± 0.67 10.33 ± 0.93 10.84 ± 0.98 10.53 ± 1.00 <0.001
DVP 13.82 ± 0.35 10.82 ± 0.26 8.41 ± 0.21 8.67 ± 0.24 8.36 ± 0.20 <0.001

Values are reported as mean ± standard deviation.
One-way ANOVA was performed for multi-group comparisons.

Table 2 Post hoc analysis of the different methods of conventional speckle variance OCTA.

Dataset Metric Layer I vs II I vs III I vs IV I vs V II vs III II vs IV II vs V III vs IV III vs V IV vs V

Mouse (n= 6) MS-SSIM SVP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.075 <0.01 <0.001
DVP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.065 0.198 <0.01

PSNR SVP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.112 0.017 <0.001
DVP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.065 0.198 <0.01

Human (n= 6) MS-SSIM SVP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.113 <0.001
DVP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.01 <0.001

PSNR SVP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.01 <0.001
DVP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.01 <0.001

For individual comparisons, a pair-wise two-way Student’s t-test was performed. I, Temporal 3N; II, Temporal 2N; III, Spatial 2N; IV, Spatial 3N; V, Spatial 4N
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contrast in the 3 N model is better than the prediction of the 1 N
model. This suggests that the SVC improves the model’s
performance to predict the finer structural details in capillary-
level vessels.

Effect of the loss function. In this study, we also evaluate the
effect of the different loss functions, i.e., mean squared error
(MSE) and structural similarity index measure (SSIM) loss
functions, for OCTA construction on the 1 N and 3 N models.
Examples of output en face images from an animal eye of each
model are illustrated in Fig. 6. Comparison between the 1 N
models trained with MSE and SSIM, we observe a discernable
increase in noise when the model is trained with the MSE loss
function. In comparison to the 3 N models trained with MSE and
SSIM, it results in noise reduction and contrast improvement,
with the 3 N model trained with SSIM having the overall best
contrast. In the DVP, we can observe that the 1 N trained with
SSIM has a better capillary level structure as compared to the 1 N
trained with the MSE, and when SVC is employed, it improves
the contrast of the capillaries.

Next, we compare the effects of the loss functions on the
model’s performance in a human eye, as illustrated in Fig. 7.
We observe that for the 1 N models, the model trained with
the MSE loss function has higher levels of noise and poorer

contrast as compared to the 1 N model trained with the SSIM
loss function. The modification of the loss function improved
the 1 N’s performance to produce the capillary level structures
in higher contrast. Similar observations can be seen for the 3 N
models. In the model trained with the MSE loss function, in
the SVP, we can observe that some of the capillary level
structures are predicted. However, there is relatively more
noise. Whereas in the model trained with the SSIM loss
function, the noise level is reduced. We can also observe that
in the DVP, the capillary level structures seem more dilated;
this could be due to the lower levels of contrast between the
fine vessels. In the human dataset, the 3 N input with SSIM is
the best-performing model and can produce vessel structures
with higher contrast.

The evaluation metrics, MS-SSIM and PSNR, were quantified
on both the SVP and DVP en faces to quantitatively compare the
performances of the four models, and statistical analysis is
summarized in Tables 3 and 4, respectively. For the MS-SSIM
metric, it can be observed that, for both the animal and human
datasets, the 1 N model trained with MSE had the lowest
performance, followed by the 1 N model trained with the SSIM
loss function, which had a slight improvement. The introduction
of the SVC significantly improved the similarity between ground
truth and predicted en face images. The 3 N model trained with
MSE had significantly better results than both 1 N models.

Fig. 4 Effect of SVC on en face OCTA prediction on mouse eye. Representative en face images from OCT, OCTA ground truth, and predictions using
structural similarity index measure (SSIM) as the loss function for single scan (1 N) and three adjacent neighbors (3 N) inputs for superficial vascular
plexus (SVP) and deep vascular plexus (DVP) layers. Zoomed regions of the images are outlined in blue. The yellow scale bar represents 300 µm.

Fig. 5 Effect of SVC on en face OCTA prediction on the human eye. Representative en face images from OCT, OCTA ground truth, and predictions using
structural similarity index measure (SSIM) as the loss function for single scan (1 N) and three adjacent neighbors (3 N) inputs for superficial vascular
plexus (SVP) and deep vascular plexus (DVP) layers. Zoomed regions of the images are outlined in blue. The yellow scale bar represents 600 µm.
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With the modification of the loss function, the 3 N model trained
with SSIM had the best performance.

For the PSNR measurement, we observed that in the SVP, there
were only slight differences between the loss functions while using
the same input types (single or neighbored inputs). This may be
due to the presence of large vessels in the SVP, which, regardless
of the loss functions, the convolutional neural network (CNN)
was able to predict consistently and had maximum pixel intensity,
e.g., 255. However, when observing the quantitative evaluations

for the DVP, we observe PSNR distinguishable improvements of
the loss function and input type on the model’s performance.
This may be due to the abundance of smaller capillary level
structures, where if the predicted image had an increase in noise,
it could be reflected in the PSNR value. The use of SVC and the
SSIM loss function reduced the noise level and improved the
PSNR. For both the mouse and human datasets, the 3 N model
trained with the SSIM loss function had the best overall
performance.

Fig. 6 Effect of loss function on en face OCTA prediction on mouse eye. Representative en face images from OCTA ground truth, and predictions using
different loss functions, mean squared error (MSE) and structural similarity index measure (SSIM), and input images, single scan (1 N) and three adjacent
neighbors (3 N), for superficial vascular plexus (SVP) and deep vascular plexus (DVP) layers. The yellow scale bar represents 300 µm.

Fig. 7 Effect of loss function on en face OCTA prediction on the human eye. Representative en face images from OCTA ground truth, and predictions
using different loss functions, mean squared error (MSE) and structural similarity index measure (SSIM), and input images, single scan (1 N) and three
adjacent neighbors (3 N), for superficial vascular plexus (SVP) and deep vascular plexus (DVP) layers. The yellow scale bar represents 600 µm.

Table 3 Evaluation metrics on deep learning results for different combinations of input type and loss function.

Dataset Metric Layer 1 N-MSE (I) 1 N-SSIM (II) 3 N-MSE (III) 3 N-SSIM (IV) ANOVA

Mouse (n= 6) MS-SSIM SVP 0.794 ± 0.061 0.806 ± 0.055 0.881 ± 0.039 0.901 ± 0.034 0.002
DVP 0.752 ± 0.078 0.785 ± 0.061 0.842 ± 0.054 0.860 ± 0.046 0.021

PSNR SVP 20.78 ± 3.09 20.84 ± 2.88 23.16 ± 3.13 23.99 ± 2.76 0.178
DVP 23.18 ± 4.27 23.80 ± 4.04 25.26 ± 4.16 25.85 ± 3.91 0.654

Human (n= 6) MS-SSIM SVP 0.641 ± 0.062 0.706 ± 0.047 0.733 ± 0.048 0.760 ± 0.044 0.004
DVP 0.553 ± 0.056 0.583 ± 0.046 0.627 ± 0.048 0.669 ± 0.036 0.002

PSNR SVP 14.48 ± 1.41 15.31 ± 1.41 16.65 ± 1.62 16.73 ± 1.61 0.049
DVP 12.80 ± 0.62 13.24 ± 0.44 13.73 ± 0.87 14.25 ± 0.56 0.005

Values are reported as mean ± standard deviation.
One-way ANOVA was performed for multi-group comparisons.
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Connectivity analysis. To assess disparities in vessel connectivity
and overall vessel structure, we conducted a quantitative analysis
of OCTA utilizing well-established metrics: vessel area density,
vessel skeleton density, and vessel perimeter index. The outcomes
of this analysis, which contrast the ground truths with deep
learning predictions derived from models utilizing diverse inputs
(1 N and 3 N) and loss functions (MSE and SSIM), are presented
in Table 5.

Our examination reveals that the 1 N models consistently
exhibit lower p-values in comparison to the ground truth,
indicating detectable distinctions in values. Conversely, in the
case of the 3 N models, we note both statistically insignificant
disparities and relatively high p-values. This suggests that the
predicted images maintain comparable structural connectivity to
the ground truths. The evaluation of these quantitative metrics
bears clinical relevance, as one of the fundamental applications of
OCTA is the detection of retinal vascular changes.

Retinopathy. To assess the robustness of our proposed method,
we conducted an evaluation using the best-performing model
(3 N with SSIM loss) on an eye afflicted with proliferative diabetic
retinopathy. Figure 8 presents representative images of this
comparison. Notably, it becomes evident that the model’s en face
prediction effectively enhances the visualization of micro-
aneurysms when compared to conventional OCTA. Additionally,
upon evaluating the cross-sectional B-scans, we can observe a
heightened brightness of vessels that exhibit low contrast in the
conventional OCTA images, as depicted in the predicted image.
An overarching consistency is observed in the blinking artifacts
within the OCT en face image, which is markedly conspicuous in
the conventional OCTA en face image. However, within the
predicted en face image, a noticeable smoothing effect is appar-
ent, yielding an overall improvement in image quality.

Discussion
In this study, we reported a fully automated convolutional net-
work (FCN), SVC-Net, for OCTA construction that leverages the

use of spatial vascular connectivity in OCT for vascular structure
prediction using a single OCT volume. We quantitatively deter-
mined the optimal number of adjacent B-scans for the input into
SVC-Net and the differences in the number of B-scans used for
SV calculation between TVC and SVC. We conclude that three
adjacent neighbors, 3 N, is the most optimal input into SVC-Net.
We quantitatively compare the effects of SVC by comparing the
performance of using two different inputs, a single OCT B-scan
input, 1 N, and three adjacent OCT B-scan inputs, 3 N. We
demonstrate that the 3 N model has superior performance com-
pared to the 1 N model. In addition, we also compare the effects
of different loss functions, i.e., MSE and SSIM loss functions, on
the model’s performance. Our study demonstrates that the SSIM
loss function has superior performance over the MSE loss func-
tion. Our proposed method has been trained and tested on both
animal and human OCT datasets. The ability to leverage single
OCT volumes to generate OCTA can increase the speed of image
acquisition by alleviating the need for multiple repetitions,
reducing eye movement, and potentially increasing the FOV.

OCTA construction requires the acquisition of multiple OCT
repetitions at the same imaging location, which, therefore, limits
the imaging speed and FOV. In this study, we performed an
ablation study to compare the effects of using different numbers
of adjacent B-scans using SV calculation for OCTA construction.
For quantitative comparison, the 2 N and 4 N had more noise
compared to the 3 N. Qualitative observation, in particular for the
human dataset, 4 N results in a pseudo vessel doubling artifact
due to the larger area used for SV calculation. Therefore, 3 N had
the optimal performance and was chosen as input into SVC-Net.

This observation has theoretical support in that the adjacent
B-scans correspond to both spatial and temporal differences.
Therefore, it carries information that can be used to estimate
areas of hemodynamic changes, i.e., vascular tissue. For the SV
calculation, the method uses a vector to determine the OCTA, i.e.,
for 3 N, it uses a vector of length 3. In principle, using an FCN,
the model can leverage a localized region. For example, the
standard convolutional filter size is of 3 ´ 3 ´N , as an input into
the first layer of the SVC-Net, the FCN uses a localized region of

Table 4 Post hoc analysis of the different deep learning models as compared to the ground truth conventional OCTA.

Dataset Metric Layer I vs II I vs III I vs IV II vs III II vs IV III vs IV

Mouse (n= 6) MS-SSIM SVP 0.739 <0.01 <0.01 <0.01 <0.01 0.042
DVP 0.012 <0.01 <0.01 0.01 <0.01 0.056

PSNR SVP 0.744 <0.01 <0.01 <0.01 <0.01 0.141
DVP <0.01 <0.01 <0.01 0.026 0.016 0.02

Human (n= 6) MS-SSIM SVP 0.068 <0.01 <0.01 <0.01 <0.01 0.017
DVP 0.069 <0.01 <0.01 <0.01 <0.01 <0.01

PSNR SVP <0.01 <0.01 <0.01 <0.01 <0.01 0.583
DVP 0.131 <0.01 <0.01 0.209 <0.01 0.011

For individual comparisons, a pair-wise two-way Student’s t-test was performed. I, 1N-MSE; II, 1N-SSIM; III, 3N-MSE; IV, 3N-SSIM

Table 5 Comparison of quantitative OCTA feature analysis on en face images from conventional OCTA and different deep
learning models.

Metric GT 1 N - MSE (I) 1 N - SSIM (II) 3 N - MSE (III) 3 N - SSIM (IV) GT vs I GT vs II GT vs III GT vs IV

VAD 0.3872 ± 0.0336 0.4223 ± 0.0118 0.3728 ± 0.0206 0.3785 ± 0.0223 0.3837 ± 0.0177 0.0713 0.3714 0.6375 0.8291
VSD 0.1501 ± 0.0123 0.2166 ± 0.0103 0.1865 ± 0.0146 0.1411 ± 0.0109 0.1414 ± 0.0067 0.0003 0.0064 0.2916 0.1556
VPI 0.2859 ± 0.0182 0.3503 ± 0.0142 0.3082 ± 0.0186 0.2666 ± 0.0154 0.2744 ± 0.0099 0.0014 0.0752 0.1279 0.2179

Values are reported as mean ± standard deviation.
For individual comparisons, a pair-wise two-way Student’s t-test was performed.
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3 ´ 3 ´ 3. In addition, as the information is carried through the
FCN, global information is also used in the decision-making
process. Therefore, the FCN can better predict vascular tissue
compared to the SV method due to the larger number of pixels it
can leverage. The performance of SVC-Net using the 3 N model
reveals improved vascular connectivity compared to the SV-3N
method, supporting the hypothesis that the FCN is able to
leverage a larger number of pixels for vessel prediction. On the
human dataset, we do note that the smaller vessels in the SVP
have less contrast compared to the DVP in the deep learning
models. This may be due to the strong signal from the nerve fiber
layer, which may minimize the signal for the smaller vessels in the
SVP. In the DVP, the vessel structure between the different
models, i.e., 1 N and 3 N, are similar because the DVP is bounded
by two hypo-reflective layers, namely the inner nuclear layer and
the outer nuclear layer. Therefore, the contributing signal for
vascular prediction can be clearly determined by the CNN.

There have been a limited number of studies that have
explored methods to alleviate this limitation using deep learn-
ing. Lee et al. demonstrated the single OCT B-scan input for
OCTA construction in a human dataset using a similar U-Net
type model34. In their work, they demonstrated that using an
input-B-scan to output B-scan strategy, they can primarily
predict the large blood vessels. At the same time, the smaller
capillary-sized vessels have poor contrast and higher levels of
noise. The results in this study for single OCT input are con-
sistent with the results presented in Lee et al. This could pri-
marily be due to the large vessels having better contrast
compared to the smaller vessels in the OCT B-scan. In the study
by Li et al., they demonstrate an input volume to output volume

strategy in animal models using a generative adversarial
network35. Where the input is three adjacent OCT B-scans, and
the output is three adjacent OCTA B-scans. While their results
did not demonstrate capillary-level vessel structures, they did
demonstrate that the use of SVC can help the deep learning
model to predict higher performance metrics. The results in our
study for SVC demonstrate capillary level vessels in both animal
and human datasets. Overall, our methodology differs from the
two aforementioned studies in that our strategy follows an
input-volume-to-output B-scan strategy. The connectivity
between the adjacent B-scans can provide the required infor-
mation to accurately predict vessels of varied sizes.

In deep learning, there are many different hyperparameters
that can be optimized for improved performance. Many studies
often focus on the network architecture design, e.g., the depth or
width of the network, or they develop different operations, e.g.,
atrous convolutions, depth-wise convolutions, etc. While all these
hyperparameters play a role in the model’s performance, one of
the most fundamental hyperparameters of a CNN is the loss
function layer. The choice of the loss function ultimately drives
CNN’s ability to learn its intended task36. In this study, we per-
formed an ablation study to compare two loss functions, the MSE
and SSIM. The results of our study, when compared to Lee
et al.34, using a single input and optimized with the MSE loss
function on the animal and human dataset, demonstrate mainly
large vessels are predicted, and the smaller vessels have poorer
contrast. In our study, when we optimize the model using the
SSIM loss function, we can observe a lower level of noise and
improved vascular prediction for the animal dataset and human
dataset. There are also quantifiable differences as measured using

Fig. 8 Comparative performance on retinopathy in the human eye. Representative image of comparisons of en face projections from the inner limiting
membrane to external limiting membrane for optical coherence tomography (OCT), conventional OCT angiography, and our proposed model with input
three adjacent neighbors (3 N) optimized by the structural similarity index measure (SSIM) loss function on an eye with retinopathy. The yellow circle and
arrows highlight areas of improved visualization of vascular abnormalities. The red line on the en face OCT denotes the B-scan location. The yellow scale
bar in the en face image represents 600 µm. At the same time, the yellow scale bar in the B-scan represents 600 µm and 200 µm in the lateral and axial
directions, respectively.
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the PSNR; we can observe an improved PSNR for both the SVP
and DVP between the MSE and SSIM models.

Traditionally, MSE has been used for image reconstruction
tasks. The MSE compares the ground truth and the predicted
CNN image at the individual pixel level. The MSE models a
quadratic function. Therefore, it can be easy to optimize due to its
singular global minima characteristic. However, in many cases, an
individual pixel is related to its surrounding pixel. In this case,
there is a limitation to how much the MSE can optimize the deep
learning model. On the other hand, the SSIM as a loss function
evaluates three different parameters: luminance, contrast, and
structure for a localized patch in the image. SSIM has been
extensively used as an image quality metric. Therefore, it is reason
that applying the SSIM as a loss function in image construction
tasks can better optimize the deep learning model. When we
combine the SVC and the loss function, we achieve the best-
performing model. The model is trained to use the localized
connectivity of the input, i.e., the adjacent B-scans, and is further
optimized to achieve localized structural similarity in the pre-
dicted OCTA B-scan.

We have proposed a novel approach for OCTA construction
using a single OCT volume for capillary-level visualization.
However, there are some limitations with this study; for each of
the dataset types (animal or human), the study is limited to a
single OCT device. To demonstrate the generalization of this
method, validation on different devices should be implemented.
In addition, as an initial study, the dataset is limited to healthy
eyes, in particular for human subjects. We evaluated our model
on one disease name, namely proliferative diabetic retinopathy.
For future considerations, we would need to evaluate this
method in different eye conditions and disease states. Different
eye conditions may affect the connectivity of the vasculature
differently and, therefore, need to be further elucidated.
Another variable to consider is that our proposed method has
primarily been validated for OCTA constructed using the SV
method; future studies should consider validating this method
for other types of OCTA construction algorithms, e.g., OMAG
and SSADA, as there may be performance differences as dif-
ferent construction algorithms rely on different information,
e.g., phase or complex signal.

The SVC-Net for deep learning construction of micro-
capillary resolution OCTA from single-scan-volumetric OCT
has been developed and validated. A comparative study shows
that the SVC in single-scan-volumetric OCT provides equiva-
lent information to the TVC in multi-scan-volumetric OCT for
robust OCTA construction. The SSIM loss function provides
superior performance, compared to the MSE loss function, to
optimize deep learning visualization of microstructures, such as
microcapillaries, in single-scan-volumetric OCT. The combi-
nation of SVC involvement and SSIM loss function enabled
robust OCTA construction from single-scan-volumetric OCT.
With single-volumetric-scan OCT for rapid OCTA construc-
tion, the SVC-Net holds great promise to increase the imaging
speed and thus enable rapid wide-field OCTA and dynamic
monitoring of vascular changes to advance the clinical man-
agement of eye diseases.

Methods
Datasets. OCT volumetric data. For the algorithm development,
we optimized and evaluated SVC-Net on two dataset types,
namely animal and human OCT datasets. For the animal dataset,
16 volumes comprised the dataset, 9 volumes for training, 1
volume for validation, and 6 volumes for testing. The total
number of images used for training, validation, and testing were
5382, 598, and 3588 images, respectively. For testing en faces

from 6 volumes were used to evaluate model performance. For
the human dataset, 16 volumes were used for training, 1 volume
for validation and 5 volumes for testing. The total number of
images used for training, validation, and testing were 4768, 298,
and 1490 images, respectively. For testing en faces from 6
volumes were used to evaluate model performance. Additionally,
one from a patient with retinopathy was used to demonstrate the
model’s qualitative performance for vascular abnormalities. For
image acquisition, animal and human OCTs were taken with our
custom lab-built OCT system. The system designs can be found
in Supplementary Notes 1 and 2.

OCTA construction. The OCT scan pre-processing starts with
registration of the OCT volume. The method that was employed
for frame registration was the Discrete Fourier Transform
registration method37. Since the OCT volume contains multiple
repeated scans, the first step is to perform intra-frame
registration, where each repetitive scan is registered to the first
scan. This process is repeated for all scans. Next, inter-frame
registration is performed to register each of the scans within the
volume. After the OCT Volume Pre-processing, SVC input was
generated using the inter-frame registered OCT B-scans. Mean-
while, to generate the ground truth, intensity-based SV
processing was applied to intra-frame registered OCT B-scans
using the method in38. SV processing algorithm can be found in
Supplementary Note 3. Furthermore, for the ablation study to
compare TVC and SVC, we used SV processing with varying
numbers of repeated B-scans and varying numbers of adjacent
neighbors, respectively. In this study, the number of adjacent
numbers referred to as two, three, and four neighbors, referred to
as 2 N, 3 N, and 4 N, respectively, was performed. To be
consistent with the connotation, if only 1 B-scan was used, we
refer to it as 1 N.

Ethics declaration. All animal experiments were approved by the
local animal care and biosafety office and performed following the
protocols approved by the Animal Care Committee (ACC) at the
University of Illinois at Chicago (ACC Number: 19-044). This
study followed the Association for Research in Vision and
Ophthalmology Statement for the Use of Animals in Ophthalmic
and Vision Research. All human experiments were approved by
the Institutional Review Board of the University of Illinois at
Chicago and were in pursuance of the ethical standards stated in
the Declaration of Helsinki.

Deep learning implementation. Deep learning model. Our
model, SVC-Net, was built using the methods described by
Ahmed et al.39, and the design is an encoder-decoder archi-
tecture, as shown in Fig. 9a. For the encoder, the EfficientNetB0
neural network40 was employed. The decoder was designed using
the Keras library, and the individual block components are illu-
strated in Fig. 9b. Briefly, we used a convolutional neural network
to predict vessels in an image regression manner. The input into
the CNN was a multichannel input comprised of OCT B-scans,
and the output was a grayscale image. For other hyperparameters
and training details, see Supplementary Note 4. The parameters of
the CNN were optimized by training it on SVC inputs from
single-scan OCT with the ground truth corresponding to OCTA
images. The model was similarly trained on single channel inputs
from OCT as well to determine the effects of SVC. To evaluate
our model, we tested it on OCT volumes that were excluded from
the training dataset.

Loss function and evaluation metrics. The loss layer of a neural
network compares the output of the network with the ground
truth. In this paper, we evaluate the effect of two loss functions,
MSE and SSIM, on the performance of the model for OCTA
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construction. Therefore, in this section, we define the MSE and
SSIM loss functions. For the formulation of MSE and SSIM, see
Supplementary Note 5. To evaluate the performance of the
model, we used PSNR and MS-SSIM. The evaluation metrics were
applied to en face projections of SVP and DVP. Statistical
methods included one-way analysis of variance (ANOVA) for
multi-group comparisons, and post-hoc tests were conducted
using pair-wise two-way Student’s t-test. For the formulation of
evaluation metrics and methodology of en face projection,
see Supplementary Notes 6 and 7, respectively.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code for the project is available on GitHub41.
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