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Deep learning-based approach for high spatial
resolution fibre shape sensing
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Fiber optic shape sensing is an innovative technology that has enabled remarkable advances

in various navigation and tracking applications. Although the state-of-the-art fiber optic shape

sensing mechanisms can provide sub-millimeter spatial resolution for off-axis strain mea-

surement and reconstruct the sensor’s shape with high tip accuracy, their overall cost is very

high. The major challenge in more cost-effective fiber sensor alternatives for providing

accurate shape measurement is the limited sensing resolution in detecting shape deforma-

tions. Here, we present a data-driven technique to overcome this limitation by removing

strain measurement, curvature estimation, and shape reconstruction steps. We designed an

end-to-end convolutional neural network that is trained to directly predict the sensor’s shape

based on its spectrum. Our fiber sensor is based on easy-to-fabricate eccentric fiber Bragg

gratings and can be interrogated with a simple and cost-effective readout unit in the spectral

domain. We demonstrate that our deep-learning model benefits from undesired bending-

induced effects (e.g., cladding mode coupling and polarization), which contain high-resolution

shape deformation information. These findings are the preliminary steps toward a low-cost

yet accurate fiber shape sensing solution for detecting complex multi-bend deformations.
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F iber optic shape sensing has proven to have great potential,
especially in medical applications such as catheter naviga-
tion, surgical needle tracking, and flexible endoscope navi-

gation. Compared to other common navigation technologies (e.g.,
optical trackers, electromagnetic sensors, or medical imaging),
fiber shape sensing has many advantages, such as immunity to
electromagnetic fields, bio-compatibility, and high flexibility.
Fiber shape sensors are small in diameter, easily integrable into
flexible instruments, and require no line-of-sight. Distributed
sensors based on multicore fibers can also provide high-
resolution shape measurements1,2.

Fiber shape sensors measure off-axis strain, which is then used
to compute the directional curvature and reconstruct the sensor’s
shape3. Various fiber sensor configurations have been investigated
for off-axis strain measurement, including multicore fibers
with4–6 or without7–9 fiber Bragg gratings (FBG) in their cores,
fibers with cladding waveguide FBGs10, and fiber bundles made
from multiple single-mode fibers that contain FBG arrays11–15.
Accurate shape reconstruction necessitates high spatial resolution
in off-axis strain measurement. With a distributed fiber shape
sensor, sub-millimeter spatial resolution can be achieved1.
However, these sensors require the use of specialized and costly
optical reflectometers to analyze the back-scattered light and
retrieve strain variations16–19. Moreover, the signal-to-noise ratio
of the back-scattering trace in such sensors depends on the spatial
resolution and the level of applied strain. Quasi-distributed sen-
sors, on the other hand, have more cost-effective readout unit
systems (e.g., FBG interrogators). However, their spatial resolu-
tions are limited by the low sensing plane density4,20, making
them inapplicable for tracking complex shape deformations.
Therefore, there is a need for a cost-effective, high-resolution, and
accurate fiber shape sensing technique.

Among cost-effective fiber shape sensors interrogated in the
spectral domain, eccentric FBG (eFBG) sensors show great
capacity for tracking applications, thanks to their unique sensing
mechanism21–23. Each sensing plane in eFBG shape sensors
consists of three highly localized FBGs, written off-axis in the
fiber’s core (also known as edge-FBG triplet), as shown in
Fig. 1a21. Shape deformations are commonly computed from the
displacement of the fundamental mode-field inside the optical
fiber, estimated through spectral intensity modifications (see
Fig. 1b, c)21,22. This approach is known as the mode-field dis-
placement method (MFD). However, several other effects,
including bending-sensitive mode coupling24–27, polarization-
dependent losses28–32, and wavelength-dependent bending
losses33–39, also modify the spectral profile of eFBGs. These
effects cannot be accurately modeled, and their impact on the
sensor’s spectra is indistinguishable from the mode-field dis-
placements. Further details on the eFBG configuration, sensing
mechanism, and bending-induced effects are provided in
“Methods”.

In this paper, we introduce an end-to-end data-driven mod-
eling technique based on deep learning (DL) that effectively
identifies meaningful patterns in the eFBG signal, even in the
presence of uncontrolled bending-induced effects. By incorpor-
ating these additional sources of information, our technique
considerably improves the accuracy of shape prediction. More-
over, our approach enables high spatial resolution shape esti-
mation directly from the eFBG sensor’s signal, eliminating the
need for strain measurement, curvature computation, and shape
reconstruction steps.

Results and discussion
Training and testing datasets. The eFBG fiber sensor used in this
work is 30 cm long and consists of five sensing planes separated

by 5 cm from each other. At each sensing plane, three off-axis
FBGs are inscribed at a radial distance of approximately 2 μm
from the top, left, and right sides of the fiber’s core. The dataset
used for developing the DL-based model is collected using a
similar setup reported in our previous work40 (see “Methods” for
more detail). We used three normalized spectral scans that were
consecutively measured as input data to the proposed DL model.
Each scan was recorded from 800 to 890 nm, comprising 190
wavelength components. The target data are the relative coordi-
nates of 20 discrete points (reflective markers of the tracking
system) measured over the length of the shape sensor (more
detail on data preprocessing is available in41). This dataset con-
sists of approximately 58,000 samples collected during 30 min of
random movement of the fiber sensor. To evaluate the predictive
performance of the trained model in an unbiased way, the sam-
ples were first shuffled and then split into Train-Validation-Test
subsets, with 80% used for training, 10% for validating, and 10%
for testing. In the remainder of this paper, we refer to this testing
dataset as Test1. A separate set of data, denoted as Test2, con-
sisting of approximately 5800 samples, was recorded to evaluate
the performance of the trained model for unseen shapes resulting
from continuous movement. Additionally, we collected 320 sam-
ples, referred to as Test3, in which specific sensor regions were
bent. Further details are provided in the Methods section.

Neural network design. The DL model needs a specially designed
network architecture to extract essential features from the sen-
sor’s spectra and to accurately predict its corresponding shape. In
this study, we employed an optimization algorithm inspired by
the Hyperband optimizer42 to fine-tune the network’s hyper-
parameters. These hyperparameters, which cannot be directly
determined from the training data, play a crucial role in model
performance. Figure 2 illustrates the architecture of the best-
performing configuration achieved after hyperparameter tuning
(see “Methods” for further details).

Shape prediction evaluation. We evaluated the performance of
the DL approach using the three testing datasets and compared it
with the MFD method. It should be noted that the density of
sensing planes in our eFBG shape sensor is insufficient for the
MFD method to accurately estimate complex deformations.
Nevertheless, we conducted this test to highlight the superiority of
the proposed data-driven technique (the DL method).

Table 1 presents the shape error metrics, including the tip
error, that is, the Euclidean distance between the true and the
predicted coordinate of the sensor’s tip and the root-mean-square
of the Euclidean distance (RMSE) between the true and the
predicted coordinates of the discrete points along the sensor’s
length. When using the Test1 dataset, the MFD approach yielded
a median tip error of 111.3 mm with an interquartile range (IQR)
of 121.5 mm. These error values were reduced to 98.5 and 46 mm
when using the Test2 dataset. The performance difference can be
attributed to the fact that the Test1 dataset contains more diverse
shapes as the samples are randomly selected from a larger dataset,
whereas Test2 represents continuous sensor movement over a
shorter period. As expected, the error values are considerably
high across all testing datasets since there is too little information
available for the MFD approach to estimate complex shape
deformations accurately.

The DL method, on the other hand, considerably improved the
accuracy of shape prediction for Test1 samples, resulting in a
median tip error of 2.1 mm with an IQR of 2.6 mm. These values
increased to 17.1 mm and 12.6 mm on the less diverse Test2
samples. This is because the DL model can only learn to extract
the most general and relevant features from the input signal when
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the training dataset adequately represents the expected sensor
signals. However, in the case of the Test2 dataset, less than 2% of
the samples have at least 100 similar examples in the training
data. To measure similarity, we employed a maximum RMSE
threshold of 5 mm after evaluating various thresholds. This
indicates that the 30 min of manual shape manipulation is
insufficient to cover the full working space of the sensor and to
create a representative training dataset for the model to generalize
effectively. On the other hand, in the Test1 dataset, almost 20% of
the samples have at least 100 similar examples in the training
dataset. This means that the DL method is being tested on
samples that the model has already learned to handle, simulating
a situation where the training dataset represents the expected
sensor shapes.

The shape evaluation results of the Test1 dataset define the
lower performance limit for our model. Such performance
difference also suggests that the DL model is better trained as
application-specific, since it can focus more effectively on relevant
features when learned from the expected shape distribution of the
sensor. On the other hand, when training data covers a wide
range of expected behaviors from the sensor, the DL model may
simply “memorize” the corresponding shape for each signal
without searching for relevant features in the sensor’s spectrum.
To investigate this further, we compared the performance of our
DL method with a dictionary-based algorithm. In this approach, a
pre-defined dictionary was created using all training and
validation samples. The shape prediction was then made by
finding the closest spectrum to the test sample and presenting its
corresponding shape. This technique is equivalent to the
k-nearest neighbors (kNN) algorithm with a k value of 1. The
median tip errors for the Test1 and Test2 datasets using this
dictionary-based algorithm are 5.9 and 50.0 mm, with IQR values

of 3.9 and 43.3 mm, respectively. We also evaluated the kNN
algorithm with k values of 3, 5, 7, and 9, which resulted in median
tip errors of 6.4, 7.8, 9.1, and 10.1 mm for the Test1 dataset and
47.3, 46.1, 45.4, and 44.8 mm for the Test2 dataset, respectively.
All error values are higher compared to the errors obtained using
our DL technique. This shows that our DL model generalizes well
and provides more accurate shape predictions.

Two essential factors have to be considered when working with
dictionaries: the size of the dictionary and the execution time
required to find the best matching example. To obtain an accurate
shape estimation for a given sample, the dictionary should contain
a sufficiently large number of stored samples to cover all possible
examples, which leads to a long execution time. Thus, there is a
trade-off between accuracy and execution time when using this
approach. However, extensive training data do not negatively affect
the inference time in the DL method, as the resulting model size is
independent of the training data size. This makes the DL method
advantageous in terms of both accuracy and efficiency.

Our observations showed that the designed DL model can
accurately recognize deformations even when they occur between
the sensing planes. To further investigate this intriguing finding,
we evaluated the shape predictions using the Test3 dataset, in
which the deformations are exclusively applied between the
sensing planes. The Test3 dataset comprises four deformation
examples, each repeated twice and measured 40 times. As
anticipated, the classical MFD method was not able to accurately
predict the sensor’s shape for such deformations, as the deformed
area was not at any of the sensing planes. In contrast, when using
the DL method, we achieved a median tip error of 6 mm, which is
approximately six times smaller than the median tip error
obtained using MFD on this dataset. The precision of the
predicted tip position in the Test3 dataset averages at 1.9 mm.
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Fig. 1 Fiber Bragg grating (FBG) configuration and working principle of the eccentric FBG (eFBG) sensor. a Sketch of the cross-section view of the eFBG
sensor. Each sensing plane of the eFBG sensor consists of three FBGs inscribed off-axis with ~90° angular separation (also known as edge-FBG triplet).
b Mode-field distribution of a straight single-mode fiber and the expected signal from eFBGs within the same sensing plane. c When the fiber is curved,
mode-field distribution moves in the opposite direction of bending, which affects the relative intensity between the eFBGs.
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An example from the Test3 samples, where the sensor experienced
bending between the sensing planes 3 and 4, is depicted in Fig. 3a. It
is important to note that the intensity ratio of the eFBG Bragg peaks
in each sensing plane can also be influenced by various factors, apart
from fundamental mode-field displacements, as previously men-
tioned. The MFD approach, however, does not consider such effects
and is thus incapable of correctly interpreting the resulting signal
variations. In contrast, the DL model managed to accurately predict
the sensor’s shape by considering the full spectral profile, including
the minute changes occurring at wavelengths outside the Bragg

resonances. Figure 3b illustrates the finite difference analysis of the
loss value with respect to the 190 wavelength components of the
input spectra. A higher difference indicates the greater importance of
the corresponding wavelength component for shape prediction in
this example. This difference provides an influence evaluation for
each wavelength component of the input spectra to decode the
model’s predictions (see “Methods” for detailed information).
Figure 3c provides a deeper insight into this analysis. For all 190
wavelength components, the Euclidean distance between the
predicted relative coordinates of each marker before and after the
spectral modification is depicted through a color map.
The contribution of each wavelength component to the relative
coordinate prediction of all 20 markers can be discerned from the
presented color map in Fig. 3c.

Another important finding of our study is the DL model’s ability
to detect deformations occurring after the last sensing plane.
Figure 4a illustrates an example in which a 3 cm long segment, 1 cm
after the last sensing plane, was deformed. Similar to the example
depicted in Fig. 3, the MFD method was not able to predict the
sensor’s shape in such deformations. In contrast, the DL model
employed relevant features in the side slopes of the eFBG spectra to
predict the correct shape (see Fig. 4b, c). This intriguing
performance can be attributed to the wavelength-dependent
interference between the back-reflected light from the air-glass
interface at the fiber’s end tip (Fresnel reflection) and the incident
downstream light occurring in the region after the last sensing
plane. Deformations in this region impact interferences in two
ways: first, the bending induces changes in the spectral profile of
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Fig. 2 Architecture of the best-performing configuration after hyperparameter tuning. The architecture includes five 1D convolutional layers (Conv1D),
six fully connected layers, five max pooling layers, four batch normalization steps, and two dropout steps. The designed network receives three consecutive
spectral scans as the input and predicts the relative coordinates of 20 discrete points over the sensor’s curve. More details on the channel, kernel, and
pooling sizes are available under “Methods”. ReLU rectified linear unit.

Table 1 Shape evaluation errors in mode-field displacement
(MFD) and deep-learning (DL) methods using test sets
Test1, Test2, and Test3.

Tip error [mm] RMSE [mm]

Dataset Method Median IQR Median IQR

Test1 MFD 111.3 121.5 59.4 71.7
DL 2.1 2.6 1.5 1.6

Test2 MFD 98.5 46.0 53.8 29.1
DL 17.1 12.6 9.8 7.0

Test3 MFD 39.5 34.7 17.1 18.3
DL 6.0 9.0 5.1 6.6

RMSE root-mean-square error, IQR interquartile range.
footnote It’s important to clarify that the MFD method is not intended to represent the current
state-of-the-art technology. Instead, it serves as a baseline to illustrate what can be achieved
through analytical methods when utilizing a low sensing density in eFBG fiber sensors.
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the downstream light, and second, it alters the coupling conditions
between the back-reflected and the downstream lights. As a result,
the measured spectra from the fiber sensor exhibit small variations,
reflecting the influence of deformations on the interference pattern.
More examples of the sensor’s predicted shapes using the DL and
the MFD methods on datasets Test1, Test2, and Test3 are provided
in Supplementary Movies 1–3, respectively.

Optimum number of sensing planes. A key factor in eFBG
sensors when employing the MFD method is the number of

sensing planes for detecting shape deformations. As with any
other quasi-distributed shape sensor, the spacing between the
sensing planes determines the sensor’s spatial resolution in shape
measurements. When dealing with complex shape deformations,
a limited number of sensing planes (resulting in low spatial
resolution) can lead to large tip errors in methods that involve
shape reconstruction (e.g., the MFD method). In this section, we
present a theoretical analysis to determine the minimum number
of sensing planes required in eFBG sensors when employing the
MFD method to achieve the same level of shape prediction
accuracy as attained by our DL method using five sensing planes.

SP1

SP2

SP3

SP4

SP5

SP2 SP3 SP4 SP5SP1

a

b

c

Fig. 3 Decoding the deep-learning (DL) model decision for deformations between sensing planes. a Example from the Test3 dataset demonstrating the
bending of the sensor between the sensing planes 3 and 4. The true shape (ground truth) is indicated by green circles. The five sensing planes of the sensor
are shown with × signs. The predicted shapes using the mode-field displacement method (MFD) and the DL method are shown with blue and orange solid
lines, respectively. b Visualization of the finite difference of the loss value with respect to the input spectral elements. Wavelength components shown with
colors closer to dark purple contribute more to the model’s decision in this particular example. c Highlighting the importance of input spectral elements in
the relative coordinate prediction of all 20 markers based on the magnitude of the Euclidean distance between the predicted relative coordinates of each
marker before and after spectral modification. Each row corresponds to one marker, and the color map represents the importance of the wavelength
component. Wavelength components shown with colors closer to dark green have a greater impact on the model’s decision. The markers at the bent area
are highlighted in the presented color map. SPi ith Sensing Plane.
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In this theoretical analysis, we simulated the shape reconstruc-
tion error for different spatial resolutions. Our methodology
involves interpolating the discrete curve points along the sensor’s
true shape, measured by the motion capture system, using a
Spline with a resolution of 0.1 mm (this value was chosen
empirically). Subsequently, we compute the curvature and torsion
—representing the curve’s deviation from the osculating plane—
at the query points. By utilizing the computed curvatures and
bending directions at the sensing planes, we reconstructed the
spatial curve and compared it with the true shape.

For a 25 cm long sensor with 50 mm spatial resolution
(equivalent to five sensing planes), the median tip error of the

reconstructed shapes, evaluated using the Test1 and Test2 datasets,
is approximately 50 mm. This error is nearly 16 times higher
compared to the performance achieved by the DL approach (see
Table 1). In order to achieve a median tip error of 3 mm, a similar
spatial resolution is necessary, implying that the MFD method
would require approximately 84 sensing planes consisting of
252 eFBGs.

Conclusion
In this paper, we developed a fiber shape sensing mechanism with
a data-driven technique, eliminating the need for off-axis strain
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Fig. 4 Decoding the deep-learning (DL) model decision for deformations after the last sensing plane. a Example from the Test3 dataset in which a 3 cm
long segment, 1 cm after the last sensing plane, is deformed. b Visualization of the finite difference of the loss value with respect to the input spectral
elements. Wavelength components shown with colors closer to dark purple contribute more to the model’s decision in this particular example.
c Highlighting the importance of input spectral elements in the relative coordinate prediction of all 20 markers based on the magnitude of the Euclidean
distance between the predicted relative coordinates of each marker before and after spectral modification. Each row corresponds to one marker, and the
color map represents the importance of the wavelength component. Wavelength components shown with colors closer to dark green have a greater impact
on the model’s decision. The markers at the bent area are highlighted in the presented color map. MFD mode-field displacement. SPi ith Sensing Plane.
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measurement and curvature computation at discrete points along
the fiber sensor to estimate its 3D shape. Our approach utilizes an
easy-to-fabricate eFBG sensor combined with a simple and cost-
effective readout unit. We designed an end-to-end DL algorithm
that can learn directly from the sensor’s signal to predict its
corresponding shape. We extensively evaluated the shape pre-
diction accuracy of our designed model (the DL method) in
various testing conditions and compared it with an exemplary
experiment, the MFD method. Our findings highlight that the
spatial resolution of off-axis strain measurement in FBG-based
(quasi-distributed) shape sensors is the main limitation, as the
deformations between the sensing planes are not detected in
complex shapes. However, our DL method compensates for this
limitation by utilizing the full spectrum of our eFBG sensor,
including the Bragg resonance’s side slopes, to predict complex
shape deformations.

We believe that the DL model exploits the impact of bending-
induced phenomena, including cladding mode coupling,
bending-loss oscillations, and polarization-dependent losses, as
additional sources of information to overcome the spatial reso-
lution limitation for detecting complex deformations. As a result,
there is no need to modify the fiber sensor design or its inter-
rogation system to mitigate the impact of these bending-induced
phenomena. Our developed DL method considerably reduces the
shape prediction error for 3D curves within a curvature range of
0.58–33.5 m−1, achieving a reduction factor of approximately 50
compared to the MFD method. Moreover, we demonstrated that
the designed DL model generalizes nicely, as its performance
surpasses that of a dictionary-based algorithm by a factor of two.
Importantly, our proposed shape sensing solution offers a cost-
effective alternative, being 30 times less expensive than com-
mercially available distributed fiber shape sensors while main-
taining a similar level of accuracy.

In summary, our research presents a promising approach to
fiber shape sensing by combining an easy-to-fabricate eFBG
sensor, a data-driven DL model, and the exploitation of bending-
induced phenomena. We believe that this work has the potential
to drive advancements in efficient and cost-effective shape sen-
sing across various applications.

Methods
Working principle of eFBG sensor. When the eFBG sensor
undergoes bending, the field distribution of the fundamental
mode shifts away from the center of the fiber core21–23 (see
Fig. 1b). Displacements of the mode-field’s centroid lead to
intensity changes in the reflected signal from the eFBGs21. From
the intensity ratio between the eFBGs at each sensing plane, the
directional curvature is computed and interpolated at small arc
elements to reconstruct the 3D shape of the sensor21. For the sake
of simplicity, this approach assumes that no other physical phe-
nomena occurring inside a bent optical fiber influence the
intensity ratio between the eFBGs within the same sensing plane.

However, positioning FBGs away from the core axis breaks the
cylindrical symmetry of the fiber, which increases coupling from
the core mode to the cladding modes24,25. The strength of this
mode coupling varies when the fiber is bent, as it affects the
overlap integral between the interacting modes24,26. Bending an
optical fiber causes strain-induced refractive index changes and
displaces the intensity distribution of the propagating light22,43,
which directly influences the coupling efficiency. Therefore, the
intensity of the cladding modes changes when the fiber is bent. In
eFBGs, the formation of cladding-mode resonances in fiber
gratings enables highly sensitive full-directional bending response
through simple light intensity measurements27. Although clad-
ding modes are typically stronger in stripped fibers or fibers with

lower refractive index coatings than the cladding layer24,25, they
have also been observed in standard fibers coated with higher
refractive index materials44. Any recoupling between the excited
cladding resonances and the fundamental mode affects the
relative intensity values between the eFBGs.

FBG interrogators used for quasi-distributed sensors typically
consist of a broadband light source (e.g., super luminescent diode
(SLED)) and a grating-based spectrometer. The emitted light
from SLEDs is partially polarized, meaning that it undergoes
wavelength-dependent polarization changes28 when propagating
through a birefringence medium, such as a bent fiber29–32.
Additionally, the efficiency of the spectrometer grating is sensitive
to polarization, leading to polarization-dependent losses that
affect the spectral profile. Consequently, the measured intensity
ratio between the Bragg peaks is modified. The impact of
polarization in intensity-based fiber sensors is often mitigated by
using a polarization scrambler to randomize the polarization state
or by employing polarization-insensitive spectroscopy
instruments.

It is well known that light power loss increases when optical
fibers bend33,45. This bending loss is typically observed as spectral
modulations caused by coherent coupling between the core mode
and the radiated field reflected by the cladding-coating and the
coating-air interfaces (commonly referred to as whispering gallery
modes)34,46. The reflected field at the coating-air boundary causes
short-period modulations due to the longer re-injection path34,46,
while reflections at the closer cladding-coating interface cause
long-period resonances35–37,46. It is important to note that these
bending-induced attenuation losses are also influenced by
temperature variations. Temperature changes affect the refractive
index of the coating layer, thereby influencing the coupling
between the core and the cladding whispering gallery modes38.
Several models have been proposed to evaluate the peak positions
and shapes of bending losses35,36,39. The strong wavelength
dependence of bending losses further complicates the design of
intensity-based sensors46 as it modulates the spectral profile and
affects the intensity ratio at the Bragg peaks of the eFBGs within
the same sensing plane.

Setup. The data acquisition setup used for developing the DL-
based model is depicted in Fig. 5. We used a cost-effective FBG
interrogator (MIOPAS GmbH, Goslar, Germany) consisting of an
uncooled transmit optical sub-assembly (TOSA) SLEDmodule and
a near-infrared (NIR) micro-spectrometer with a resolution of
0.5 nm. This setup allowed us to capture the spectra of the sensor
across all 15 Bragg wavelengths, ranging from 813 to 869 nm. We
recorded the sensor’s spectra at random curvatures and orienta-
tions (within a curvature range of 0.58–33.5 m−1) while monitor-
ing the reflective markers attached to the 30 cm long sensor using a
motion capture system (Oqus 7+, Qualisys AB, Sweden). The data
acquisition duration was 30min for the Test1 and 3min for the
Test2 datasets. The acquisition rates in the FBG interrogator and
the motion capture system were 75 and 200 Hz, respectively. The
sensor’s spectra and the coordinate values corresponding to its
shape were synchronized with a tolerance of less than 3ms.

In addition, we used a laser-cut curvature template (Fig. 5) to
collect 320 samples for the Test3 dataset, where specific regions of
the sensor were intentionally bent. The curvature template
features four grooves, enabling us to bend the sensor at the
middle 30 mm area between the sensing planes 2 and 3, 3 and 4, 4
and 5, and 10 mm after the last sensing plane with a bending
radius of 50 mm.

Training setup. The search space we defined for tuning the
network’s hyperparameters consists of the number of 1D
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convolutional layers (Conv1D), the number of fully connected
layers (FC), the layer settings, the choice of batch normalization
(BN) and downsampling, training settings, and loss function
parameters. The search criteria are outlined in Table 2.

In the designed network (Fig. 2), input samples with a batch
size of 256 are first batch normalized and then fed into a Conv1D
layer with 16 channels, followed by a max pooling layer with a
kernel size of 3 and a stride of 2. The second Conv1D layer also
has 16 channels, followed by a max pooling layer with a kernel
size of 2. The third Conv1D layer has 32 channels, followed by a
max pooling layer with a kernel size of 3 and a stride of 2. The
fourth Conv1D layer also has 32 channels with a stride of 2,
followed by a max pooling layer with a kernel size of 3. The last
Conv1D layer has 256 channels, followed by batch normalization
and a max pooling layer with a kernel size of 2 and a stride of 2.
The extracted features are flattened to a 2048-long vector, fed into

5 FC layers, each with 2000 units. The first FC layer is followed by
batch normalization, a dropout layer with a probability of 0.37,
and two more FC layers. A batch normalization, an FC layer, a
dropout layer with a probability of 0.16, and a fifth FC layer are
the remaining layers before the final layer. The last layer is an FC
layer that maps the output of the fifth FC layer into the target
values, the relative coordinates. In all layers of this network
architecture, the rectified linear unit (ReLU) serves as the
activation function, and the kernel size for the Conv1D layers is
3. In this model, the Adam optimizer with a learning rate of
0.0001 minimizes the SmoothL1 loss function with a threshold
of 4.04.

Decoding the model’s decisions. Inspired by the concept of
Gradient-weighted Class Activation Mapping (Grad-CAM), we

Table 2 The search criteria for hyperparameter optimization.

Hyperparameter Search space Selected values

Number of Conv1D layer min: 1, max: 20, step: 1 5
Number of FC layer min: 1, max: 20, step: 1 5
BN after each layer true, false –
Dropout after FC layer true, false –
Dropout rate min: 0.1, max: 0.8 –
Stride min: 1, max: 2, step: 1 –
Kernel size (max pooling layer) min: 2, max: 3, step: 1 –
Distribution of initial weights standard, Xavier_uniform, Xavier_normal, Kaiming_uniform, Kaiming_normal Xavier_normal
Learning rate 0.01, 0.001, 0.0001, 0.00001 0.0001
Sorting Conv1D layers true, false true
L2 regularization 0.1, 0.01, 0.001, 0.0001, 0.00001, 0 0
Threshold in SmoothL1 any values between 0.0 and 5.0 4.04

Conv1D 1D convolutional layer, FC fully connected layer, BN batch normalization.
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Fig. 5 Experimental setup for data acquisition. The motion capture system consisted of five tracking cameras (Oqus 7+, Qualisys AB, Sweden). For
protection purposes, the fiber sensor was inserted in a Hytrel furcation tubing with an inner diameter of 425 μm and an outer diameter of 900 μm. Two
v-clamps were used to hold the protection tubing securely and to fix the optical fiber in place before the insertion. Reflective markers with a diameter of
6.4 mm and an opening of 1 mm (X12Co., Ltd., Bulgaria) were affixed to the sensor. Additionally, a thermocouple was positioned near the sensor’s base to
monitor the temperature throughout the data acquisition process, ensuring that any sudden thermal fluctuations did not impact the sensor’s signal.
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decoded the decisions made by our CNN (convolutional neural
network)-based model. By decoding our model’s decisions, we
gained insights into which parts of the input spectra contribute to
coordinate predictions. Grad-CAM is a widely used technique in
image classification tasks that generates visual explanations from
any CNN-based model without requiring re-training or archi-
tectural modifications. The gradient is a measure that shows the
effect on the output caused by the input, indicating the part of the
input with the highest impact on the model’s output.

However, the gradient heat map produced by the last Conv1D
layer has limited resolution due to the small output dimension in
each channel. Therefore, instead of the gradient of the Conv1D
layers, we computed the forward finite difference of the model’s loss
with respect to the input spectral elements. The spacing constant
was chosen to be 0.1, higher than the spectral intensity noise level.
In this method, we modified the intensity value of one spectral
element and observed the resulting changes in the model’s loss
value. We repeated this process for all 190 spectral elements. The
resulting color maps are illustrated in Figs. 3b and 4b, representing
the impact of the changes in each spectral element on the model’s
SmoothL1 loss value. To analyze the contribution of each spectral
element to the coordinate prediction of individual markers, we
computed the Euclidean distance between the predicted coordinates
of each marker before and after spectral modification. This allowed
us to identify the spectral elements contributing to the relative
coordinate prediction of each marker. By highlighting these spectral
elements, we gained a better understanding of the factors
influencing the model’s predictions.

Data availability
The datasets generated during and/or analyzed during the current study are available in
the Academic Torrents repository.

Code availability
The source code is available on GitHub.
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