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Spike frequency adaptation: bridging neural models
and neuromorphic applications
Chittotosh Ganguly 1,6, Sai Sukruth Bezugam 2,6, Elisabeth Abs 3,

Melika Payvand 3, Sounak Dey4 & Manan Suri 5✉

The human brain’s unparalleled efficiency in executing complex cognitive tasks stems from

neurons communicating via short, intermittent bursts or spikes. This has inspired Spiking

Neural Networks (SNNs), now incorporating neuron models with spike frequency adaptation

(SFA). SFA adjusts these spikes’ frequency based on recent neuronal activity, much like an

athlete’s varying sprint speed. SNNs with SFA demonstrate improved computational per-

formance and energy efficiency. This review examines various adaptive neuron models in

computational neuroscience, highlighting their relevance in artificial intelligence and hard-

ware integration. It also discusses the challenges and potential of these models in driving the

development of energy-efficient neuromorphic systems.

Spiking neural networks (SNNs) are inspired by their biological counterparts in which
information is transmitted mostly through all-or-none events called spikes. Owing to the
co-location of memory and computation within a spiking neuron, event-based asyn-

chronous data processing, and sparse activations of nodes across the network, SNNs are
inherently more power efficient compared to traditional deep neural networks that use con-
tinuous valued activation functions for the neurons1–3. SNNs, often mentioned as the third-
generation artificial neural networks4, are particularly suitable for temporal feature extraction
and learning, as well as faster convergence to solutions for optimization problems5,6. Based on
factors such as application requirement, computational complexity, and ease of implementation,
different spiking neuron models are used in SNNs such as the Hodgkin–Huxley model, leaky-
integrate and fire model, Izhikevich model and spike response model7–14. However, integrate
and fire models12 which mimic the activities of a biological neuron via functionalities of a simple
resistance–capacitance electrical circuit are very popular due to their simple and elegant
mathematical structure. An enhanced version of the integrate and fire model is the leaky inte-
grate and fire (LIF) model which also takes the membrane voltage leak into account. SFA, i.e.
increase in the inter-spike interval (ISI) over time for a regular spike train, is an intrinsic feature
of biological neurons. In this paper, we will focus on SFA as an important feature to explore
in SNNs.

In recent SNN models, adaptive neurons have been used to process temporal signals15–19. A
recurrent spiking neural network (RSNN) aided with neurons with SFA is investigated in ref. 15,
and is termed a long short-term memory neural network (LSNN). The addition of adaptive
neurons improved the neural network’s computational efficiency, compared to typical training
using backpropagation through time (BPTT). The authors achieved an accuracy of 93.7% on
sequential MNIST (SMNIST) and 66.7% on speech recognition (TIMIT data set). It has been
demonstrated that the computational efficiency of RSNN has approached that of traditional
long–short-term memory networks with neurons capable of SFA. The authors show that sparsely
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connected RSNNs with sparse firing can achieve all the above-
mentioned tasks. The network can accomplish them due to the
control of spike timings by SFA. In refs. 17,19, the authors
enhanced the temporal computing capabilities of SNN enabled
through SFA. In ref. 17, a single exponential model with two
adaptation parameters has been used, while in ref. 19, a double
exponential model with four parameters has been used for the
same working memory task. It has been observed that for a
working memory of 1200 ms, a double exponential model with
high SFA converges much faster.

In18 authors have utilized SFA for the development of a
computational neurobiological model of language. For language
processing short-term storage and integration of information in
working memory is necessary. In the study, the authors offer a
paradigm in which memory is sustained by intrinsic plasticity,
which modulates spike rates. It has been shown that adaptive
alterations via SFA produce memory on timescales ranging from
milliseconds to seconds. The data is kept in adaptive con-
ductances, which reduce firing rates and can be retrieved directly
without the need for storage-based retrieval. Memory span is
systematically connected to the adaptation time constant and
baseline neuronal excitability levels. When adaptation is long-
lasting, interference effects within memory develop.

Over the last few years, there has been an exponential increase in
the research on adaptive neuron models. Though the major research
is done in the neuroscience domain, it is slowly gaining momentum
also in the domain of electronics and computer science, thanks to its
increasing potential use in AI-based applications (Fig. 1). In this
survey, we discuss the different adaptive neuron models and the
corresponding SNN frameworks where these models have been
employed. The adaptive neuron models from the computational
neuroscience domain are described and the use of these models in
engineering applications is highlighted. The remainder of the paper
is organized as follows: Reasons for using adaptive neuron models
are presented in the section “Why an adaptive neuron model”. A
detailed discussion of the available adaptive neuron models in the
computational neuroscience literature is provided in the section
“Description of adaptive neuron models”. Section “State-of-the-art
case studies with ALIF in SNN” considers selected applications that
have been carried out employing adaptive neuron models. Section

“Hardware implementations of Adaptive neurons” presents hard-
ware implementations of adaptive neuron models. The open chal-
lenges, road ahead, and future opportunities are presented in the
section “Discussion and road ahead”.

Why an adaptive neuron model
Understanding and implementing SFA—which is observed widely
in the biological neurons—in both computational models and
hardware, could be leveraged to get a step closer to making artificial
neural network computations more (power-) efficient. Here we first
explain the biological phenomenon of SFA followed by its potential
advantages in biology and for artificial intelligence.

The biological phenomenon of spike frequency adaptation. In
biology, if a neuron is stimulated in a repeated and prolonged
fashion, for example by constant sensory stimulation or artifi-
cially by applying an electric current, it first shows a strong onset
response, followed by an increase in the time between spikes.
Hence the spike rate attenuates and the so-called spike frequency
adaptation takes place. Experimental data from the Allen Institute
show that17 a substantial fraction of excitatory neurons of the
neocortex, ranging from 20% in the mouse visual cortex to 40% in
the human frontal lobe, exhibit SFA as shown in Fig. 2a, b. There
can be different causes for SFA: First, short-term depression of
the synapse through depletion of the synaptic vesicle pool. This
means that at the connection site between neurons, the signal
from the pre-synaptic neuron cannot be transmitted to the next
neuron. Second, by an increase in the spiking threshold of the
post-synaptic neuron due to the activation of potassium channels
by calcium, which has a subtractive effect on the input current.
Hence, the same input current that previously caused a spike does
not lead to a spike anymore. Third, lateral and feedback inhibition
in the local network reduces the effect of excitatory inputs in a
delayed fashion20. Therefore, like in the second case, spike gen-
eration is hampered.

Based on the biological description a large variety of spiking
neuron models has been proposed in the literature, which
implement SFA in different ways.

Fig. 1 Growth and evolution of SFA research over the years. Research on SFA has evolved significantly, expanding into diverse fields. The data, gathered
from the Web of Science using keywords like “Spike rate adaptation", “Adaptive threshold" AND “neuron", and “Spike frequency adaptation" from 1990 to
2022, highlights growth in SFA research, initially rooted in neuroscience but now also prominent in computer science and electronics hardware. The
milestones chart depicts key developments, the bar diagram represents total publications over time, and the pie charts break down the research focus
across different periods. Future directions include harnessing SFA and emerging technologies for sustainable and innovative AI applications. AHP after
hyperpolarization, STDP spike-timing-dependent plasticity
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Advantages of spike frequency adaptation. From a biological
standpoint, multiple advantages of the SFA mechanism have been
observed. First, it lowers the metabolic costs, by facilitating sparse
coding21: When there is no significant information in the pre-
sented inputs, as the input is either being repeated or there is a
high-intensity constant stimulant, the firing rate is decreased
leading to a reduction in metabolic cost and hence power con-
sumption. Moreover, the separation of high-frequency signals
from noisy environments is facilitated by SFA22. In addition, SFA
can be seen as a simple form of short-term memory on the single-
cell level23.

In other words, SFA improves the efficiency24 and accuracy
of the neural code and hence optimizes information
transmission25. SFA can be seen as an adaptation of the spike
output range to the statistical range of the environment,
meaning that it contrasts fluctuations of the input rather than
its absolute intensity26. Thereby noise is reduced and, as
mentioned above, repetitive information is suppressed which
leads to an increase in entropy. Consequently, the detection of a
salient stimulus can be enhanced27. These biological advantages
of SFA can also be exploited for low-power and high-entropy
computations in artificial neural networks.

To introduce SFA in spiking neural networks, a neuron model
can be used which includes an adaptive threshold property28.
SSNs with these kinds of neurons learn quickly, even without
synaptic plasticity29. Moreover, SFA helps in attaining higher
computational efficiency in SNNs17. For example, to achieve a
store-and-recall cycle (working memory) of duration 1200ms, a

single exponential adaptive model requires a decay constant,
τa= 1200 ms in ref. 17, while a double exponential adaptive
threshold model requires decay constants of τa1= 30 ms and
τa2= 300 ms19—the latter being more efficient and sophisticated
with four adaptation parameters compared to two parameters
in ref. 17.

A comparison between baseline LIF behavior vs. SFA behavior
through an adaptive LIF model is shown in Fig. 2c, d. In order to
mimic constant current stimulation in the spiking domain, a
high-frequency Poisson spike train (f= 1000 Hz of 150 ms
duration, i.e. a spike is available at every time-step, dt) is applied
to both LIF and adaptive LIF models. It can be observed that the
LIF model produces 14 spikes, compared to 9 spikes for the
adaptive model in the observed 150 ms time bin, leading to less
spike handling operation in subsequent network layers. More-
over, the LIF model generates a spike train at a constant ISI of
11 ms, whereas SFA is observed in the spike train generated from
the ALIF model. An ISI of 13 ms is observed for the first spike,
and a non-decreasing ISI is observed further. Continuous
adaptation of threshold voltage with every output spike for the
ALIF model compared to the fixed threshold voltage for the LIF
model leads to this SFA behavior.

In refs. 17,19,17, authors showed that SFA is also crucial for
computation through spiking neurons. This function is particu-
larly instrumental in overcoming the vanishing gradient problem
in liquid state machines and RSNNs through the employment
of an adaptive threshold, which serves as the source of SFA,
within the gradient calculation process. Furthermore, the studies

Fig. 2 Adaptive LIF mimics SFA observed in biological neurons. Biological neurons show SFA after prolonged stimulation. The response of two sample
neurons from the Allen brain cell database38 against a 1 s long step current is shown. Both neurons show SFA seen as an increase in the ISI. a Neuron from
human temporal lobe (cell 601950719, sweep 44); b Neuron from mouse visual cortex (cell 595511209, sweep 33). c LIF, and d Adaptive LIF receiving an
input Poisson spike train for 150ms. Plot of membrane potential, u(t), and corresponding threshold potential, vth are shown. The equations for LIF and ALIF
are Eqs. (2) and (5). Parameters used in the adaptive threshold model shown (Eq. (5)): v0th ¼ 50mV, θ0= 7mV, and τθ= 100ms. LIF leaky integrate and
fire, ALIF adaptive threshold leaky integrate and fire.
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provided evidence that SNNs equipped with SFA neurons are
capable of achieving accuracy levels comparable to those found
in artificial neural networks using long short-term memory
networks.

Furthermore, the memory bottleneck in neural computation
must be carefully considered, as memory access often consumes
more time than computation itself, according to Wulf and
McKee30. Within this context, the role of SFA becomes pertinent.
Due to SFA, there is a decrease in spike frequency, leading to a
corresponding reduction in the number of synaptic memory
accesses, which are contingent on a pre-synaptic spike from the
preceding layer. When compared to LIF models, this reduction in
spikes has the potential to decrease computational efficiency.
Further studies, as referenced in refs. 19,31,32, demonstrates that
the benefits of SFA allow for a reduction in the number of
neurons required to achieve similar accuracy in various spatio-
temporal tasks. This reduction contributes to a decrease in both
the area and energy footprint for the corresponding application.

Description of adaptive neuron models
In this review paper, we have considered adaptive models based
on the premise of the LIF framework. LIF models are popular in
SNNs due to their simplicity, computational efficiency, and ability
to capture some essential aspects of temporal character. Their
simplicity makes LIF models amenable to theoretical analysis,
which enables studying fundamental properties of SNNs, such as
stability, dynamics, and network analysis. It is important to note
that LIF models have their advantages but are still simplified
abstractions of real biological neurons. An essential feature of a
neuron missing in LIF is spike frequency adaptation.

Adaptive LIF models encompass all benefits of a LIF model and
use a dynamic threshold that changes based on the neuron’s
recent activity. This mechanism can lead to more sophisticated
information processing, as the neuron’s sensitivity to input can be
modulated by its recent firing history. With a more complex
adaptation mechanism, the model attains higher efficiency with
less iteration16,19,33. ALIF can replicate the phenomenon of SFA,
where neurons become less responsive to repeated input spikes
over time. This feature allows SNNs to capture more nuanced
response patterns and better represent certain types of neural
processing, increasing the computational efficiency as proven in
the paper16,19,33. ALIF models can be easily combined with
synaptic plasticity rules to study learning and memory processes
in SNN. The adaptive behavior of these models allows for a more
realistic exploration of synaptic strength changes and their impact
on network function. ALIF models can also be implemented on
neuromorphic hardware platforms, taking advantage of their
more biologically plausible nature.

Leaky integrate and fire model. As already mentioned, LIF
models are popularly used to mimic the spiking behavior of a
neuron. The evolution of membrane potential, u(t) in an LIF
model can be written as12,34

τ
du
dt

¼ RIðtÞ � ½uðtÞ � vrest� ð1Þ

where τ is the “leaky" time constant of the membrane, R is the
membrane resistance, I(t) is the injected current, and vrest is the
resting potential of the cell. In discrete time for spiking input
Eq. (1) may be written as

uðtÞ ¼ vrest þ RIðtÞ þ ðut�1 � ðvrest þ RIðtÞÞÞe�dt
τ ð2Þ

In SNN applications, R is assumed to be unity and

IðtÞ ¼ ∑
i
wixiðtÞ ¼ ∑

i
wiδiðtÞ ð3Þ

where wi is the synaptic weight between target neuron and ith
pre-synaptic neuron and xi(δi) corresponding spiking input to the
ith pre-synaptic neuron. When membrane potential, u(t) at
t= t(f) crosses a predefined fixed threshold, v0th, a spike is gen-
erated i.e.

t ¼ tðf Þ () uðt ¼ tðf ÞÞ ¼ v0th ð4Þ

Adaptive LIF. In adaptive LIF, a time-dependent function θ(t) is
added to the fixed threshold, v0th after every spike causing an
adaptation of the threshold. The threshold potential, vth(t), gra-
dually returns to its steady state value depending on threshold
adaptation time constant τθ. The expression for adaptive
threshold is thus given as12

vthðtÞ ¼ v0th þ∑
f
θðt � tðf ÞÞ ¼ v0th þ∑

f
θ0 exp½

�ðt � tðf ÞÞ
τθ

� ð5Þ

where the function θ(t) is

θðtÞ ¼ θ0exp½�t=τθ� ð6Þ
when membrane potential, u(t) reaches a threshold, it is reset
to vrest

uðtÞ≥ vthðtÞ ) vðtÞ ¼ vrest ð7Þ

Double EXponential Adaptive Threshold (DEXAT). A Double
EXponential Adaptive Threshold (DEXAT) neuron model has
been proposed by Shaban et al.19. The authors demonstrated that
the proposed DEXAT model provides higher accuracy, faster
convergence, and flexible long short-term memory (working
memory in neuroscience terms) compared to existing counter
parts in the literature.

The membrane potential dynamics are described through
Eq. (1). The threshold adaptation rule is given by the following set
of equations:

vthj ðtÞ ¼ bj0 þ β1bj1ðtÞ þ β2bj2ðtÞ ð8Þ

bj1ðt þ δtÞ ¼ ρj1bj1ðtÞ þ ð1� ρj1ÞzjðtÞδðtÞ ð9Þ

bj2ðt þ δtÞ ¼ ρj2bj2ðtÞ þ ð1� ρj2ÞzjðtÞδðtÞ ð10Þ
where ρj1 ¼ exp½�δt

τb1
� and ρj2 ¼ exp½�δt

τb2
� control the evolution of

adaptive threshold with time, where τb1 and τb2 are threshold
adaptation time constants and β1 and β2 are two scaling factors
(β1, β2 > 0). For each spike zj(t), threshold potential vthj ðtÞ
increases by β1

τb1
þ β2

τb2
.

Multi-time scale adaptive threshold. In this model, the behavior
of the membrane potential is governed by Eq. (1) as well. The
threshold potential is also increased from its present value
whenever a spike is generated. The threshold gradually decays to
the resting potential, vrest depending on the decay time constants.
The rule for threshold update35 is given below:

vthðtÞ ¼ ∑
i
Hðt � tiÞ þ vrest ð11Þ

where ti is the ith spike time. The form of H(t) is described as

HðtÞ ¼ ∑
L

j¼1
αjexp½

�t
τj
� ð12Þ

where L is the number of threshold time constants, τj is jth time
constant (j= 1, 2,…, L) and αj is the weight of the jth time
constant.

REVIEW ARTICLE COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-024-00165-9

4 COMMUNICATIONS ENGINEERING |            (2024) 3:22 | https://doi.org/10.1038/s44172-024-00165-9 | www.nature.com/commseng

www.nature.com/commseng


Adaptive Exponential (AdEx) LIF. Adaptive exponential LIF
model involves two state parameters, membrane potential, u(t) and
adaptation variables wk to explain various spiking dynamics12,34.
The evolution of u(t) and wk are described by the following
equations:

τm
du
dt

¼ f ðuÞ � R∑wk þ RIðtÞ ð13Þ

τk
dwk

dt
¼ akðu� vrestÞ � wk þ bkτk ∑

tðf Þ
δðt � tðf ÞÞ ð14Þ

A popular choice of f(u) is mentioned in ref. 12

f ðuÞ ¼ �ðu� vrestÞ þ ΔTexp
u� vth
ΔT

� �
ð15Þ

where ΔT is the sharpness parameter, vth threshold potential, wk

adaptation current, ak adaptation parameter, bk amount by which
adaptation current increases after threshold.

Spike response model. The spike response model (SRM) is a
generalization of the leaky integrate-and-fire model12. In contrast
to the LIF model, SRM includes refractoriness behavior in the
model equation itself. While the membrane potential of an
integrate-and-fire model is described using coupled differential
equations, SRM is formulated using filters.

The membrane potential, u(t), in the presence of an external
current, I(t), is given below as mentioned in refs. 12,36

uðtÞ ¼ ∑
f2F

ηðt � tðf ÞÞ þ
Z 1

0
kðsÞIðt � sÞdsþ vrest ð16Þ

Here, the function, k(t), describes the filter of the voltage response
to a current pulse. Input current I(t) is filtered with a filter k(t) and
produces corresponding input potential hðtÞ ¼ R1

0 kðsÞIðt � sÞds.
A spike occurs when the membrane potential, u(t), reaches the
threshold vth(t). The membrane potential after a spike is described
by a function η(t). The function, η(t) models the refractory
behavior after a spike. The set F is a collection of all spike times
before t and is defined as

F ¼ ftðf Þ; 1≤ f ≤ n : uðtðf ÞÞ ¼ vthðtðf ÞÞg ð17Þ
The threshold for a spike generation in SRM is not fixed and is
time-dependent, denoted by vth(t). A spike is generated when the
membrane potential, u(t) crosses the dynamic threshold vth(t). The
expression of spike time t(f) is given as

t ¼ tðf Þ () uðtÞ ¼ vthðtÞjt¼tðf Þ ;
d½uðtÞ�vthðtÞ�

dt ≥ 0jt¼tðf Þ
ð18Þ

A standard model of the dynamic threshold is

vthðtÞ ¼ v0th þ ∑
f2F

θðt � tðf ÞÞ

¼ v0th þ
Z 1

0
θðsÞSðt � sÞds

ð19Þ

Here, v0th is the threshold in the absence of spiking for a long
duration. The threshold potential is increased by the function θ(t)
after each output spike for t(f) < t.

In SRM, when the input is a spike train, the equation for
membrane potential u(t) is modified as:

uðtÞ ¼ ∑
f2F

ηðt � tðf ÞÞ þ∑
j
∑
g2Fj

wjεðt � tðgÞj Þ þ vrest ð20Þ

where wj is the weight of the synapse connected to the target post-
synaptic neuron through jth pre-synaptic neuron. Fj is the set of
all spike times of jth pre-synaptic neuron. The spike time of gth

spike from jth pre-synaptic neuron is denoted by tðgÞj . The
function ε(t) denotes spike response function.

Generalized LIF (GLIF). Researchers of the Allen Institute for
Brain Science proposed five Generalized Leaky Integrate and Fire
(GLIF) models by updating the baseline LIF model37. Three
primary factors that have been considered while updating the
baseline LIF model are: (i) membrane and threshold potential
reset rule after a spike, (ii) slow affecting current from Na+ and
K+ channels which have been activated during a spiking phe-
nomenon, (iii) changes in threshold potential caused by sub-
threshold potential and spikes38. Five GLIF models are found in
the literature, namely GLIF-I to GLIF-V. The details of the five
GLIF models are as follows:

GLIF-I. Basic LIF model as described in the section ”Leaky
integrate and fire model ”.

GLIF-II. GLIF-II incorporates biologically reset rule on top of the
GLIF-I. The equation for spike-induced threshold is

dθs
dt

¼ �bsθs ð21Þ
When membrane potential u(t) ≥ vth+ θs, it resets to

uðtþÞ ¼ vrest þ f vðuðt�Þ � vrestÞ � δu

θsðtþÞ ¼ θsðt�Þ þ δθs
ð22Þ

where fv is the multiplicative coefficient and a threshold com-
ponent δθs has been added after every spike to θs(t).

GLIF-III. Slow fluctuating currents for the activated Na+ and K+

ion channels for a spike have been included in GLIF-III. These
current components are modeled below as described in refs. 37,39:

dIjðtÞ
dt

¼ �kjIjðtÞ; j ¼ 1; 2; ¼ ;N ð23Þ
Like GLIF II, if u(t) ≥ vth, the membrane potential u(t) is reset to
vr and current components Ij(t) are updated as

IjðtþÞ ¼ RjIjðt�Þ þ Aj ð24Þ
where kj, Rj, and Aj are post-spike current time constant, a
multiplicative constant (typically Rj= 1) and after-spike current
amplitude, respectively.

GLIF-IV. It combines both GLIF-II and GLIF-III models. It has
both biologically defined reset, after spike current components
and a spike induced threshold potential37,39.

GLIF-V. Along with after-spike currents Ij(t)−s, and spike-
induced threshold component θs(t), a sub-threshold potential-
induced threshold variable θu(t) is defined in GLIF-V. The model
has four state parameters viz. u(t), Ij(t), θs(t) and θv(t) 37,39. When
u(t) ≥ θv+ θs, a spike is generated and state variables are updated
following the reset rule described below:

IjðtþÞ ¼ RjIjðt�Þ þ Aj

uðtþÞ ¼ vrest þ f vðuðt�Þ � vrestÞ � δu

θsðtþÞ ¼ θsðt�Þ þ δθs
θuðtþÞ ¼ θuðt�Þ

ð25Þ

where a and bu are adaptation index of sub-threshold potential
dependent threshold component and sub-threshold potential-
induced threshold time constant.

The computational complexity of the available neuron models
reported in the literature is calculated in terms of the number of
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arithmetic operations (number of arithmetic additions and multi-
plications) required in an iteration. A summary of the computa-
tional complexity of the adaptive spiking neuronmodels is reported
in Table 1.

While the number of arithmetic operations per iteration
required is often used as a proxy for computational complexity,
it’s essential to recognize that it doesn’t linearly correlate with
power consumption. Energy efficiency depends on various factors,
including hardware design, memory access patterns, and algorith-
mic optimizations.

State-of-the-art case studies with ALIF in SNN
In this section, we will discuss a selection of applications that use
the aforementioned adaptive neuron models.

The GLIF-II model has been used in refs. 15–17 to implement
STORE-RECALL, video recognition, image classification, delayed
XOR, and cognitive computational tasks. The property of SFA
through the ALIF model is exploited in the above works. On the
Google speech data-set, delayed XOR, and cognitive computation
task 12AX, authors in ref. 17 have achieved an accuracy of
90.88 ± 0.22%, 95.19 ± 0.014%, and 92.89% respectively. In ref. 15,
an accuracy of 93.7% on SMNIST and 66.7% on speech recog-
nition (TIMIT data-set) have been obtained. Bellec et al.16 have
performed a STORE-RECALL task of 1200 ms with a classifica-
tion rate of 95% in 50 iterations.

The learning algorithm used in refs. 15,17 BPTT. A learning
algorithm, called e-prop for RSNNs, which is an alternative to
BPTT is proposed in ref. 16.

Multiple spatio-temporal applications were shown in19 using
DEXAT neuron model. One of the simplest benchmarks was
done through STORE and RECALL task, where working
memory is considered as the time gap between STORE and
RECALL instructions. An LSNN consisting of 10 LIF and 10
DEXAT neurons was used for the task. The network was trained
for 200 ms with a minimum desired decision error of 0.05. The
results indicate that to achieve a working memory of 1200 ms,
τb1 and τb2 need to be 30 and 300 ms, respectively. However,
increasing τb2 to 500 ms led to an even faster convergence of the
LSNN network for the same working memory. Compared to the
working memory value with the DEXAT model, these values of
τb1 and τb2 are much smaller. However, in ref. 17 the value of
single threshold adaptation time constant τb is comparable to

working memory, which is a clear disadvantage compared to
the model19.

A system-level simulation of LSNN with DEXAT reported
classification accuracy of 96.1% on sequential MNIST (SMNIST)
i.e. converging in 30% fewer epochs to a higher accuracy. Further,
they evaluated a spatio-temporal voice recognition application
using the Google Speech Command (GSC) dataset. They had
achieved a 91% accuracy using a single hidden recurrent layer.

Using two hidden layers of GLIF-II and varying adaptation
time values for each layer,40 demonstrated an accuracy of 92.1%
on the GSC data set. In addition, the study shows the usefulness
of adaptive neurons for tasks with an inherent temporal dimen-
sion, such as the categorization of ECG wave patterns (accuracy
85.9%) and gesture recognition using a radar spectrogram.

Wade et al. 41 used a variant of adaptive LIF (Eq. (5)) for clas-
sification tasks. A supervised learning algorithm called Synaptic
Weight Association Training (SWAT), a variant of STDP, is used
here. It provides a classification accuracy of 95.3%, 96.7%, and
95.25% for Iris, Wisconsin Breast Cancer, and TI46 speech corpus
data-sets, respectively. The membrane potential dynamics of the
model used here are governed by Eq. (1).

An SNN-based computing paradigm has been proposed to
provide immunity from device variations for memristive nano-
devices in ref. 42. The neuron model used in this paper is LIF in
nature. A dynamic threshold is designed through homeostasis.
The adaptive threshold and lateral inhibition help a specific group
of neurons to respond to a particular stimulus42. The network is
tested on the MNIST data-set. It achieves a maximum of 93.5%
accuracy with 300 output neurons. A system-level simulation
shows that the designed device can tolerate parameter variation
up to 50% of the standard deviation of parameter values.

In43, Diehl et al. created An SNN with an ALIF model for digit
recognition on the MNIST benchmark. The model is a synaptic
conductance-based LIF and an adaptive threshold has been
implemented following Eq. (5). The average classification accura-
cies on the MNIST data-set of 82.9%, 87%, 91.9%, and 95% have
been achieved by the model of 100, 400, 1600, and 6400 neurons,
respectively.

Recently, Jiang et al.44 demonstrated the use of adaptive neurons
for arrhythmia detection on edge devices with a non-recurrent
SNN. In45, authors have shown the potential of adaptive neurons
used on event-based sensor data for unsupervised optical flow

Table 1 Summary of a selection of adaptive neuron models based on computational complexity

Model Membrane potential equation Adaptive threshold equation Number of arithmetic
operations required per
iteration

LIF τ du
dt ¼ RIðtÞ � ½uðtÞ � vrest� v0th fixed threshold 10

Adaptive LIF τ du
dt ¼ RIðtÞ � ½uðtÞ � vrest� vthðtÞ ¼ v0th þ∑fθðt� tðfÞÞ¼ v0thþ∑fθ0 exp� ðt�tðfÞ Þ

τθ
6F+ 10

DEXAT τ du
dt ¼ RIðtÞ � ½uðtÞ � vrest� vthj ðtÞ ¼ bj0 þ β1bj1ðtÞ+ β2bj2(t) 29

Multi-scale
adaptive threshold

τ du
dt ¼ RIðtÞ � ½uðtÞ � vrest� vth(t)=∑iH(t−ti)+ vrest 5LF+ 10

SRM u(t)=∑f∈Fη(t− t(f))þ R1
0 kðsÞIðt� sÞdsþ vrest u(t)=∑f∈Fη(t− t(f))þ∑j∑g2Fjwjεðt� tðgÞj Þ+ vrest 2NF+ 8FpN

Adaptive
Exponential
Model

τm
du
dt ¼ fðuÞ−R∑wk+ RI(t) τk

dwk
dt ¼ akðu� vrestÞ � wkþbkτk∑tðfÞδðt� tðfÞÞ 2NadF+ 7Nad+ 13

GLIF I τ du
dt ¼ RIðtÞ � ½uðtÞ � vrest� v0th fixed threshold 10

GLIF II τ du
dt ¼ RIðtÞ � ½uðtÞ � vrest� dθs

dt ¼ �bsθs 13
GLIF III τ du

dt ¼ RIðtÞ � ½uðtÞ � vrest� dIjðtÞ
dt ¼ �kjIjðtÞ;j= 1, 2,…,N 4Nad+ 10

GLIF IV τ du
dt ¼ RIðtÞ � ½uðtÞ � vrest� Ij(t+)= RjIj(t−)+Aj 4Nad+ 14

GLIF V τ du
dt ¼ RIðtÞ � ½uðtÞ � vrest� Ij(t+)= RjIj(t−)+Aj 4Nad+ 24

N is the number of pre-synaptic neurons connected to the target neuron, L is the number of the exponential kernels used to approximate threshold potential, Nad is the number of adaptation variables
used in the model equation, F and Fp are the number of spikes generated in the target neuron and connected pre-synaptic neuron respectively.
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estimation. Encoding international morse code was demonstrated
by adjusting the threshold of neurons adaptively in an SNN
through reinforcement learning46. In ref. 17, authors have
shown that SFA can help in efficient network computations for
temporally dispersed data. Using the same neuron model in ref. 47 a
sparse RSNN, based on ALIF was used successfully to extract
relations between words and sentences in a text in order to answer
questions about the text. Apart from the adaptive neuron models
discussed in the section “Description of adaptive neuron models”, a
few additional adaptive neuron models have been explored in the
literature. Details of those models and associated applications are
highlighted below.

In ref. 48, author proposed an adaptive threshold module
(ATM) for An SNN based architecture. ATM algorithm controls
internal threshold potential. This ATM is used to control output
firing rate, which helps to to extract the information encoded in
input stimulus. The model is validated on speech TIDIGITS and
RWCP data-sets.

The model is tested against Poisson spike trains for various
frequencies and lengths, TIDIGITS Speech and RWCP data-sets.
For a Poisson spike train of 300 Hz with 4000 patterns, ATM
model with two-phase classifier shows an accuracy of 96.1%. The
accuracy for TIDIGITS and RWCP data-sets are 99.5% and
97.64%, respectively.

Another variant of ALIF has been proposed in ref. 49 and has
been implemented on feed-forward SNN using STDP. The model
is validated through MNIST data-set. The maximum achieved
classification accuracy with MNIST data-set is 82%.

The selected works presented in this section are summarized in
Table- 2.

Further, a comparison of the neuron models listed in Table 2 in
terms of flop counts is provided in Table 3.

Observation: Tables 1 and 3 illustrate that the number of
arithmetic operations required to implement LIF and DEXAT
models is not the same. In Table 1, an external current injection is
assumed following the traditional approach for a single isolated
neuron; whereas in Table 3, the numbers are reported when those
isolated neurons are used together to implement a spiking net-
work, where input current is described through Eq. (3).

In the next section, we discuss hardware implementations of
adaptive neurons and highlight different simulators that support
adaptive neurons.

Hardware implementations of adaptive neurons
The integration of SFA models within hardware has progressively
manifested as a seminal approach to augmenting the efficiency of
AI hardware, with promising applications in neuromorphic
computing. Existing Commercial Off-the-Shelf (COTS) platforms,
deploying Leaky Integrate-and-Fire (LIF) neuron blocks as fun-
damental units, have seen several studies for implementing SFA
neurons in multicompartment neuron configurations31,50–52.

The recent developments in the field, such as the work by
Bezugam et al.31 have proven the feasibility of achieving
resource utilization with reduced neuron count. Further, Intel’s
Loihi-2 architecture has ventured into adding ALIF models,
heralding a promising avenue in Non-Volatile Memory (NVM)
based hardware.

Parallel to these advancements, hardware implementations of
neuron models such as Integrate and Fire (IF), LIF53–55 and
Adaptive Exponential LIF56–58 have been widely reported, encom-
passing complementary metal oxide semiconductor (CMOS).
Moreover, many designs have exploited emerging resistive memory
technologies for such implementations, such as using RRAM59,
PCM60, and CBRAM61–67. Recently, superconducting device, 2D
material-based device neuron circuits had shown SFA68,69.

Digital implementation of modified AdEx neuron models on
FPGA further amplifies the possibilities70–72. Innovations such
as73 demonstrate improvements in speed and footprint without
compromising neuronal dynamics. The utilization of quantized
versions of DEXAT neuron models19 represents another note-
worthy advancement (see Fig. 3). Notably, the integration of SFA
within FPGA has led to the development of a pre-synaptic spike-
driven architecture, which significantly reduces resource utiliza-
tion and buffer size for caching events, while maintaining accu-
rate task-solving performance74.

The confluence of these developments underlines the multi-
dimensional potential of SFA within neuromorphic hardware.
The exploration of digital circuits, analog designs, and emerging
NVM devices presents a diverse spectrum of opportunities and
challenges. The emergence of space-efficient and low-power cir-
cuits constructed with advanced 3D integration technologies
indicates the path forward.

The adoption and adaptation of SFA within neuromorphic
hardware demonstrate a forward-thinking approach in both
design complexity and efficiency. This integration harbors sig-
nificant potential not only in optimizing resource utilization but
also in paving the way for future innovations. The collaborative
intersection between various technologies and methodologies
emphasizes the vibrant dynamism in this field. As evidenced by
recent developments, the application of SFA in hardware is not a
mere theoretical prospect but a tangible trajectory that stands to
redefine the next generation of neuromorphic computing.

Simulators supporting adaptive neuron models. Various simu-
lators support adaptive neuron models for building SNN. The
function of the AdEx neuron model is based on polarizing and
hyperpolarizing currents supported by PyNN75, BRIAN276 and
NEST77. Neko78, FABLE79 and Norse80 are SNN simulation fra-
meworks based on PyTorch that enable the ALIF neuron model for
constructing Recurrent-SNN. Here, the ALIF neuron model is a
state function in which the membrane voltage and neuron
threshold are updated with every iteration. More hardware-realistic
neuromorphic circuit simulation is shown in72. While this list
encapsulates a range of simulators pivotal to SFA-based SNN
simulation, it is imperative to note that the spiking neural network
landscape is rich and continually expanding, with numerous other
simulators also playing crucial roles in advancing this field.

Different factors, along with the adaptive neuron model, that
play a vital role in accomplishing a particular task using SNN are
highlighted in the next section.

Discussion and road ahead
The preceding exploration of SFA has offered significant insights
into its principles, neuron models, applications, and hardware
implementations. As the field advances, the complexity and
potential of SFA continue to unfold, demanding innovative
approaches and broader research horizons.

In this section, as shown in Fig. 4 we identify remaining chal-
lenges (Fig. 4a) and delineate a roadmap for future research
(Fig. 4b), building upon the scientific understanding cultivated
herein. By synthesizing the current state of the field with a forward-
looking perspective (Fig. 4c), we aim to contribute a decisive and
thoughtful conclusion to the ongoing discourse on SFA.

Challenges and roadmap
Encoding techniques in SFA. Traditional spike encoders such as
Poisson43, rate-based encoding81, and population encoding17,
often struggle to capture the complex dynamics inherent to SFA,
potentially leading to information loss24,82. In the context of
biological systems, neural adaptation serves as a crucial tool for
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calibrating sensitivity across diverse intensity gradients, illumi-
nating the need for specialized SFA-based encoders designed to
emulate these biological nuances83. The issue becomes more
pronounced when translating these principles into hardware
systems. Here, temporal sensitivity to presynaptic spikes is ele-
vated within SFA-based neurons; a slight misalignment in spike
timing can result in considerable information loss, unlike in non-
SFA neurons, where pre-synaptic spike timing allows for greater
flexibility. This dilemma necessitates an exploration of dynamical
encoding schemes inspired by information theory, a venture that
could substantially reduce information attrition. The scant
existing research into the compatibility of these encoding tech-
niques with SFA-based neural networks further emphasizes the
urgent need for novel strategies. Such innovation will not only
minimize the loss of information but also expand the practical
applicability of SFA in encoding, presenting a significant frontier
in neural computation.

Learning algorithms and adaptive neurons. The deployment of
learning rules and adaptive neurons in SFA presents unique chal-
lenges, despite some recent advancements. The utilization of the
pseudo-gradient by Salaj et al.17 in BPTT and the online version of
BPTT (Eprop)33 represents a noteworthy stride towards accom-
modating SFA dynamics in learning. These developments incor-
porate adaptive thresholds but falter when the number of layers
increases significantly. With an escalation in layers, there may be
fewer spikes exhibiting SFA, rendering the employment of SFA-
based pseudo-gradient costly and less effective. Furthermore, many
properties intrinsic to SFA, such as temporal sensitivity, adaptation
to stimulus statistics, and independent firing transitions, still await
integration into learning algorithms. The ALIF17, although aligned
with certain biological properties, falls at the lower end of the
biological realism spectrum. Exploration of other neuron models,
with unique features complementing SFA, is needed. Additionally,
higher-order spike response models (SRMs) could provide
enhanced dynamics that may augment learning but require pro-
found investigation. The search for learning rules aligned with
SFAs complexities remains a challenge, necessitating innovative
algorithms to optimize adaptive neuron functionality.

In the future, research in SFA-based neuron models could focus
on how the different implementation options for SFA (intrinsic
changes of the spiking threshold vs. inhibitory input vs. short-term
synaptic plasticity), including their different time-scales, affect the
coding properties of a network. Hence, investigate if some motifs
are more suitable for certain computations than others. In addition,

it would be interesting to investigate how adaptation propagates
across layers, which would help in understanding how SFA
occurring in one brain region affects the computation in its
downstream regions.

Network architecture and connectivity. Recent studies underscore
the complexity and potential advantages of integrating diverse
neuron types within an RSNN84, reflecting the intricate interac-
tions present in biological networks17,19. The introduction of
sparsity into networks can lead to challenges with SFA-based
neurons, as the heavily decreased input firing may conflict with
the unique properties of these neurons. This raises both potential
benefits and problems in terms of information processing and
network efficiency. Consequently, the careful selection of the
location of SFA neurons within the network becomes an essential
criterion. Notably, the regularization of the firing rate of output
neurons in unsupervised SNNs, such as through homeostasis as
seen in the work of Diehl and Cook, highlights that even before
SFA-based networks were prevalent, there were instances of
support for multiple neuron types42,43. Exploration into graph-
based Hopfield networks for combinatorial optimization offers a
promising avenue, as evidenced by the recent demonstration of a
thermal neuron exhibiting SFA behavior85. However, this field
remains largely under-researched. The challenge, therefore, lies in
systematically understanding and capitalizing on the unique
dynamics of SFA, considering architecture design, optimization
strategies, connectivity schemes, and the nuanced interplay with
sparsity.

Hyperparameter tuning andmathematical complexity of SFAmodels.
The hyperparameter tuning of SFA models poses a complex pro-
blem, demanding an intricate balance between biological formalism
and computational efficiency. The grid-based search methods
typically employed may fall short in such complex scenarios. An
exploration of advanced optimization techniques, such as Bayesian
optimization or gradient-based optimization, is suggested as a
possible avenue for more intelligently and efficiently navigating the
parameter space specific to SFA models. Systematic ablation studies
could enhance this process by elucidating the effects of individual
parameters and their interactions, potentially leading to a deeper
understanding of hyperparameter significance. The computational
cost of implementing adaptive neurons in SFA, especially when

Table 3 A comparison of the neuron models in terms of
computational complexity

Model Number of arithmetic operations
required per Iteration

LIF 2N+ 6
Wade et al.41 2N+ 12
Querlioz et al.42 2N+ 11
Amin48 4N+ 4
Liu et al.49 8NF+ 12
Diehl et al.43 6F+ 22
Salaj et al.17 Bellec et al.15,16 2N+ 17
Shaban et al.19 2N+ 25
Yin et al.40 2N+ 18
Vallés et al.45 11NS−1
Rao et al.47 3N+ 19

N is the number of connections to the target neuron, F is number of spikes produced by the
target neuron in an observation interval, and S is the number of synapses between a connected
pre-synaptic neuron and the target neuron.

Fig. 3 Power vs. area comparison for various realizations of adaptive
neuron models. DEXAT neuron threshold circuit (digital, NVM based)19,
AdEX94, Mihalas-Niebur95 analog CMOS adaptive neuron circuits. NVM
non-volatile memory, SFA spike frequency adaptation.
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involving higher-order synapse models like SRM, adds to the
mathematical complexity. Innovative algorithmic refinement and
numerical approximations tailored to SFA’s unique characteristics
are proposed as potential solutions, though further research is
needed to confirm their effectiveness. Developing methods that
capture essential dynamics without unnecessary computational
overhead, specifically aligned with the nonlinear and stochastic
elements of SFA, maybe a productive direction for reducing arith-
metic demands. These suggestions represent possible paths for
enhancing the adaptability and efficiency of SFA models but require
rigorous testing and validation to determine their actual impact and
viability.

Integration and hardware compatibility. Implementing SFA in
contemporary digital and hybrid systems poses a nuanced chal-
lenge. In prevailing COTS neuromorphic computing platforms,
LIF neurons are prevalent, often symbolizing a less biologically
plausible approach. Though SFA can be attained using multi-
compartment LIF neurons31,52, this methodology might hinder
efficiency in certain contexts. Striking an optimal balance between
speed, footprint, and neuronal dynamics is an area demanding
intensive exploration. The inherent challenges with analog cir-
cuits and scalability, particularly in analog circuit-based neurons,
present substantial hurdles. Techniques focused on minimizing
resource consumption through pre-synaptic spike-driven archi-
tecture may warrant comprehensive investigation to align with
the progressing requirements of neuromorphic computing. This
can significantly decrease the memory access. It’s important to
note that many state-of-the-art implementations utilize syn-
chronous software models. However, asynchronous processing
can potentially lead to further energy savings and computational
advantages in SNNs. Future work may explore the integration of
asynchronous mechanisms within these models to better align
with biological neural systems

The advent of emerging technologies and the research in
volatile resistive memory devices offer a promising frontier for
the area-efficient development of adaptive neurons on analog
hardware86,87. This approach can obviate the need for large
capacitors, allowing the adjustment of time constants based on

programming current, thus playing a crucial role in tuning the
adaptation time constant for RSNNs.

The coming era may well witness robust advancements
supporting SFA-based neurons, fostering a vibrant nexus between
biological realism, technology, and emergent computational
paradigms. However, the pathway is fraught with complexities
related to scalability and the inherent challenges with analog
circuits. The integration of these technologies may signify an
essential step in enhancing the biological veracity and computa-
tional capacity of neuromorphic systems.

Future opportunities
Sustainable AI acceleration through emerging NVM devices
exploiting SFA. A compelling avenue for future exploration lies
in the convergence of SFA and emerging NVM technologies to
propel the development of next-generation, sustainable AI
hardware. Notably, recent research19 has demonstrated that the
nonlinear conductance changes intrinsic to NVM devices can be
harnessed as a mechanism for threshold adaptation in SFA
neurons. By capitalizing on this synergy, AI hardware can
tap into the inherent adaptiveness of SFA to dynamically
modulate neural responses. The programmable threshold
behavior, facilitated by NVM’s non-linear conductance change,
aligns seamlessly with SFA’s temporal sensitivity. This tandem
approach not only enhances energy efficiency by eliminating the
need for static threshold levels but also fosters inherent fault
tolerance, mitigating variations in NVM devices. Furthermore,
the incorporation of SFA-based NVM hybrid systems holds
promise for constructing highly efficient memory and energy
architectures. The adaptability of SFA can enable selective
information filtering, thereby minimizing memory access and
bolstering resource efficiency. NVM’s natural properties, inte-
grated with SFA, pave the way for optimized AI accelerators
that balance performance, energy consumption, and memory
utilization.

Real-time adaptation in dynamic environments. SFA’s intrinsic
ability to prevent neural saturation ensures that SNNs remain
sensitive to fluctuating environments. For critical real-time

Fig. 4 An Integrated Overview of SFA in Neuromorphic Computing. The diagram unveils a the multifaceted open challenges yet to be thoroughly
addressed for fully leveraging the merits of SFA, b outlines a methodological roadmap for the progressive development of SFA, and c pinpoints the
promising avenues and untapped potential for future research and innovative applications.
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applications such as autonomous vehicles and robotic systems,
the incorporation of SFA may offer novel strategies for achieving
both instantaneous adaptability and long-term stability. This facet
of SFA could lead to groundbreaking advancements in real-time
decision-making algorithms and adaptive control systems.

Continuous learning and temporal feature extraction. The inclu-
sion of adaptation in neuron models through SFA introduces
longer time constants that may significantly aid in learning
temporal features of the input. By exploiting the extra available
time scales, the network can enhance online learning convergence
time and provide a more nuanced understanding of temporal
dynamics. This could foster advancements in speech recognition,
time-series prediction, and online learning systems, where tem-
poral relationships are essential.

Enhanced robustness against adversarial attacks. Recent studies
have underscored the inherent resilience of SNNs to specific
adversarial perturbations88–91. The selective responsiveness of
SFA to changes in input layers, acting as a form of firewall, could
further amplify this robustness. This opens avenues to develop
advanced defenses against adversarial attacks and contributes to
the fortification of network security. Implementing SFA in robust
models may lead to novel mechanisms to mitigate threats in
cybersecurity.

Regularization and meta-learning. SFA’s ability to adapt to input
frequency could serve as a form of regularization, potentially
preventing overfitting in deep learning scenarios. In the context of
meta-learning, where catastrophic forgetting is a significant
concern92,93, SFA’s adaptive thresholds may enable the network
to discern underlying patterns across different tasks. This adap-
tation process may play a vital role in solving complex meta-
learning challenges, including multi-modal learning and cross-
domain adaptation, thereby aligning with advanced research
directions.

The exploration of synergies between SNNs, SFA neurons, and
NVM technologies presents intriguing possibilities. While still at
an experimental stage, the future opportunities discussed offer a
glimpse of potential pathways that could contribute to more
efficient, robust, and adaptive AI systems. These innovations
might shape the next phase of computational intelligence, yet
their realization will depend on sustained research, collaboration,
and a keen understanding of the complex interplay between these
cutting-edge technologies.
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