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A digital twin approach for experimental acoustic
hologram optimization

Tatsuki Fushimi® 2® Daichi Tagami3, Kenta Yamamoto3 & Yoichi Ochiai24

The need for the accurate generation of acoustic holograms has increased with the pre-
valence of the use of acoustophoresis methods such as ultrasonic haptic sensation, acoustic
levitation, and displays. However, experimental results have shown that the actual acoustic
field may differ from the simulated field owing to uncertainties in the transducer position,
power and phase, or from nonlinearity and inhomogeneity in the field. Traditional methods for
experimentally optimizing acoustic holograms require prior calibration and do not scale with
the number of variables. Here, we propose a digital twin approach that combines feedback
from experimental measurements (such as a microphone and an optical camera) in the
physical setup with numerically obtained derivatives of the loss function, using automatic
differentiation, to optimize the loss function. This approach is number of transducers times
faster and more efficient than the classical finite difference approach, making it beneficial for
various applications such as acoustophoretic volumetric displays, ultrasonic haptic sensa-
tions, and focused ultrasound therapy.

Tnstitute of Library, Information and Media Science, University of Tsukuba, Kasuga Campus Kasuga 1-2, Tsukuba 305-8550 Ibaraki, Japan. 2R&D Center for
Digital Nature, University of Tsukuba, Kasuga Campus Kasuga 1-2, Tsukuba 305-8550 Ibaraki, Japan. 3 Graduate School of Comprehensive Human Sciences,
University of Tsukuba, Kasuga Campus Kasuga 1-2, Tsukuba 305-8550 Ibaraki, Japan. # Pixie Dust Technologies, Inc., Misakicho 2-20-5, Chiyoda 101-0061
Tokyo, Japan. ®email: tfushimi@slis.tsukuba.ac.jp

COMMUNICATIONS ENGINEERING | (2024)3:12 | https://doi.org/10.1038/s44172-024-00160-0 | www.nature.com/commseng 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00160-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00160-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00160-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s44172-024-00160-0&domain=pdf
http://orcid.org/0000-0003-3944-0014
http://orcid.org/0000-0003-3944-0014
http://orcid.org/0000-0003-3944-0014
http://orcid.org/0000-0003-3944-0014
http://orcid.org/0000-0003-3944-0014
mailto:tfushimi@slis.tsukuba.ac.jp
www.nature.com/commseng
www.nature.com/commseng

ARTICLE

COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-024-00160-0

three-dimensional acoustic field and encodes the complex

wavefront via amplitude and phase specification at each
point in the field. Recent advances in mid-air ultrasonics, such as
ultrasonic haptic sensation!2, acoustic levitation3-%, and acoustic
streamings®’, along with display technologies®-11, have heigh-
tened the demand for precise acoustic holograms capable of
generating multiple foci from a single devicee A number of
acoustic hologram optimization techniques have been proposed,
including Gerchberg-Saxton!>~14, Eigensolver and Tikhonov-
regularization?, machine learning methods!*16, direct solvers!?,
and greedy-type solvers'®. In 2021, we demonstrated an auto-
matic  differentiation approach to acoustic hologram
optimization!®20 and exhibited good accuracy with the applica-
tion of automatic differentiation and the Adam optimizer in
simulation.

While these numerical approaches use simulated values to
optimize acoustic fields, a number of experimental results suggest
that the acoustic field in reality is offset from the numerically
simulated field>321-23, These offsets could emerge from simple
uncertainties in the transducer position, power, and phase, or
could emerge from non-linearity, inhomogeneity, or the existence
of other scatterers in the field. Recent advances in computational
modeling have begun to enable the inclusion of complex non-
linear fields produced by acoustic holograms?4, or complex fields
with scatterers in the field®2°. However, it is still computationally
expensive and cumbersome to include nonlinearity, and experi-
mental deviations are susceptible to minor changes in the
environment. This renders the attainment of experimentally
accurate gradients; a challenging endeavor.

Some attempts have been made to experimentally optimize
acoustic holograms®23:26. For example, the offset of equilibrium
points could be addressed by calibrating the focal points with the
equilibrium position of the levitated particles26, or by the com-
bination of a gradient descent algorithm and experimentally
obtained finite differencesS. While these optimizers are effective
in achieving their targets, they require prior calibration, or
experimental finite differences that do not scale well with the
number of variables. These experimental deviations are known to
cause performance degradation in the practical applications of
acoustic holograms®?224, and there is an increasing need for
better and more efficient approaches to optimize acoustic holo-
grams in experiments. This will ultimately help to improve the
haptic quality in ultrasonic tactile displays, improve the graphic
generation capabilities of acoustophoretic volumetric displays,
and improve the positioning accuracy in the potential application
of acoustic levitation. Where the current system needs to accept
the experimental deviation or collect a significant amount of data
to collect the deviation; this method has the potential for appli-
cation in practice.

Herein, we propose a digital twin approach for optimizing the
acoustic holograms, as shown in Fig. 1, with the aim of mini-
mizing the difference between the target and experimental states
with a minimal number of measurements per step. A digital twin
serves as a comprehensive virtual model designed to accurately
emulate a corresponding physical entity. Recently, this concept
has been extended to the field of acoustics as a tool to enhance
structural health monitoring in engineering systems2’~2%,
Experimental measurements in situ (physical setup) can be fed
back into the loss function of the optimizer, and the digital model
of the experimental setup is then used to obtain the gradient of
the loss function with respect to each variable using automatic
differentiation. Because the gradient of the loss function is
approximated numerically from the digital model, there is no
need for the experimental finite difference algorithm. Thus, the
optimizer will complete its optimization at least the “number of

The acoustic hologram is a two-dimensional encoding of a

variables” times faster than the classical finite difference
approach. Digital twin optimization is highly beneficial in phased
array transducers (PAT) applications because the number of
transducers is in the magnitude of 102-103 (i.e. up to 103 times
faster). Considering the fact that the optimization is performed
iteratively, this causes a significant enhancement of the perfor-
mance and efficiency. Such methods that are used to connect
experimental to digital models have been proven to be effective in
machine learning®” and optics3!; the application of this method
in the acoustic hologram could be beneficial in the practical
application of acoustics. In addition, we present insights into
digital twin optimization such as “experimental optimization of
iteratively calculated variables” and “design principles of loss
functions in the experimental optimization with digital twin”,
which are highly relevant in machine learning and the optics field
as well.

The core of the optimization algorithm is the Diff-PAT; an
acoustic hologram optimization method based on automatic
differentiation demonstrated by Fushimi et al.!%. The initial guess
of the acoustic hologram is updated iteratively using the Adam
optimizer based on the differentiated loss value with respect to
each phase of the transducers. Given the loss function, L/(6,), the
Adam optimizer iteratively updates the initial guess of the vari-

ables (6,) by

m
0.=0  —q —»t
t t—1 o \/f7t+€ (1)

where 0 is the optimization variable, and subscript ¢ is the step
N v ~ m
number. ¥, = 1,—135» m, = 1,—;;;> ve=By v+ (=B, g

my=py-my_1+(1—P1) - g and g, = %. Here, o is the step
size/learning rate, $;=0.9, ,=0.999, and e=1x10"7 are
exponential decay rates for the moment estimates. We adjusted
the learning rates depending on each application, and the used
value was specified within each case.

As shown above, the Adam optimizer only uses the derivative
of the loss function (L,(6;_;)) to update the parameters. Naturally,
the question arises on “how can it know which way to descend to
in the experiment when it only uses a gradient that is numerically
obtained?” In a nutshell, we design the loss function such that
“the experimentally obtained states carry over to the derivative of
the loss function”, and when it does, “the gradient near the target
state is steep”. Thus, when the loss function is properly designed;
the Adam optimizer determines the minima at the target state in
the experiments.

For example, a loss function could be specified as
L6,_,)=(T—- feXP(Gt_l))z, where T is the target value (i.e. target
acoustic pressure, phase, or equilibrium position), and subscript
“exp” means experimentally obtained. We define the gradient to
be given by é—éi =-2T - fexp(et,l))% with subscript
“num” denoting a numerically obtained value. Thus, the experi-
mental optimum point naturally becomes the destination of the
Adam optimizer. The optimization target can be anything that
can be physically measured and predicted in in-situ optimization.
In this study, we demonstrate the optimization of the (i) acoustic
pressure and (ii) equilibrium position to demonstrate the rele-
vance of digital twin optimization in PAT and acoustic holograms
in general. Finally, we discuss the design of the loss function in
the discussion section.

First, we describe digital twin optimization for the acoustic
pressure field. We use PAT as described in the “Methods” section,
and it takes phase-only acoustic holograms (operates in phase-
only A mode hologram). As in Fushimi et al.20, we begin by
defining a suitable loss function for the phase-only (A:i),
amplitude-only (A:i), and phase and amplitude (Auiii)
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Fig. 1 In-situ optimization with digital twin. Acoustic hologram, i.e. the phase delay specification for each transducer is passed on to both the experimental
setup and numerical model. Both propagate the hologram in the experiment and numerical simulation. The optimization targets can be anything that can be
physically measured and modeled. The experimental measurements can be made via various instruments such as cameras, microphones, or laser Doppler
vibrometers. After obtaining the experimental measurements, the difference between the experimental measurements (y.,,) and target (yiarget) is fed into

Youm

the loss function along with the derivative of the numerical model ( prs

accordingly using stochastic gradient descent algorithms.

optimization:

L(¢,) = [(Ac cos . — AP cos((/);"P))2 + (A sing, — AP sin(qb;"f’))z] ,
2

where A, and ¢, are the target pressure amplitude and phase, and
ATPCx, %, ¢) = 1P (%, X1, )| + GPegy — 1P (%, X1, ¢)D)  and
¢y’ = arg(pin(x; X, $1)) + Gy, — arg(pin(x, %, ¢,))) are  the
substituted pressure amplitude and phase, respectively. The
substituted pressure amplitude allows the automatic differentia-
tion package (in this case TensorFlow) to track the gradient of the
function, whereas the inside of function G() is untracked by the
package (achieved by e.g. tf.stop_gradient() in TensorFlow). We
note that this process does not act as mathematical operators, and
only serves a functional purpose to introduce foreign variables to
the computational graph of TensorFlow. As in Fushimi et al.20,
A.=1 was set for A:i and ¢. =0 was set for A:ii.

The experimentally obtained values (such as pey, and ¢ep,) are
obtained using a calibrated pressure microphone (B&K Type 4138-
A-015, pressure sensitivity p™i< = 1.0mV Pa™!), as detailed in the
“Methods” section. Twenty target phases and amplitudes were set
with a constant focal point, x = (0, 0,0.04) m. The phase linearly
increased from 0 to 27, and the amplitude increased linearly from
10% t0 90% Of Prax- Pmax Was set as the pressure amplitude with a
single focus point in the numerical simulation. The maximum
iteration number was set to 100. The experimental measurements
and optimizations were repeated three times (S = 3) to obtain the
mean and standard deviation of the pressure and amplitude. The
statistical analysis was performed on Matlab R2022a. The mean

S s s
= arctan (M) where @eas 18

phase was obtained by ¢ S

mean
the measured phase.

We can also apply the in-situ digital optimization for the equi-
librium position of the levitated particle. While the acoustic pres-
sure field can be calculated easily using Huygens’ approach, the
determination of the equilibrium position requires the balancing of
the acoustic radiation force and gravity. This calculation requires a
root-finding algorithm that iteratively updates its guess. Here, we
use the single-axis acoustic levitator (2 SonicSurface arrays sepa-
rated by a distance of 0.215 m). The target equilibrium shape was
set as a circle with radius r=3 mm, where nth focal point is

) determined via automatic differentiation. The solutions are then updated

calculated by x}"" = (0, rsin(rr 4+ Z2),0.0119 +r + r cos(m + Z2)),
with n€{0, 1,...,28}. While it is possible to optimize the equili-
brium position from the acoustic hologram as in pressure field
optimization, the levitation conditions are not necessarily guaran-
teed for all possible phase combinations. Thus, the optimization
variable was constrained to known stable solutions using a single
focal point and twin trap*:
¢t = q'l)focal + (ptwin’ (3)

where ¢y = — ZZ o[d(x}", x,) — d(x,, x}’")], and @yin are 0 and 7
for the bottom and upper arrays, respectively. x; is the origin (0,0,0)
of the array which is the centre of the 16 by 16 PAT, and on the
surface level of the transducers. The single focus is calculated such
that the acoustic signal from each transducer meets at the focal
point simultaneously. As in a previous study$, the target shape was
specified using the focal points, and the equilibrium positions were
recorded (waited 2.5 s after sending the commands to PAT for the
steady state) using optical methods as described in the “Methods”
section.

For a spherical particle in the Rayleigh regime (r<<A), the
acoustic radiation force was calculated using Gor’kov32-33:

g o 4m o,
F}’ ——?av
F

z

R P 9) — 5 Rel oy a5 )7

4)

where f, =1—kand f, = %. K :% and p = Zf. Subscript 0

and p represent the surrounding media and particle property, and
K= ﬁ where p and a are the density and radius of the sphere,

o)
Moreover, the particle properties were arbitrarily set as
a=0.7mm, p,=40kgm~3, and ¢, =900 ms~ L.

To determine the numerical equilibrium position, a root-
finding algorithm (Newton gradient descent) was used?®:

respectively. v;,(x, ¢,) = is the acoustic velocity field.

X = xS ! [Fx,Fng} )
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total z force, and equilibrium position, respectively. The root-

finding algorithm was executed until the delta between the cur-
rent and the previous step was below 0.1 mm.

At this point, the numerical model can be integrated into the
digital twin; however, this model is computationally very expensive.
Inspecting the calculated equilibrium position reveals that the
mapping from the focal to equilibrium point is simple?®, and as
simple as two sets of polynomial functions. To fit the polynomial
functions to the equilibrium position, the equilibrium positions in
the region of interest (ROI); —A<y<A and —-A+r.<z<A+r.
were calculated with a step size of ’% r.=10.119 is the vertical offset
of the numerical simulation to set the ROL Then, the polynomial
function was fitted to the data set using the Matlab curve fitting
toolbox (version 3.7); x) = a, + alx}' + uzxjf where ag,a; and a,
are 7.367 x 10712, 0.9981, and —6.962 x 10719, respectively. x* =
by + byx] + byxi + by(x)’ + byxlxz where by, by, by bs, by
are —1.524x 1074, -2.934x 108, -1.000, —1.143x 1072,  and
—2.343x1077. The r-squared goodness of fit was 0.999 for
both cases.

This significantly simplifies the numerical model, guarantees
stability within the ROI, and reduces the number of optimization
variables. Similarly to the pressure field optimization, the loss
function was set as L = \/ 5. — 130 + (2. — 25F) where y,
and z are the target positions in the y and z axes. y;® =
PACHA . XF) + Gy — PACA ,x7)) and zp " = xZ(x] 2 X5) + Gz —
xﬁ(x;,xf)) are the substituted experimental equilibrium points.
The maximum iteration number was set to 25.

where | = ,F8 = F, — mg, x. is the Jacobian matrix,

Results and discussion

Pressure field optimization. The results for the A:i, A:ii, and A:iii
optimizations are as shown in Fig. 2a, b, and ¢, d, respectively. As
shown in Fig. 2a-d, the phased array perfectly achieves target-
optimized states in optimal conditions, i.e. numerical simulation
(red crosses). The performance of the optimizer in the numerical
simulation is evaluated by the mean square of error (MSE) for
both phases and amplitude. The MSE phases are 3.16 x 10~13 and
3.17 x 10713 for A:i and Atiii, respectively. The amplitude error is
also low with 1.79 x 1076 and 2.50 x 107¢ for A:ii and Auiii,
respectively.

The numerically optimum solution works well for target phase
optimization in experiments, and the experimental value closely
achieves the target as shown in Fig. 2a and c. The experimental
phase error, measured in MSE are 5.43 x 103, and 4.81 x 1073
for A:i and Auiii, respectively. The employment of the experi-
mental optimization reduces the error to 3.23x10™% and
3.08 x 1073, respectively, for A:i and A:iii. However, because the
numerical optima performs well in the first place, the improve-
ment is minor and the error reduction rate (measured by the ratio
between experimental and optimized MSE) is only approximately
16.8 and 1.56 for A:i and A:ii, respectively.

However, the numerically obtained optimum solution does not
apply well for amplitudes in the experimental condition as shown
in Fig. 2b and d. The pressure amplitude error measured in MSE
is 1.41 x 10° and 1.46 x 10° for A:ii and Aciii, respectively, in the
experiment. By the employment of experimental optimization,
the pressure error reduces to 89.2 and 423 for A:i and Auiii,
respectively. The A:iii optimizer consistently performs worse than
the counterparts such as A:i or A:ii, and this is attributed to the
fact that the loss function is more complex than optimizing for

either parameter. The error reduction rate is 1580 and 345 times
for A:ii and Auiii, respectively. The results are summarized in
Table 1.

One of the potential causes of the experimental deviation is the
nonlinearity of the field. Nonlinearity of the field is not only an
issue in mid-air ultrasound but also from measurements to the
practical application of audible acoustics in mid-air343>. The
generation of higher harmonics has been discussed as a potential
issue by Andrade et al.2! and it has also been reported to cause
issues in underwater acoustics?4. Figure 3 shows the measured
nonlinearity from the non-optimized field, and Fig. 3a shows that
the second harmonics generation (F2) grows as the target
amplitude increases. However, the total harmonic distortion

VE)
CFo)
the nonlinear effects are present, it does not fully explain the
experimental deviation.

Despite the nonlinearity and unknown cause of the experi-
mental deviation, the digital twin optimizer still determines the
acoustic holograms for the desired outcome. The in-situ
optimization of the pressure amplitude is directly applicable in
HCI applications (ultrasonic haptic sensation, displays, acoustic
streaming), medical applications where the nonlinear and
complex media is present in the propagation media, or additive
manufacturing where scattering conditions are constantly chan-
ging. In-situ optimization can easily be scaled to implement
multi-point optimization, and the benefit of in-situ optimization
is enhanced with the number of optimization variables and
targets. In such cases, the experimental measurements may still
become the bottleneck in the optimization process, and efficient
measurement methods based on optics (for e.g. schileren® or the
laser Doppler vibrometer’”) may be better suited for faster
optimization.

decreases with the increased target amplitude. Thus, while

Equilibrium point optimization. The results are as shown in
Fig. 4, and the unoptimized focal point does not approximate the
equilibrium position (root mean square error (RMS) error of
0.442 and 0.154 mm); the optimization process is required.
Digital twin optimization was performed with the Adam opti-
mizer (learning rate =5 x 10™4), with the initial solution set as
the target focal point (q=0). For subsequent optimization
(g £1), the initial guess was set to the optimized focal points from
the last target. The optimizer was iterated for 25 steps, and the
results are as shown in Fig. 4a. After the experimental optimi-
zation, the RMS error dropped to 0.105 and 0.057 mm for the y
and z axes, respectively, significantly improving the positioning
accuracy of the acoustic levitator, as shown in Fig. 4b.

Where previous methods?® required a calibration map (which
typically requires many hours to measure), this in-situ optimizer
achieves equivalent performance (RMS of 0.11 and 0.030 mm for
horizontal and vertical axes, respectively, for methods with prior
calibration26) without the calibration map. Thus, this could be
used to improve the image quality in acoustophoretic volumetric
displays or improve specimen positioning accuracy for diagnos-
tics/analytic purposes38-40,

Designing the loss function. In-situ optimization has been
demonstrated previously in machine learning and optical sys-
tems; however, the design of the loss function itself has not been
discussed in depth. The design of the loss function is the most
critical in achieving a successful experimental optimization with
the digital twin. This is because we do not identify any derivatives
via experiments. The loss function needs to be designed such that
the experimental values are passed on to the optimizer; otherwise,
the optimizer will only find the numerical optima. This could be a
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Fig. 2 Comparison of pressure field with various test conditions. Numerical optimization only, experimental measurements of the numerically optimized
solution, and experimentally optimized value are shown by a red “x', a blue line with standard deviation, and a green dotted line with standard deviation
(sample size of 3), respectively. a A:i (phase only hologram with target phase optimization) configuration with its phase performance, b A:ii (phase only
hologram with target amplitude optimization) configuration with its amplitude performance, ¢ Atiii (phase only hologram with target amplitude and phase
optimization) configuration with its phase performance and d amplitude performance in Atiii configuration. The black line indicates the target for each

instance.

Table 1 Summary of phase and amplitude performance measured in mean squared error (MSE).

Metric Category Numerical Experimental Optimized Improvement
Phase Aii 316x10-1 5.43x10-3 3.23x10°4 16.8

Phase Aviii 317%x10°1 4.81x10-3 3.08x1073 1.56
Amplitude Acii 1.79x10-° 1.41x 105 89.2 1580
Amplitude Atiii 2.5x10-6 1.46 x10° 423 345

Improvement measured by taking the ratio between experimental and optimized MSE.

potential pitfall for the future of experimental optimization with
the digital twin, and we will present an example where such a
design may be critical.

We set a toy maximization problem where figeq(x) = —x%, and
the experimental deviated function, fo,(x)= —(x—10)? (see the
section “Data availability” for the codes). A simple loss function to
obtain the maxima of the function is; Li(x) = —figea(x), Ly = —
Jexp(x). Trivially, the solution is x = 0, and x = 10 for the ideal and
experimental case, respectively. We then convert the loss function
to include the experimental data and preserve the automatic
differentiated value; Lz = —(figeal(x) + G(fexp(x) —fidear(x))). We
solved the L; with the Adam optimizer (learning rate = 0.05,

iteration number of 3000), and obtained the mean optimal points
by repeating the optimization 100 times with random initial values
between -2.5 and 22.5 (i.e. center at 10).

When such optimization is performed, the function converges
only to the numerical optima (x=0). This is because the
differentiated loss function does not carry any information
regarding the experimental states, and cannot descend to the
experimental maxima. Thus, for a function to be maximized, the
loss function needs to have a steep gradient near the maxima, and
still have a term f(x) when d1fferent1ated

One such function is —4 or L,(x)=logf(x) =

a perfect

108 gea (%) + G{f oy () — figeu (V) ‘fhls is not
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Fig. 4 Results of equilibrium position optimization. a Shows the absolute
position of the target (black), experimental results without optimization
(blue), and with optimization (orange). The error bar indicates the standard
deviation (sample size of 3). b Shows the root mean square (RMS) error of
the trajectory for each axis with and without optimization.

maximization function, because (1) the value does not reach the
optima when it starts from the left-hand side of optima, (i.e.
x <10 the returned solution has a mean of x = 0.300, with a s.t.d.
of 1.22, number of instances 54/100) and (2) the solution could be
NaN out depending on the initial value; however, the solution
improves to a mean of 8.32 (std: 0.491, number of instances 41/
100), given a good initial guess (x = 10). Further study is required

to identify more suitable loss functions, but this knowledge
should be helpful in the future applications of in-situ
optimization.

Measurements methods. The acoustic pressure field can be
measured via a wide range of methods, from the classical use of a
pressure microphone, optical methods (LDV37, Schlieren?,
PIV4!), to thermal methods!242, If calibration is properly per-
formed, experimentally determined values from these methods
can be directly substituted into the digital twin workflow. Thus,
non-contact and remote measuring methods could be employed
in the future to minimize the effect of scattering from the
microphones. However, if not calibrated, it is more challenging to
implement it back into the digital twin workflow, and its func-
tions may be limited to ‘minimize’ or ‘maximize’ the pressure
field with respect to the normalized values.

Conclusion

In conclusion, we presented an in-situ optimization method of
the acoustic hologram with a digital twin. This optimizer
obtained the experimental measurements and optimized the
hologram using experimental measurements and numerical
gradients. We demonstrated two approaches for the measure-
ments (microphone, and camera), and two approaches for the
modeling (i.e. direct numerical model, and polynomial approx-
imation). Both methods were successful in improving the per-
formance of the hologram, and up to 1580 times improvements
were recorded in terms of pressure amplitude optimization.
Furthermore, the experimental optimization was performed by
measuring once per step, which significantly reduced the number
of measurements needed in the experimental setup. This opti-
mization method, along with the design philosophy for the loss
function will be directly helpful in improving the performance of
the practical application of PAT such as acoustophoretic volu-
metric displays, ultrasonic tactile displays, and mid-air acoustic
levitation.

Methods
Pressure calculation. The complex pressure at a specific point (x)
generated by PAT is calculated by

L Py (kd(xx,)+,)
. — XXt t 6
Puli) = 5 ot D (@

6 COMMUNICATIONS ENGINEERING | (2024)3:12 | https://doi.org/10.1038/s44172-024-00160-0 | www.nature.com/commseng


www.nature.com/commseng

COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-024-00160-0

ARTICLE

where Py is the transducer power at 1 m, d(x, x;) is the Euclidean
distance between the transducer position (x,) and the specified

position (x). D(n) = %ﬂs:nﬂq)

piston source. k = % is the wavenumber, with f=40kHz and

is the directivity function for a

co=2341ms L

We employed a phased array made of 256 transducers of a
lcm diameter, operating at 40kHz (Manorshi, MSO-
P1040HO7T, P,=P,V,, where P,=031PaV~! at 1m, and
Va =75V is the actuated voltage) and we referred to SonicSurface
for details regarding the signal generation for each transducer)*3.
The transducers are arranged in a 16 x 16 square flat grid. A field-
programmable gate array (FPGA) (EP4CE6E22C8N—ALTERA
IV Core Board, Waveshare) generates the control signals
multiplexed into 8 channels per output pin; shift registers
(74HC595, TT) demultiplex the pin signal into 8 channels, and the
channels get amplified by drivers (MIC4127 from MT) up to a 20
peak-to-peak voltage. The signals to be generated are sent by a
computer to the FPGA using UART at 230,400 bps, enabling the
update of the emission phases at 190 times per second. The phase
resolution was 32 divisions per period. The transducer power
coefficient was measured by taking the average of 10 transducers,
and the microphone was oriented such that the microphone
pointed towards the PAT.

Experimental pressure field measurements. The calibrated
microphone was connected to the conditioning amplifier (B&K
Type 2690), and the output voltage was recorded using the USB
oscilloscope (TiePie Handyscope HS5). The captured data were
converted from voltage to pressure amplitude based on the cali-
bration data, and the FFT was obtained to determine the
amplitude and phase at the fundamental frequency (40 kHz). The
reference for the phase was set as the clock signal from the FPGA
board. The microphone was attached to the XYZ stage (Con-
troller: OptoSigma SHOT-304GS, Stages: OptoSigma OSMS20-
85, OSMS26-100, OSMS26-100) to accurately control the position
of the microphone, as shown in the Supplementary Fig. S1. The
stage commands were sent via Serial communication (baud
rate =9600) using the pyOptoSigma package (https://github.
com/kenlrow/PyOptoSigma). The optimization scheme was
implemented in Python (ver 3.10.7) and codes to fully recreate
the setup were made available as shown in the “Data availability”
section (TensorFlow version 2.10.0). The Adam optimizer was
used, the learning rate was 0.05, and the optimizer was iterated
100 times. Experimental measurements and optimizations were
repeated three times to obtain the average performance, its
standard deviation and mean squared error.

Experimental measurement of equilibrium position. The
experiment was conducted on top of an optical table (Thorlabs
B90120A, SDP90120), and the equilibrium position was captured
by a USB-C high-speed camera (Photron INFINICAM UC-1)
with a Nikon F-to-C Mount Adaptor (Kenko Tokina) and a
single-focus lens (Tamron SP AF180mm F/3.5Di), as shown in
Supplementary Fig. S2. We used a parallel light source (LED
Tempo, IPS-FPP150150-IF15) for background illumination,
which provides uniform light intensity across its entire area. The
camera then captured the particle’s silhouette to accurately
determine its position. A CMM-stylus (RENISHAW A-5000-
7557) was attached to the aforementioned XYZ stages to obtain
both the pixel-to-mm conversion rate (1.408 x 10~> mm pix 1)
and datum point. The camera was operated through Python SDK
(pypuclib  (https://github.com/infinicam/pypuclib)), and the
equilibrium position and camera calibration was identified using
the hough circle transform on OpenCV (version 4.6.0).

Utilization of generative Als in manuscript. The authors
employed OpenAl's ChatGPT (GPT-4) for the generation of
certain sections of the manuscript and abstracts. Subsequently, we
meticulously reviewed and verified the output to ensure its
accuracy and relevance to the subject matter.

Data availability

The data that support the findings of this study (experimental data) are openly available
in Zenodo (https://doi.org/10.5281/zenodo.10065462) and in supplementary
information.

Code availability

All codes used in this study (experimental codes, numerical optimizer, experimental
data) are openly available in Github (https://github.com/DigitalNatureGroup/insitu_
optimization) and in Zenodo (https://doi.org/10.5281/zenodo.10065462). Please refer to
“README.md” file in both repositories for the details regarding the package
prerequisite.
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