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Clustering method for time-series images using
quantum-inspired digital annealer technology
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Time-series clustering is a powerful data mining technique for time-series data in the absence

of prior knowledge of the clusters. Here we propose a time-series clustering method that

leverages an annealing machine, which accurately solves combinatorial optimization pro-

blems. The proposed method facilitates an even classification of time-series data into closely

located clusters while maintaining robustness against outliers. We compared the proposed

method with an existing standard method for clustering an online distributed dataset and

found that both methods yielded comparable results. Furthermore, the proposed method was

applied to a flow measurement image dataset containing noticeable noise with a signal-to-

noise ratio of approximately unity. Despite a small signal variation of approximately 2%, the

proposed method effectively classified the data without any overlaps among the clusters. In

contrast, the clustering results of the existing methods exhibited overlapping clusters. These

results indicate the effectiveness of the proposed method.
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The collection of large-sized datasets has drastically
increased with advancements in data storage and data
acquisition technologies. Time-series data containing one

or multiple variables (e.g., images) that vary with time is exten-
sively recorded and analyzed in various fields, such as science,
engineering, medical science, economics, and finance1–3. Clus-
tering is a powerful data mining technique for classifying these
data into related groups in the absence of sufficient prior
knowledge of the groups4–6. In particular, when dealing with
time-series data, the clustering technique is referred to as time-
series clustering7–9. Many studies on time-series clustering have
been summarized in review papers2,7–11. In addition, several
libraries for time-series clustering have been made available on
the web12–16 and are widely used. Following the literature7,8,
time-series clustering is defined as “the process of unsupervised
partitioning a given time-series dataset into clusters, in such a
way that homogenous time-series data are grouped together
based on a certain similarity measure, is called time-series clus-
tering.” Three main methods are commonly employed for time-
series clustering: raw-data-based/shape-based, feature-based, and
model-based approaches7,8. As an example, the raw-data-based/
shape-based approach is illustrated in Fig. 1. These methods differ
in their initial calculation procedures. The raw-data-based/shape-
based approach directly uses the raw data for clustering, whereas
the feature-based approach transforms the raw data into a low-
dimensional feature vector. The model-based approach assumes
that the time-series data are generated from a stochastic process
model, and the parameters of the model are estimated from the
data. The raw-data-based and feature-based approaches are more
commonly used because the performance of the model-based
approach degrades when clusters are close to each other2,8. The
subsequent step involves calculating the similarity or distance
between two data points, feature-vectors, or models. Then, the
data is grouped into clusters based on the measured similarity or
distance using machine learning methods. Clustering algorithms
commonly employed for time-series data include partitioning,
hierarchical, model-based, and density-based clustering
algorithms7,8. Among partitioning clustering algorithms, k-means
clustering is one of the most widely used algorithms5,6,17,18. Its

main advantage lies in its low computational cost. However, the
method requires user to pre-determine a number of clusters. In a
hierarchical clustering algorithm, the number of clusters does not
need to be pre-determined. However, once clusters are split or
merged using the divisive or agglomerative methods, they cannot
be adjusted. Neural network approaches such as self-organizing
maps19 and hidden Markov model5 are employed as model-based
clustering approaches. In addition to the above-mentioned dis-
advantage of the performance degradation for close clusters, these
approaches suffer from high computational costs. Density-based
methods, such as density-based spatial clustering of applications
with noise (DBSCAN)20, do not require users to pre-determine a
number of clusters and is robust to outliers. However, in density-
based methods, an appropriate choice of parameters is difficult,
and it is known that they suffer from the curse of dimensionality.
Overall, each method has its advantages and disadvantages. A
definitive method that can be used for all datasets does not exist,
and an appropriate method should be employed depending on
the purpose and dataset to be processed. Recently, continued
attempts have been made to improve the performance of each
method. As examples, studies published in the last three years are
introduced as follows: the extension of dynamic time warping
(DTW)21,22, the measure based on quantile cross-spectral
density23, and the measure of two linear fuzzy information
granule time-series24 have been proposed to calculate the simi-
larity or distance. A clustering method that focuses on the time-
varying moment was proposed for financial time-series data25. A
model-based approach based on the mixture of linear Gaussian
state space model was proposed26. A notable research trend is
approaches based on deep learning27–29, which is different from
the previously mentioned unsupervised methods. As a contrast-
ing approach, a computationally efficient approach based on
single-template matching was proposed30. However, to the best of
the authors’ knowledge, no method has been reported to con-
currently achieve a high clustering performance (e.g., classifica-
tion of data points that are close to each other, robustness to
outliers, etc.) and low computational cost.

In this study, we propose a time-series clustering method that
can achieve a higher clustering performance and lower
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Fig. 1 Typical clustering procedure of raw-data-based/shape-based approach. The similarity or distance between two data points is calculated. The data
points are classified into each cluster based on the similarity or distance.
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computational cost. To achieve this goal, we focused on clustering
algorithms using an annealing machine. As mentioned above,
research has not included the study of clustering algorithms as
much as the calculation of similarity or distance, with the
exception of the use of deep learning. Annealing/Ising machines,
such as quantum annealing and digital Ising machines, solve
combinatorial optimization problems faster and more accurately
than conventional computers31–34. Therefore, we expect that our
proposed method can achieve clustering tasks that are challenging
to achieve with existing methods. A unique characteristic of the
proposed method, which is not found in existing methods, is its
ability to evenly classify time-series data into closely related
clusters while maintaining robustness against outliers. More
specifically, the method can equally classify periodic time-series
images into several phase ranges by assuming a sufficient number
of images for each phase, given the long duration of the time-
series data relative to the period. This paper provides a com-
prehensive explanation of our proposed method. We used the
third-generation Fujitsu Digital Annealer (DA3), which is a
quantum-inspired computing technology, for the clustering cal-
culation. DA3 can solve quadratic unconstrained binary optimi-
zation (QUBO) problems, and the clustering problem can be
formulated as an Ising model that is equivalent to a QUBO
problem35,36. DA3 provides a solution in a large-scale problem
space of up to 100 kbits. Subsequently, we applied our proposed
method to two time-series datasets: one obtained from “the UEA
& UCR time-series classification repository”37–39, and the other
consisted of flow measurement image data capturing the Kármán
vortex street, periodic wakes, obtained in our previous data40–42.
We specifically chose flow measurement data because it is typi-
cally high dimensional (~106) and contains a measurement noise.
For the clustering process, we employed raw-data-based and
feature-based approaches. Furthermore, we compared our results
with those obtained from existing standard methods, specifically
“tslearn”12 available online, and the conditional image sampling
(CIS) method43,44 (only for flow measurement data).

Results and discussion
Clustering of online available time-series dataset. We demon-
strated the application of the proposed method to classify the
“crop” dataset available from the UEA & UCR time-series classi-
fication repository37–39. The clustering results obtained using the
“TimeSeriesKMeans” function in “tslearn” and the proposed
methods are shown in Fig. 2. The “crop” dataset contained 24
clusters. However, we present the results of two representative
clusters. In this dataset, the correct classifications were known and
displayed in Fig. 2. In addition, ensemble-averaged data for each
method were calculated. As shown in Fig. 2a, the proposed method
successfully classified the data, whereas the results obtained by the
standard existing method (tslearn) exhibited some unfavorable
classifications. We calculated the root mean squared error (RMSE)
between the ensemble-averaged data of the correct data and those
obtained by the proposed method and “tslearn”. The RMSEs of the
proposed and existing methods shown in Fig. 2a were 0.115 and
0.121, respectively. This further confirmed that the proposed
method surpassed the standard existing method. On the other
hand, the RMSEs of the proposed and the existing methods shown
in Fig. 2b were 0.117 and 0.096, respectively. In this condition, the
result obtained by the proposed method was inferior to that of the
existing method. However, since the variance of the correct data is
large, as shown in Fig. 2b, the classification is inherently difficult.
The demonstrations for other datasets are provided in Supple-
mentary Note 1. Consequently, we can conclude that the results of
the proposed method are comparable to those of conventional
methods.

Clustering of flow measurement time-series dataset. We applied
our method to the flow measurement dataset of the Kármán vortex
street to demonstrate its effectiveness for noisy data. A typical data
of a snapshot is shown in Fig. 3a, and the image shows that the data
contain noticeable noise with a signal-to-noise ratio (SNR) of
approximately 1. The dimensions of the measurement area are
shown in Fig. 3b. This periodic time-series dataset should be
equally classified into each phase range because a sufficient number
of images were acquired for each phase owing to the long duration
of the measurement relative to the period. Therefore, this is a
typical dataset to demonstrate the effectiveness of this method. In
this study, we classified this time-series data into nine clusters using
the proposed method, “tslearn,” and the CIS method. The clus-
tering results are shown in Fig. 4, where the data are presented on a
two-dimensional scatter plot using multi-dimensional scaling
(MDS). In the MDS calculation, the distance between the data xi
and xj is represented as j sinðθi;j=2Þj, where |a| represents the
absolute value of a, and θi,j corresponds to the angle between data
vectors xi and xj. Since the Kármán vortex street dataset used in the
analysis is a periodical phenomenon with a maximum distance of
unity, the data points were distributed along a circle with a radius of
1/2. As illustrated in Fig. 4a, the proposed method successfully
classified the data points without overlaps. The data points were
evenly classified into each cluster, and the cluster sizes were similar,
which is a favorable result. The data points outside the circle with a
radius of 1/2 were considered outliers, which is reasonable because
these data points were considered disturbances deviating from
periodic phenomena. However, the outliers were classified into one
of the clusters in the standard existing method (Fig. 4b). This will
be inappropriate when calculating the ensemble average of the data.
The CIS method only classified the data points on the circle as
shown in Fig. 4c. However, some clusters exhibited overlapping
regions and did not form discrete clusters. Density-based methods,
such as DBSCAN, are known as powerful clustering methods.
However, the data points on the circle were classified into a single
cluster in DBSCAN.

The ensemble-averaged pressure distributions are shown in
Figs. 5–7. The proposed method (Fig. 5) and the CIS method
(Fig. 7) effectively extract a periodic vortex generation despite a
small pressure variation of approximately 2%. On the other hand,
the pressure distribution obtained from the standard method
failed to accurately extract the periodic motion. For example, the
vortex located at the upper side suddenly disappeared from phase
2 to phase 3, and the vortex at the upper side reversed its flow
direction from phase 5 to phase 6 (Fig. 6). This discrepancy can
be attributed to the overlapping clusters observed in Fig. 4b. As
the pressure decreases when the vortex comes, we compared the
minimum pressure at the center of the vortex between the
proposed and CIS methods. The ensemble-averaged pressure
values were p/pref= 0.982 ± 0.001 and p/pref= 0.984 ± 0.002 for
the proposed and CIS methods, respectively, where the error
represents the standard deviation and pref denotes the atmo-
spheric pressure. The pressure obtained by the CIS method was
slightly higher than that of the proposed method, which aligned
with the observations in Figs. 5 and 7. The difference indicates
that the vortex was weakened in the CIS method because of the
previously mentioned overlapping clusters, where data from
different phases were also included in the ensemble averaging
process. These findings provide further evidence that the
proposed method is a powerful clustering approach for analyzing
periodic phenomena.

Conclusions
We propose a novel clustering method using an annealing
machine. We added a term that adjusts the number of data
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classified into each cluster to a QUBO model. In this study, we
applied our proposed method to two distinct datasets: one is the
“crop” dataset available from the UEA & UCR time-series clas-
sification repository and the other is a flow measurement image

dataset obtained in our previous study. For the clustering of
“crop” dataset, we also employed a standard existing method
distributed as “tslearn,” in which the distance between each data
was calculated based on the Euclidean distance and the clustering
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Fig. 2 Typical clustering results for “crop” dataset from the UEA & UCR time-series classification repository using the proposed and existing methods.
The data labeled as class 1 and class 17 in the repository are shown in (a) and (b), respectively.
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Fig. 4 Clustering results shown in two-dimensional scatter plot based on MDS. (a) The result by the proposed method, (b) that by the existing standard
method (tslearn), (c) that by the conditional image sampling (CIS) method.
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was calculated by the k-means++ algorithm. Comparing the
results obtained from our proposed method and the existing
method, we observed that the variation of the data points
obtained by the proposed method was smaller than that by the
existing method. In this dataset, the correct clustering result was
provided. Then, we calculated the ensemble-averaged data, and
the root mean squared errors (RMSEs) between the correct data
and the ensemble-averaged data were compared. Our findings
indicate that both methods provide similar results for this dataset.

Next, we applied our clustering method to the flow measure-
ment image dataset, which consisted of the time-series pressure
distributions induced by the Kármán vortex street. This dataset

exhibited periodicity. Another characteristic of this data is that
the dataset contains a noticeable noise with a signal-to-noise ratio
of approximately 1. For comparison, the dataset was also classi-
fied using the standard existing method and the conditional
image sampling (CIS) method, which is specifically designed for
flow measurement data. The proposed method successfully clas-
sified the data without any overlap between the clusters in spite of
the small pressure variation of approximately 2%. On the other
hand, both the existing and the CIS methods exhibited over-
lapping of clusters, failing to form discrete clusters. In particular,
the overlap between the clusters calculated by the existing method
was large; thus, the vortex suddenly disappeared at times and
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Fig. 5 Ensemble-averaged pressure distribution for the proposed method. The images are in phase order, and the vortices are flowing in this order.
Pressure p is normalized by an atmospheric pressure pref.
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Fig. 6 Ensemble-averaged pressure distribution for the existing standard method (tslearn). The vortices are not flowing in the phase order. Pressure p is
normalized by an atmospheric pressure pref.
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exhibited reverse flow at other times in the ensemble-averaged
pressure distribution. It was also found that the vortex was
weakened in the ensemble-averaged pressure distribution
obtained by the CIS method. These outcomes highlight the
superior performance of the proposed method in the clustering
periodic phenomena. The clustering algorithm using an annealing
machine is a promising algorithm for large dataset. However, the
calculation of similarity or distance is conducted by conventional
computers. This is considered to be a major limitation that needs
to be resolved when handling large datasets.

Methods
Proposed method for time-series clustering. We propose a
clustering method using an annealing machine. We focused on
the raw-data-based and feature-based approaches for time-series
data analysis. We considered a clustering problem that a given
dataset of n time-series data X = {x1, x2,⋯, xn}, where xi is a
column vector, is classified to k clusters c ¼ c1; c2; � � � ; ck

� �
.

Since DA is designed to solve QUBO problems, an objective
function is expressed as a QUBO problem. The Hamiltonian for
the clustering problem is described as follows45,46:

H ¼ ∑
c
∑
i6¼j

di;jqg;iqg;j � λ1 ∑
X

∑
c
qg;j � 1

� �2

ð1Þ

where qg;i ¼ 1 when xi belongs to cluster cg and qg;i ¼ 0 when xi
does not belong to the cluster cg, that is,

qg;i ¼
1 : xi 2 cg

0 : xi=2cg

(
ð2Þ

The similarity or inverse of the distance between xi and xj is
denoted as di;j, and λ1 is a hyperparameter. The sum
∑i≠jdi;jqg;iqg;j represents the sum of the similarity or the inverse
of the distance between two data points belonging to a cluster.
The sum ∑c represents the sum over all clusters in the first term

of Eq. (1). Clustering can be calculated by minimizing �H, i.e.,

min�∑
c
∑
i 6¼j

di;jqg;iqg;j þ λ1 ∑
X

∑
c
qg;j � 1

� �2

ð3Þ

The second term in Eq. (3) represents a constrained term
ensuring each data point belongs to only one cluster45,46. The
value λ1 determines the strictness of this constraint, where a
smaller value enables some data points to be treated as outliers
and not assigned them to any cluster. This study considered the
following minimization problem:

min�∑
c
∑
i6¼j

di;jqg;iqg;j þ λ1 ∑
X

∑
c
qg;j � 1

� �2

þ λ2 ∑
c

∑
j
qg;j

� �2

ð4Þ
where the third term in Eq. (4) adjusts the number of data points
classified into each cluster. We denote Sg ¼ ∑jqg;j to simplify the
notation, indicating the number of data points belonging to the
cluster cg. Then, the third term of Eq. (4) is written as

∑
c

∑
j
qg;j

� �2

¼ ∑
c
S2g ð5Þ

The mean number of data points and the variance of data
points belonging to each cluster are represented by μ and σ2,
respectively. Eq. (5) is written as

∑
c
S2g ¼ ∑

c
Sg � μ

� �2
þ 2Sgμ� μ2

� 	
¼ k σ2 þ μ2


 � ð6Þ

When m data points are classified into one of k clusters, the mean
μ ¼ m=k is a constant. Then, as the variance decreases, i.e., the
third term in Eq. (4) becomes smaller, the data points are evenly
classified into each cluster. As the number of data points classified
into each cluster decreases, the mean μ decreases and the third
term also becomes smaller. In other words, adding this term
enables us to easily adjust the number of data points in each
cluster by only varying λ2. The effect of λ2 on the clustering of the
flow measurement dataset is discussed in Supplementary Note 2.
This adjustment is difficult for many existing clustering
algorithms.
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Fig. 7 Ensemble-averaged pressure distribution for the conditional image sampling (CIS) method. The vortices are weaker than those of the proposed
method. Pressure p is normalized by an atmospheric pressure pref.
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Time-series dataset for demonstration. We applied the pro-
posed clustering method to two time-series datasets. One of the
datasets, named “crop,” was obtained from the UEA & UCR
time-series classification repository37–39. These time-series data
were derived from images taken by the FORMOSAT-2 satellite.
The dataset consists of 24 classes corresponding to an agricultural
land-cover map, and each data point corresponds to its temporal
evolution. The time-series length was 46, and the data were one-
dimensional. The data were standardized to have a mean of 0 and
a variance of 1. We compared the clustering results obtained by
the proposed method and those obtained by “tslearn.”12 In this
study, we used the “TimeSeriesKMeans” function in “tslearn.”
The parameters in the function were set to general settings as
follows: the number of clusters was 24, the metric (distance
between each data) was Euclidean, the method for initialization
was k-means++, and the other parameters were employed
default values. This is a standard time-series clustering method.
In the proposed method, the Euclidean distance was also used as
the metric, and the inverse of the metric was used to minimize the
first term in Eq. (4). The data were multiplied by 104 before being
transferred to DA3 because it can only handle integer values.
Since all data points should belong to one of the clusters in this
dataset, the parameter λ1 was approximately 100 times larger than
λ2. The actual values used for the calculation are shown in the
code attached in Supplementary Note 3. In this condition, a
solution that all data points belonged to one of the clusters (the
second term of Eq. (4) was 0) was obtained.

The second dataset used in this study was the flow image data
obtained in our previous study40–42, which were measured using
the pressure-sensitive paint (PSP) method47–49. The PSP method
is a pressure distribution measurement technique based on the
oxygen quenching of the phosphorescence emitted from the dyes
incorporated into the PSP coating. The measured data were the
pressure distribution induced by the Kármán vortex street behind
a square cylinder as shown in Fig. 3a. The data size was 780 × 780
spatial grids. The flow velocity was 50 m/s, and the Reynolds
number was 1.1 × 105. The number of data points was 720. The
pressure difference was too small to be detected using the PSP
technique because of the small variation in the phosphorescence
intensity. Then, the measured pressure contained noticeable
noise, and the noise should be reduced from the data. It is well
known that the Kármán vortex is a periodic phenomenon. The
data were classified into several phase groups and averaged within
these groups to reduce the noise and extract useful patterns,
which is one of the purposes of time-series clustering. The cosine
similarity measure was used to assess the similarity between the
data because we focused on the phase information of the vortex.
Since the PSP data were a time-series image data with two spatial
dimensions and one temporal dimension, the pressure distribu-
tion data were reshaped into a column vector. Consequently, the
time-series PSP data are written as n time-series data
X ¼ fx1; x2; � � � ; xng, where xi is a vector corresponding to a
reshaped pressure distribution. Since the measured PSP data
contains significant noise of SNR ~ 1, the denoised data was used
for the calculation of the similarity. Following the literature50, the
dataset with small noise can be obtained by considering the
truncated singular value decomposition (SVD). We considered a
data matrix Y ¼ ½x1 x2 � � � xn�, where the data matrix Y was
obtained by arranging vectors xi in time-series order. SVD
provides the following representation:

Y ¼ UΣV ð7Þ
where the matrices U and V are unitary matrices, and the
superscript ⊤ shows the transpose. The matrix Σ is a diagonal
matrix of singular values arranged in descending order. It is well
known that the data can be approximated by a truncated SVD51

as follows:

eY ¼ eUeΣeV ð8Þ
where eΣ is a first r × r diagonal matrix and r is a truncation rank.
The matrices eU and eV are reduced matrices corresponding to eΣ.
Then, we obtained the noise-reduced time-series data matrix ofeY ¼ ex1 ex2 � � �exn� 

or the time-series data ofeX ¼ ex1;ex2; � � � ;exn� �
. We set r= 5, which is a commonly used

truncation value. Subsequently, the cosine similarity cos θi;j was
calculated as follows:

cos θi;j¼
exi;exj

D E
jjexijj2jjexjjj2

ð9Þ

where exi;exj
D E

is the inner product of exi and exj, and jjexijj2 is the l2
norm of exi. In the similarity calculation, we only considered the
pressure distribution behind the square cylinder to reduce the
computational cost (see Fig. 3b). Substituting di;j ¼ cos θi;j in Eq.
(4), we calculated the clustering using DA3. Since the data were also
multiplied by 104 before being transferred to DA3, di;j � 103. The
parameter λ1 was 40 times larger than λ2 (λ1= 1 × 106), ensuring
that each term in Eq. (4) was of a similar magnitude. In this
condition, some data were classified as outliers. The images within
the same cluster were ensemble averaged to extract useful patterns.
Here, we note that the original image data X was averaged to extract
the patterns, while the truncated dataset of eX was not used.

Considering that cos θi;j lies within the range of −1 to 1, we
introduced the following relation ri,j, which range from 0 to 1:

ri;j ¼
cos θi;j þ 1

2

¼ cos2
θi;j
2

¼ 1� sin2
θi;j
2

ð10Þ

where 1� ri;j ¼ 0 when i= j (the same data). Then, we define the

distance metric between the data as j sin θi;j=2
� �

j, where |a|

represents the absolute value of a and θi;j is the angle between data
vectors. The maximum value of the distance is unity in this distance
metric. This distance metric was used in the MDS calculation.

The time-series data were also classified by the “Time-
SeriesKMeans” function in “tslearn” described above. In addition,
we used the CIS method43,44, which is a specialized methods
designed specifically for PSP measurements. In the CIS method,
the time-series data were classified into several phase groups
based on the pressure data measured by a pressure transducer
sensor which is a point sensor with a higher sampling rate than
PSP. In other words, the CIS method requires an additional
sensor for clustering. This reliance on an extra sensor can be
considered one of the limitations of the CIS method.

Data availability
The dataset, named “crop,” was obtained from the UEA & UCR time-series classification
repository http://timeseriesclassification.com/description.php?Dataset=Crop. The flow
measurement dataset is available in Zenodo with identifier https://doi.org/10.5281/
zenodo.10215642.

Code availability
The code for the time-series clustering developed in this study is included in
Supplementary Note 3. The code for computing the observation matrix from time-series
data is available in Zenodo with identifier https://doi.org/10.5281/zenodo.10215642.
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