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Towards automated sleep-stage classification for
adaptive deep brain stimulation targeting sleep in
patients with Parkinson’s disease
Katrina Carver1, Karin Saltoun 2, Elijah Christensen3, Aviva Abosch4,9, Joel Zylberberg 5,9 &

John A. Thompson 6,7,8,9✉

Sleep dysfunction affects over 90% of Parkinson’s disease patients. Recently, subthalamic

nucleus deep brain stimulation has shown promise for alleviating sleep dysfunction. We

previously showed that a single-layer neural network could classify sleep stages from local

field potential recordings in Parkinson’s disease patients. However, it was unable to cate-

gorise non-rapid eye movement into its different sub-stages. Here we employ a larger hidden

layer network architecture to distinguish the substages of non-rapid eye movement with

reasonable accuracy, up to 88% for the lightest substage and 92% for deeper substages.

Using Shapley attribution analysis on local field potential frequency bands, we show that low

gamma and high beta are more important to model decisions than other frequency bands.

These results suggest that the proposed neural network-based classifier can be employed for

deep brain stimulation treatment in commercially available devices with lower local field

potential sampling frequencies.
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Deep brain stimulation (DBS) for Parkinson’s disease (PD)
is a well-established, highly effective therapy for motor
symptoms1. Over the last 20 years, observational and

experimental studies suggest that subthalamic nucleus (STN; one
of the two FDA approved brain targets for treating the motor
symptoms of PD) stimulation via DBS also might ameliorate
sleep dysfunction2–6. Though sleep deficits in PD are highly
prevalent and negatively impact quality of life there currently
exist no direct treatments addressing sleep deficits7–9. Prospective
modification of sleep stage expression (i.e., time in rapid-eye-
movement (REM) sleep) requires synchronized modulation of
sleep-stage-dependent brain activity. Direct sensing of local field
potential (LFP) data from the DBS electrodes has recently become
commercially available, enabling the inference of sleep stage from
deep brain signals10, which builds from established work in ECoG
(electrocorticography), EEG (electroencephalography) and acute
DBS recordings11–14. In principle, such inference can then be
used to direct closed loop DBS modulation to specific sleep stages
to improve sleep.

Our prior work shows LFP signals are sufficient to accurately
categorize 30-second epochs of sleep recordings as REM, awake,
or non-rapid eye movement (NREM) sleep15 (Fig. 1a, b).
Importantly, this previous work did not attempt to sub-categorize
the three NREM stages and instead combined them into a single
category label. This lack of sub-categorization precludes the tai-
loring of DBS stimulation settings to specific NREM subtypes
(e.g., NREM1). This limitation is important because REM and
NREM3 in particular are less prevalent in PD patients vs age-
matched controls, and these sleep stages constitute restorative
sleep. To overcome this limitation, the current study’s primary
aim was to develop new neural network (NN) algorithms capable
of sub-categorizing NREM sleep. Our secondary aim was to
understand whether sleep stage categorization can be accom-
plished using LFP data gathered at lower sampling rates. While
the dataset studied in our previous work was collected at 1024 Hz,
current commercially available DBS platforms record LFP signals
at ranges of 250 to 1000 Hz15,16 (Fig. 1a). For this study, we
compared our original model to a downsampled model of 250 Hz
for two reasons: firstly, to determine if our approach would work
on the broadest range of DBS devices currently commercially
available, and secondly, to determine how much classification
performance benefits from the use of higher sampling rates.

In addition to basal ganglia recordings in PD, automatic clas-
sification of sleep stages from intracranial recordings, both cor-
tical and hippocampal, have been explored in epilepsy10. In
general, machine learning methods that have been applied to
sleep stage classification from intracranial data include support
vector machines (SVMs), hierarchical clustering with decision
trees, or combinations of these methods10,14,17,18. For input data,
most published methods use power spectral data from frequency
band bins (e.g., beta: 13–30 Hz)10,14,17. In addition to targeted
sleep stage classification, recent efforts in PD and epilepsy have
observed multi-scale biorhythms that could be used to inform
adaptive stimulation control schemes19. Although our current
work is predicated on single-stage resolution for intervention, one
or more diurnal neural biorhythms could be explored as an
adjunctive strategy.

In earlier work, supervised classification approaches performed
poorly in differentiating NREM states or awake from REM in
neural data either derived from scalp or intracranial recordings.
In our prior work, combining the NREM stages enabled an
improvement in overall categorization performance, with a 91%
prediction accuracy averaged across all labels15. The reduced
expression of NREM3 in our subjects motivated a composite
classification grouping of NREM1-3. The key strategies enabling
our previous improvement in categorization performance were

(1) the normalization of LFP signal amplitudes before inputting
them into the classifier, and (2) the use of NNs in place of weaker
classifiers such as SVMs14, and (3) inverse-frequency weighting in
the loss function to account for increased class sampling imbal-
ance (e.g., smaller training rewards for batched common sleep
stages). At the same time, our previous NN approach had several
limitations, including lower prediction accuracy for REM stages
and poor performance in distinguishing between the different
NREM states. Following exploration of other machine learning
approaches, we opted to use an NN approach for the advantages
associated with better handling of complex data and greater end-
to-end learning and flexibility.

To overcome the limitations of our prior approach, here we
expand upon our previous model by implementing larger NNs
and training them for much longer. This approach leverages the
recently identified double descent phenomenon20: As model size
or training time increases, NN models may initially overfit to
their training data, but continuing to increase the model size or
training time further typically alleviates the overfitting. This
observation means that, in general, the best model size and
training duration are the largest ones possible within the com-
putational resources available. With the larger size of our new
model, we more efficiently divide NREM into sub-groups of
NREM1 and a combined NREM2&3 label. Given the well-known
shortage of NREM3 in this clinical population, it is typically
excluded from model development14,17. Nevertheless, the
advances we report here enable DBS stimulation settings to be
separately tailored to NREM1 versus NREM2&3, which is
expected to improve the ability of adaptive stimulation to ame-
liorate sleep deficits10. This effort builds on past work that has
demonstrated the feasibility of using DBS LFP signals for sleep
classification in which an embedded linear classifier to determine
asleep and awake states21.

Finally, we sought to assess the relationship between two fre-
quency-related aspects of the data and sleep stage prediction: (1)
LFP frequency band contribution and (2) sampling frequency of
the data. SHAP (SHapley Additive exPlanations) analysis (Fig. 2)
was applied to LFP frequency bands and demonstrated that low
gamma and high beta contributed most to the model prediction.
With regard to sampling frequency, we tested our larger models
on LFP data that were downsampled to match the lowest available
sampling frequency of current commercial DBS devices16 (Fig. 2).
We found that performance improvements over our previously
published small NN persisted. Altogether, this work suggests that
by leveraging double descent, we can build sleep-stage classifiers
that will work with data gathered at lower sampling frequencies
and will differentiate between the different NREM stages. Col-
lectively, these advances improve the prospects for developing
adaptive DBS treatments tailored to target specific sleep stages,
thereby mitigating the sleep dysfunction suffered by PD patients.
On-going efforts to selectively target specific sleep states for
external22,23 and internal24 stimulation to improve overall sleep
quality will benefit from this work. With regards to PD, stage-
targeted stimulation may improve NREM duration and expres-
sion and secondarily minimize WASO (wake after sleep onset),
which is implicated in restorative rest and overall sleep main-
tenance and quality22,24.

Methods
Patient demographics. This study was approved by the Institu-
tional Review Board of the University of Minnesota, where the
surgical and recording procedures were performed. All consent-
ing study subjects (n= 10) carried a diagnosis of idiopathic PD
(Table 1 & Fig. 1a, b). Subjects were unilaterally implanted in the
STN with a quadripolar DBS electrode (model #3389: Medtronic

ARTICLE COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-023-00150-8

2 COMMUNICATIONS ENGINEERING |            (2023) 2:95 | https://doi.org/10.1038/s44172-023-00150-8 | www.nature.com/commseng

www.nature.com/commseng


Fig. 1 Overview of local field potential recordings collected during sleep in Parkinson’s disease patients. a Representative local field potential (LFP)
spectrogram recorded from the subthalamic nucleus (STN) of a Parkinson’s disease (PD) subject during a single nocturnal sleep period. White line
indicates the hypnogram. Colorbar denotates the local field potential power (LFP) magnitude. b A horizontal stacked bar chart depicting the occurrence and
distribution of sleep stages (i.e., awake, NREM1, NREM2, NREM3 and REM) for all 10 PD subjects used in this study. Colors denote distinct sleep stages.
c Preprocessing steps for LFP data used as input for NN sleep stage classification (LFP data in schematic were simulated and not subject data). (1)
Individual LFP recordings from each deep brain stimulation contact (black squares = DBS recording contact), (2) bipolar referencing strategy; grey squares
indicate two adjacent DBS contacts used for referencing and resulting grey LFP recording, (3) raw LFP is partitioned into 30 s epochs based on distinct
sleep stages (defined by expert scored polysomnography), (4) time and frequency processing performed on each 30 s epoch of LFP, (5) each 30 second
epoch of LFP was decomposed into canonical frequency band related information, (6) power contributions for each frequency band were normalized before
input into neural network.
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Inc., Fridley, MN), per routine surgical protocol25. Experimental
details for the recording setup have been previously published14.
A basic characterization of these data was previously reported in
ref. 14 and initial model development was described in Chris-
tensen et al.15.

Signal processing. Signal processing of the raw STN LFP signals
has been previously described14,15 Fig. 1c. Externalized lead
recordings were collected at 1024 kHz. Briefly, after preproces-
sing, the four LFP channels were converted into three bipolar
derivations, using sequential contacts as a reference (e.g., LFP01,
LFP12 and LFP23). Power spectral density (PSD) was estimated
using a fast Fourier transform from a 2‐second‐long sliding
Hamming window with 1‐second overlap. The final time‐evol-
ving spectra had 15-second time and 0.5 Hz frequency resolution.
For each subject, LFP data selected for further analysis were based
on which DBS lead contact(s) within the STN were associated
with peak beta‐spectrum activity, as this feature correlates with
the optimal programming contact(s) for the treatment of con-
tralateral motor symptoms26. We compared a model with two
hidden layers and 1000 units per hidden layer to our previously
published model architecture, which was composed of a single
hidden layer containing 32 units. We refer to the new, larger
model as the ‘large’ NN, and refer to our previously published
small architecture as the ‘original’ network. The inputs for both
the original model (Figs. 3a, c and 4a, d) and the large model
(Figs. 3c, d and 4b, d) consisted of eight separate frequency band
power bins, averaged over 30 s: delta (0–3 Hz), theta (3–7 Hz),
alpha (7–13 Hz), low beta (13–20 Hz), high beta (20–30 Hz), low
gamma (30–90 Hz), high gamma (90–200 Hz) and high fre-
quency oscillations (200–350 Hz). Each frequency range input
feature was normalized independently by subtracting the mean

Fig. 2 SHapley Additive exPlanations (SHAP) analysis for frequency
band contributions to model prediction. a Two-state (awake, sleep) array
prediction by a NN using three input feature bands (delta, theta, alpha) at
epoch tj. b The power set of all features, i.e. all unique subsets of features.
Each node contains the model prediction if only the features within that
node are known to the model. c An example of the calculation of the
marginal contributions of the delta band at epoch tj to the model prediction,
and the SHAP equation for the delta band at that epoch. This is the
weighted sum of all the marginal contributions. d The complete SHAP
vector for the delta band.

Table 1 Summary of model performance metrics

Class Accuracy Sensitivity Specificity

3 Classes Original Neural Network (NN)
awake 0.93 0.92 0.95
NREM 0.92 0.95 0.9
REM 0.96 0.46 0.99

3 Classes Large NN
awake 0.96 0.96 0.96
NREM 0.94 0.94 0.95
REM 0.97 0.66 0.98

4 Classes Original NN
awake 0.94 0.96 0.92
NREM2&3 0.9 0.89 0.91
NREM1 0.86 0.48 0.93
REM 0.96 0.47 0.99

4 Classes Large NN
awake 0.96 0.97 0.95
NREM2&3 0.92 0.88 0.94
NREM1 0.88 0.59 0.94
REM 0.97 0.75 0.99

4 Classes Large DS (250 Hz) NN
awake 0.94 0.93 0.95
NREM2&3 0.9 0.88 0.9
NREM1 0.86 0.52 0.93
REM 0.96 0.62 0.98
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and scaling by the variance of the feature, with scaling performed
separately for each patient. For the downsampled model (Fig. 4e,
f), the raw voltage data were downsampled to 250 Hz before
preprocessing: after this downsampling, the same preprocessing
was applied to these downsampled data as to the original data. In
the case of the downsampled data, the highest frequency band
was absent, and the model inputs thus included only seven fre-
quency bands: delta (0–3 Hz), theta (3–7 Hz), alpha (7–13 Hz),
low beta (13–20 Hz), high beta (20–30 Hz), low gamma
(30–90 Hz), and high gamma (90–125 Hz).

Polysomnography scoring. LFP and polysomnography (PSG)
were concurrently recorded in all subjects. Briefly, we used the
AASM-recommended (PSG) electrode montage that included the
following: F3–C3, P3–O1, F4–C4 and P4–O2, EOGL–A2,
EOGR–A1, and chin EMG27. Sleep stages were determined by
analysis of 30‐s epochs of the PSG by a sleep staging expert, with
each epoch classified as awake or as belonging to one of the
following four sleep stages: REM, NREM1, NREM2, or NREM3.
Our recent consensus efforts sought to improve the accuracy of
sleep stage classification by expert reviewers in the context of
patients with PD comorbid with sleep dysfunction28. Expert-
derived sleep stages, based on polysomnography evaluation, were

used to calculate the total duration of sleep over the period of one
night. To estimate the total duration of sleep, scored epochs were
summed excluding periods of wakefulness, from the time the
individual first fell asleep to the time of final awakening; for
details, please see Fig. 1 from ref. 15.

Model descriptions and hyperparameter optimization. Similar
to our previous study15, we trained feedforward NNs to take in
the vectors of LFP power at each epoch, and to output the net-
work’s inferred probability associated with each sleep state label.
For the results in Fig. 3, these outputs were 3-dimensional vectors
with entries associated with the following categories: awake, REM,
and NREM, where all three NREM states were combined into one
label. For the results in Fig. 4, the outputs were 4-dimensional
vectors, with entries associated with the following categories:
awake, REM, NREM1, and a label combining NREM2 and 3 (i.e.,
NREM2&3). In this case, NREM stages 2 and 3 were combined
into one label because of the minimal expression of NREM stage
3 to inform the model. The models were trained on 75% of the
epochs from the dataset and were tested on the remaining held-
out 25%. All networks were trained to minimize the categorical
cross-entropy loss between their predictions and the PSG-scored
sleep state labels.

Fig. 3 Original model performance. a Confusion matrix representation of the prediction accuracy for the original single hidden layer, 32 node NN (same
architecture as Christensen et al. 2019); color (purple) intensity within the stage comparisons indicates percent whereas gray indicates percent density for
the sum across categories. b Average error rate of the network from A, when tested on data from each of the 10 subjects. Gray box indicates standard
deviation. c Same as in a, depicting the accuracy for the new Large NN (two layers, 1000 nodes per hidden layer). d Same as in b, scatterplot of the error-
rate for each subject using the large NN. Note the substantial reduction in error rate with the large model. All results in this figure were obtained using
held-out test data.
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For the original NN models (Fig. 3a, b, and Fig. 4a, b), we used
the same architecture as in Christensen et al.15, consisting of a
densely connected NN comprised of a single hidden layer with 32
rectified linear (ReLu) units, followed by the output layer
consisting of three or four units (depending on whether or not
NREM stages were subdivided) and a softmax nonlinearity. These
models were trained for 100 epochs using the stochastic gradient
descent (SGD) optimizer and a fixed learning rate of 1. Consistent
with the findings of Christensen et al.15, the performance of these
smaller models was not strongly dependent on their hyperpara-
meters, such that increasing the number of hidden units by a
factor of 2, and/or decreasing the learning rate by a factor of 10
did not demonstrably change the model accuracy.

For the large NN models (Fig. 3c, d, and Fig. 4c–f), we used
feedforward NNs with two hidden layers, each containing 1000
ReLu units, followed by the output layer consisting of three or
four units, depending on how many sleep states were used in the
experiment. Batch normalization (batchnorm) was included after
each hidden layer, as was dropout regularization, with a drop
probability of 50%. These large models were trained for a total of
1000 epochs using the SGD optimizer. Their initial learning rate
was 0.1, and the learning rate was reduced by a factor of 2 after
every 100 epochs. A limited hyperparameter search was
performed, which included the addition of another hidden layer,
and reducing or increasing the width of the hidden layers by a

factor of 2: These changes did not substantially affect model
accuracy. However, removing either dropout or batchnorm, or
making the learning rate constant, did demonstrably reduce
accuracy.

SHapley Additive exPlanations (SHAP) analysis. To understand
the relative importance of each of the different LFP frequency
input bands for classifying sleep stages, we computed SHAP
(SHapley Additive exPlanation) values29,30. In brief, for each
epoch we used SHAP analysis to determine the marginal con-
tribution of each LFP band to model output, then combined the
SHAP values over all epochs to measure how each feature con-
tributed to the model overall. Figure 2 represents a simplified
version of our approach. Figure 2a illustrates a two-state (awake,
sleep) array prediction by an NN using three input feature bands
(delta, theta, alpha) with model predictions of 0.3 and 0.7 for each
state, respectively (Fig. 2a). To calculate the SHAP values for
epoch tj, we first generate all the unique subsets of features, then
for each subset determine the prediction of the model at that
epoch if only the features within that subset are known to it. In
the ‘no features’ case, the prediction of the model simply reflects
the presence of that state in the data (Fig. 2b). The marginal
contribution is calculated for each feature by finding the differ-
ence in prediction arrays between lower nodes where the feature
is present and higher nodes where the feature is not, where the

Fig. 4 Large model performance. a Confusionmatrix representation of the prediction accuracy for the original single hidden layer, 32 node NN (Christensen et
al. 2019) using four sleep stage labels (i.e., awake, NREM1, NREM2&3, REM); color (blue) intensity within the stage comparisons indicates percent whereas
gray indicates percent density for the sum across categories. b Average error rate of the network from a, applied to the four sleep stage labels for each of the
10 subjects. Gray box indicates standard deviation. c Similar to a, depicting the accuracy for the new large NN. d Similar to b, scatterplot of the error rate for
each subject using the large NN and high temporal frequency data. e Same as in a, c, showing the accuracy of the large NN using downsampled (250Hz) LFP
data. Downsampling the LFP data using parameter limits imposed by available sensing DBS implanted programmable generator (IPG) technology (250Hz)
somewhat reduced prediction accuracy for the four sleep-stage labels using the large model. f Same as in b, d, scatterplot of the error rate for each subject using
the large NN applied to the downsampled data. All results in this figure were obtained using held-out test data.
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two nodes are connected by an edge. The SHAP value array for
that feature and epoch is the weighted sum of these contributions
and has the shape 1× num(states) (Fig. 2c). Therefore, the SHAP
value for an epoch is equal to the weighted sum of all the dif-
ferences in model outputs when considering all possible subsets
(coalitions) of input features. The complete SHAP array for one
feature (e.g., delta band) consists of all the SHAP feature vectors
over all epochs and has shape num(epochs) × num(states)
(Fig. 2d). The SHAP values were computed for each input LFP
band, for each 30-s epoch of the testing dataset, and for the set of
all considered sleep stages. Figure 5a–d shows the median of the
absolute values of the SHAP arrays for all epochs and input LFP
bands. These were computed for the large NN, consisting of two
hidden layers and 1000 hidden units per layer on the four-state
classification problem.

Results
Comparison of three sleep-stage label prediction between sin-
gle layer vs. large NN. We sought to develop a model with
increased accuracy for predicting sleep stage intracranial LFP
recordings from a chronically implanted STN DBS lead. We first
studied the task of classifying LFP signals into three different
categories (awake, REM, NREM), and compared a model with
two hidden layers and 1000 units per hidden layer to our pre-
viously published model architecture, which was composed of a
single hidden layer containing 32 units.

We compared the error rates of these three-state models (error
rate= incorrect/(correct+ incorrect)) and observed that the large
network had an error rate of 6.7%, while the original network had
an error rate of 9.2% (Fig. 3c, d). In other words, the large model
obtained the correct categorization—and hence avoided the
errors made by the original model—on roughly 27% of the data
samples for which the original model architecture returned the
incorrect classification. NREM state predictions were slightly
overrepresented in the original NN; but were more closely aligned
with the PSG-derived labels in the large architecture. For both
models, the performance values varied somewhat across subjects
(Fig. 3b, d).

Comparison of four sleep-stage label predictions between sin-
gle layer versus large NN. In addition to developing a more
robust model, we sought to increase the capacity of our model to
discriminate between NREM sleep stages, which our prior model
did not accommodate (Fig. 3a, b). Given the extreme shortage of
NREM3 epochs in our dataset—a feature of sleep dysfunction in
PD—we were still unable to distinguish between NREM2 and
NREM3 in preliminary testing. We compared two updated
models, both predicated on separating NREM sleep stage epochs
into NREM1 and combined NREM 2 and NREM 3. (Christensen
et al., 2019)15. We observed that the large network performed
better than the original network. Specifically, the large network
with NREM differentiation had a lower error rate of 13.7%
compared to the original network architecture with NREM dif-
ferentiation (17.3%; Fig. 4b, d). This means that, given the same
target of classifying between 4 sleep states, roughly 20% of the
errors made by the original network were avoided by the large
model. Both architectures confused NREM1 and NREM2&3 for
each other most often. The next most common mistake was
misclassifying NREM1 as awake. As with the models trained to
predict 3 sleep stages, the larger model with more fine-grained
sleep stage differentiation performed better at classifying REM
states than the original architecture. NREM2&3 was the state
most often erroneously classified as REM sleep. The original
architecture overestimated NREM2&3 as compared to NREM1,
however, model performance varied somewhat between subjects

(Fig. 4b, d). REM states were underrepresented as predictions in
the original NN, which was a deficit ameliorated in the large NN.
We found that the large NN predicted more REM overall and
exhibited more accurate classification of REM (66% correct REM
classification in the large network vs 45% correct REM classifi-
cation in original).

Impact of downsampling on four-sleep-stage label prediction.
The models described above were trained and tested using LFP data
recorded at 1024 Hz, which included the high gamma (90–200 Hz)
and the high frequency oscillations (HFO, 200–350 Hz). However,
currently available FDA-approved DBS implanted programmable
generators (IPGs) that permit recording from brain leads are lim-
ited to 250Hz sampling resolution. Given the Nyquist limit, this
means that currently available IPGs capable of recording can
resolve LFP signals up to 125Hz. Furthermore, while other DBS
devices with higher sampling resolutions exist (e.g., Medtronic
Summit RC+ S system), we again focus on the most limited
resolution case to understand how much sleep-stage classification
performance is degraded in cases where sampling resolution is
limited.

To determine how much this limitation reduces our ability to
infer sleep stages from LFP signals, we downsampled our LFP
data to 250 Hz. This resulted in the exclusion of the HFO band,
and a reduction in the width of the high gamma band, from
90–200 Hz down to 90–125 Hz. Figure 4e, f shows that down-
sampling the data to match current recording constraints does
somewhat increase the model error rate (overall error rate 13.7%
for high temporal resolution data versus 17.3% for downsampled
data). This means that roughly 25% of the errors made from
models constrained to 125 Hz LFP signals are avoided with the
inclusion of higher frequency data. However, the large model
evaluated on the downsampled data, and the original model
evaluated on the full-resolution data had similar overall error
rates. To further refine this analysis, we created additional models
for data sampled at 125 Hz, 400 Hz, and 700 Hz. Figure 6b
demonstrates that there is minimal degradation of model
performance based on sampling resolution.

Attribution analysis using SHapley Additive exPlanations
(SHAP) analysis. To further understand the contribution of each
LFP frequency band to each sleep stage prediction, we conducted
a SHAP (SHapley Additive exPlanations) analysis. SHAP analysis
uses Shapley values computed from coalitional game theory to
calculate the individual contribution of each frequency band to
the model’s categorization of each sleep stage for each epoch (see
Methods). We performed this analysis on the large network that
was trained to classify the high-resolution LFP inputs into four
different sleep stages: awake, REM, NREM1, and NREM2&3.

Low gamma contributed most to the model prediction for the
awake state (Fig. 5a); high beta contributed most to the model
prediction for NREM1, combined NREM2&3, and REM
(Fig. 5b–d). Figure 5e depicts the relative contributions of the
LFP bands, highlighting that high beta, low gamma, and high
gamma contributed most to predictions on average. The high
gamma frequency band was only in the top three contributing
features for the awake label; this is consequential as high gamma
is reduced in currently available FDA-approved implantable pulse
generators, which can only capture signals up to 125 Hz. The
secondary importance of the high gamma band and the relative
unimportance of the low-frequency bands such as delta and alpha
to sleep stage categorization suggest that a model using an even
greater constraint of feature bands may be possible while
retaining accuracy. Here, we classify high gamma signals up to
200 Hz (and HFOs up to 350 Hz) in our full resolution data.
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Fig. 5 SHAP derived LFP frequency band contributions. a Column scatter plot depicting the LFP band importance (SHAP score) for awake epochs. b Same
as in a, for NREM1 epochs, c Same as in a, for NREM2&3 epochs, d Same as in a, for REM epochs. e Parallel coordinate plot showing the median of the
SHAP array for that specific state and epoch, with multidimensional scaling to permit comparison of the relative magnitude that specific LFP bands
contribute to the categorization of each sleep stage.
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The above findings help explain the increase in categorization
errors we observed when we attempted to classify sleep stages
using temporally downsampled data (Fig. 4e, f). Specifically,
because high gamma and HFO bands contribute somewhat to the
categorization (especially for awake and NREM2&3 sleep stages,
which are most common in the dataset), their absence causes a
reduction in model prediction accuracy. Nevertheless, current
IPGs do fully capture high beta (21–30 Hz) and low gamma
(30–90 Hz) frequency bands, which SHAP analyses flag as the
most important frequency bands for classifying awake and NREM
sleep states. This can explain how sleep stage categorization is still
possible, albeit with reduction in accuracy, even when using
temporally downsampled data.

To assess the predominant contribution indicated by SHAP
analysis of high beta and low gamma, three additional models
were generated using either high beta alone, low gamma alone, or
the combination of high beta and low gamma. In Fig. 6a, we
observed that all three of these models performed poorly
compared to the model including all bands for several
performance metrics (recall, precision, and F1-score). This
indicated that although specific frequency bands appear to
contribute more than others to predictive performance on
specific sleep stage classes, the model utilizes information from
all frequency bands.

Discussion
We sought to refine a set of algorithms that classify sleep stages
using LFP signals recorded by electrodes implanted in the STN of
PD patients. Algorithms that can perform this task enable
adaptive DBS which can be used to target specific sleep stages and
help reduce sleep deficits suffered by PD patients. In this study,
leveraging double descent20, we used larger NNs as well as longer
training regimes than we had previously studied15. These larger
networks were able to sub-classify NREM sleep stages into NREM

1 vs. NREM2&3 better than the original networks from our
previous work. Our work suggests that larger NNs will be useful
in developing adaptive DBS treatments. Notably, even in the case
of hardware limitations, it may be possible to use model dis-
tillation methods31 to make smaller models that can mimic our
large NN at lower computational cost, although we leave such
efforts for a future study.

In addition to the question of NREM sub-classification - a
challenge posed by electrophysiological signal ambiguity, model
complexity, and limited expression of NREM3 in PD patients- we
also addressed the practical question of whether LFP-based sleep
stage categorization could succeed with existing commercially
available hardware and sampling constraints (i.e., the 250-Hz
limit). Compared with higher-resolution LFP data (1024 Hz)
collected with a clinical neurophysiological recording system, we
saw a moderate loss of classification performance when the lower-
resolution LFP data were used for the classification. While our
results suggest that adaptive DBS treatments could potentially
work with lower temporal resolution LFP recordings, they also
indicate that these treatments could benefit from increasing the
temporal resolution of the LFP sampling afforded by the IPG.
Specifically, classification performance was reasonable even with
downsampled LFP data, but was substantially higher when a
larger range of input frequencies was used.

It is important to note that our training set consisted of data
annotated by a single human sleep expert. Independent experts
scoring the same data typically achieve approximately 76.8-82%
consensus for sleep stage classification32,33. This level of agree-
ment could arise from inherent ambiguity regarding some of the
sleep stages (i.e., from uncertainty about the ontology of sleep).
The level of inter-rater reliability sets a soft ceiling on how well we
might expect classification algorithms to perform. Outside of the
current study, we have recently developed a consensus-based
scoring method in which multiple experts individually annotate

Fig. 6 Evaluation of sub-band and sampling frequency parameters on model performance. a Performance metrics for separate neural network (NN)
models trained on sub-bands of the total frequency range used in the full model (i.e., high-beta (HB), low-gamma (LG), and high-beta plus low gamma (HB/
LG)). These sub-bands were selected based on their contribution to the full model evaluated using SHAP analysis. Models based on sub-bands performed
poorly compared to the model based on all bands. The following performance metrics were evaluated: precision, porportion of correctly predicted positive
observations compared to the total number of instances predicted as positive; recall, proportion of correctly predicted positive observations to all correctly
identified observations (true positives and false negatives); and F1score, the harmonic mean of precision and recall. b Performance metrics for separate NN
models trained on varying sampling resolutions including all bands before downsampling (i.e., 125 Hz, 250 Hz, 400Hz, 700Hz, and the full model–1024Hz).
Lower resolution data did not markedly affect model performance.
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each night’s sleep, and then reach consensus on epochs of dis-
agreement through collective review of disputed PSG epoch and
synchronous video data28. We anticipate that these efforts will
help to clarify the true upper bound on classification performance
that is attainable within the context of current sleep stage
ontology. With regard to NREM subclassification, while our large
new NN model could successfully divide NREM sleep into two
sub-categories (NREM1 and NREM2&3 combined), it could not
distinguish between NREM stages 2 and 3. This limitation arises
from the dearth of NREM3 epochs within our dataset, which is a
known characteristic of sleep in individuals with PD17, and has
also stymied previous efforts to sub-categorize NREM sleep in PD
patients.

Consistent with many previous studies10,14,15,17, we preprocessed
the LFP signals by computing the power in different frequency
bands as inputs for classification (Fig. 1c). At the same time, one of
the key messages of the deep learning revolution is that extrapolated
data features (e.g., LFP frequency bands), as opposed to the raw
signal(s), often underperform relative to end-to-end training
schemes in which the relevant features are optimized for the clas-
sification task34. This suggests that we may be able to further
improve our classification performance by using the raw LFP time
series as inputs. Preliminary investigations using NNs composed of
long short-term memory (LSTM) failed to yield any performance
gains relative to the feedforward networks presented here. While
more study is required, this could indicate that model training on a
larger dataset is critical. Future studies aiming to advance this goal
could benefit from foundation model approaches35, involving the
training of models using unsupervised predictive loss functions on
larger reams of potentially unlabeled LFP data from both PD
patients and other populations (including non-PD subjects, for
instance those with epilepsy or obsessive-compulsive disorder10).
We define a foundation model as a model that is first trained in a
self-supervised manner using large quantities of unlabeled data,
then is fine-tuned to solve tasks related to that data modality. In
relation to PD sleep-stage classification, we have in mind that one
would train contrastive masked-token prediction models on all
available LFP data (from PD patients and non-PD individuals), and
then later fine-tune that model for the PD sleep-stage categorization
task using the smaller volume of labeled data. We are currently
pursuing this research strategy and hope to soon have results to
report35. Furthermore, foundation models may be useful to derive
frequency band boundaries used for sleep stage detection. After
learning to extract predictive features from LFP data, the foundation
model could be fine-tuned for classification using the relatively
small amount of labeled data from PD patients. The recent suc-
cesses of foundation models in language and36 image
identification37 tasks suggest that this is a promising avenue of
study. In the initial stage of foundation model development, we will
use an unsupervised deep learning foundation model trained on the
unprocessed, continuous time series LFP data to autonomously
learn (i.e., in a self-supervised manner) a hierarchy of features
without sleep epoch labels. These learned features will serve as a
generalized representation of the data, and the model will then be
fine-tuned using labeled data for specific sleep-stage classification35.

One potential challenge in deploying these algorithms is the
question of whether they perform well on new patients whose
data were not included in the training set. In our experiments
here, we found that all the models performed substantially worse
when evaluated in a leave-one-out fashion, wherein nine patients’
datasets were included in the training set and the model was
tested on data from the remaining held-out patient dataset. We
note that this analysis identified an overestimation (approxi-
mately 7% over actual predictive accuracy) in the findings
reported by Christensen et al.15: In other words, the reported
accuracy in the leave-one-out analysis was erroneously elevated

due to an analysis error. Our current algorithms do not perform
as well on previously unseen patient datasets as on patients
represented within the training set. This means that to deploy the
algorithms in the adaptive DBS device, some labeled data may
need to be obtained from each new patient to update the classifier
model for that patient. Given the recent advances in foundation
models35,36, showing that qualitatively better generalization—
including generalization to entirely new types of tasks—is
achieved when models are trained on very large datasets, this
limitation could be overcome by future work that uses larger
volumes of LFP data. As discussed above, this could potentially
make use of pre-training with unlabeled data, thereby reducing
the quantity of labeled data that is required to achieve good
generalization between individuals.

A critical limitation of our approach to model assessment for
sleep stage classification is the limited capacity for assessing
model performance in real-world neurophysiological conditions
which includes the combined use of dopaminergic medication
and therapeutic stimulation. Our prior work demonstrated that
reliable sleep stage classification was not impeded by typical
medication regimens in the absence of therapeutic DBS. Although
in the present study we did not determine the impact of stimu-
lation on our models’ ability to infer sleep stages, it is reasonable
to hypothesize that simulation will significantly affect local LFP
signatures and thus classifier performance: recent studies have
shown a dose-dependent response in overall beta LFP suppres-
sion with increasing DBS current amplitudes37–39.

With consideration of real-life deployment of this large NN on
theoretical IPGs, we assume that model training will be per-
formed offline, and the resulting model will be embedded in the
IPG for use. In the case of a deployed trained model, given that
the inference time of our model is relatively quick (<1 s), the
processing demands would largely depend on memory resources
as the weights and architecture of our defined input data will
require storage for execution and NN predictions. Another cri-
tical consideration for real-life deployment pertains to the per-
formance metrics upon which algorithmic decisions are executed.
We report accuracy as well as providing confusion matrices.
However, it is important to consider the strength and confidence
of the prediction, and relevance of metric when a model is used to
change therapy. In future iterations of this work using a NN to
effect changes in stimulation based on sleep stage classification,
we aim to implement confidence thresholds that prioritize awake-
type stimulation to mitigate risk of harm from false positives of
non-awake states. Finally, an important question for the practical
deployment of adaptive DBS devices is to identify the smallest
and simplest model that can suffice for the adaptive DBS appli-
cation, for the purposes of reducing computational and energetic
cost. However, this was not the goal of the current study, in which
we used externalized DBS leads, with stimulation settings adjus-
ted by a computer with much greater processing power than
those of commercially available implanted pulse generators. Thus,
our current focus was on determining the efficacy of the overall
approach, without substantial concern for hardware limitations.
Once efficacy has been established, a further critical step will be to
minimize the computation needed to obtain reasonable perfor-
mance with the implanted hardware. Based on these considera-
tions, the current study focused on identifying the best models.
Important future work will investigate the performance-
complexity tradeoff.

Altogether, our study points to the feasibility of adaptive DBS
targeted at specific NREM sleep stages and suggests several
paths forward to further optimize the categorization algorithms
that will underlie such a treatment strategy, enabling new
treatments that could reduce the sleep deficits suffered by PD
patients.
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Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The custom code for this work is available on GitHub at https://github.com/UH3-
RestoreSleepPD/sleep_net.
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