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Approximating complex 3D curves using origami
spring structures
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Origami provides a versatile platform for creating intricate three-dimensional (3D) reconfi-

gurable structures through folding techniques. However, the applications of origami patterns

are restricted due to limited deformation modes and complex actuation. Here we explore

origami spring structures as a solution to address these limitations by approximating complex

3D curves with an underactuated scheme. By doing so, we showcase the reconfigurability and

versatility of origami springs while tackling control complexity. Through the introduction of

virtual creases, we simplify non-rigid deformations and enable accurate descriptions of their

3D configurations. Furthermore, we develop inverse kinematics optimization algorithms to

determine optimal configurations closely approximating given 3D curves with full actuation

and underactuated situations. Experimental realization of various 3D curves demonstrates

the feasibility and effectiveness of our proposed approach. This research could find practical

utility in soft robotics, flexible mechanisms, and deployable structures.
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Origami, an ancient art of paper folding, has gained sub-
stantial attention across scientific and engineering dis-
ciplines due to its unique properties. Its ability to

transform flat sheets of paper into intricate three-dimensional
structures through folding techniques has provided a versatile
platform for innovation. Researchers have recognized the
immense potential of origami in the design and fabrication of
structures capable of adaptation, morphing, and reconfiguration,
resulting in notable advancements in fields like aerospace
engineering1, robotics2, and material science3.

Extensive research has been dedicated to exploring various
origami patterns in the domain of reconfigurable structures.
Notable patterns such as Miura pattern4, Kresling pattern5, Ori-
gami ball pattern6, and Yoshimura pattern7 have been extensively
investigated. Each pattern possesses distinct folding modes that
give rise to specific deformation characteristics. For example,
the Miura pattern enables axial expansion and contraction,
making it well-suited for applications requiring compact storage
and transportation8. The Origami ball pattern facilitates radial
expansion, allowing for transformations into spherical
configurations9. The Kresling pattern offers combined twisting
and stretching deformations, providing added flexibility in
achieving desired configurations10. Similarly, the Yoshimura
pattern exhibits bending and compression deformation, enhan-
cing the versatility of reconfigurable folded structures11. Despite
their notable contributions, these patterns often have limitations
in terms of their deformation capabilities, which are specific to
certain modes.

To expand the range of deformation modes in origami struc-
tures, researchers have proposed variant approaches, including
modifying geometry parameters and introducing additional
folding creases to established patterns. These variant designs
allow for great versatility and complexity. For example, the
cylindrical Kresling origami incorporates free-form quadrilateral
unit cells, resulting in diverse conical folded configurations12.
Studies have also explored the addition of extra valley creases in
the Kresling pattern, enabling multiple deformation modes of the
inflated structure13. To achieve more notable shape changes in
the Miura origami, a variation strategy14 or a digital design
technique15 have been introduced during the stacking process.
Another approach involves incorporating stretchable skins into
conventional folding patterns, resulting in dual-mode morphing
and enhanced shape changes16. Moreover, researchers have
developed entirely new origami designs to unlock new possibi-
lities for reconfigurable structures17–19. These innovative
approaches open up new avenues for the exploration and
advancement of reconfigurable origami structures.

While progress has been made in expanding the deformation
modes of reconfigurable origami structures, it is important to
acknowledge that different folding patterns still have limitations
in their specialization of deformation modes. However, origami
springs, formed by folding two paper strips against each other,
offer a wide range of deformation capabilities, including
stretching, twisting, bending, and more. The versatility of origami
spring structures introduces new opportunities for exploring
reconfiguration and achieving complex and multifaceted defor-
mations in origami structures. Despite their potential, current
research primarily focuses on axial stretch-twist coupling20, with
a limited investigation into off-axial deformation. This gap in
understanding the full potential of origami spring structures
motivates further exploration into comprehending and investi-
gating their complete spectrum of capabilities, particularly in
terms of 3D reconfigurability. This research, therefore, aims to
bridge the gap and uncover the intricate multi-model deforma-
tion behavior exhibited by origami springs.

Although the desire to achieve complex 3D shape customiza-
tion in origami structures has long been pursued21,22, it is
important to acknowledge the associated challenges in terms of
actuation and control. As the number of folding degrees of
freedom increases, the need for a greater number of actuators to
achieve reconfigurable shapes becomes apparent. This increased
demand for control presents a huge obstacle. Traditional motor
actuation, for example, requires numerous actuators to fold a
modular robotic arm into a 3D configuration23. Alternatively,
smart actuators such as pneumatic drives2, thermal drives24, and
magnetic drives25 reduce the number of actuators but often
sacrifice actuation simplicity and accuracy. Some researchers have
explored utilizing the dynamics of origami structures for recon-
figuration, allowing a single actuator to switch the structure’s
configuration26. Note that the above approaches are sensitive to
external loading and require high actuation accuracy. The chal-
lenge lies in reconfiguring a flexible origami structure to achieve
complex 3D shapes while using limited actuators, maintaining
simplicity in actuation, and ensuring the accuracy of configura-
tion. To address this challenge, there is a need to explore
underactuated control techniques. Underactuation refers to a
system where the number of control inputs is fewer than the
degrees of freedom, enabling simplified control strategies by
leveraging the compliant elements within the structure. Despite
the potential benefits, the application of underactuated control
techniques for achieving complex shape reconfiguration of ori-
gami structures remains relatively unexplored.

In this study, we present a comprehensive investigation into
the potential of origami spring structures for approximating
complex 3D curves and achieving intricate configurations with a
limited number of actuators. Our research contributes to the
advancement of reconfigurable origami structures and soft
robotics by showcasing the versatility and adaptability of origami
springs while minimizing control complexity. To accomplish this,
we simplify the non-rigid deformation of origami spring struc-
tures into rigid folding by introducing virtual creases. Through
rotation and translation transformations, we establish the spatial
kinematics of origami spring structures, providing an accurate
description of their spatial configuration. In addition, we develop
an inverse kinematics optimization algorithm that determines the
optimal configuration of the origami spring structure to closely
approximate a given 3D curve, such as an ‘S’-shape, ‘J’-shape,
spiral-shape, and other complicated 3D shapes. To address the
underactuated scenario, we further introduce additional con-
straints to the inverse kinematics optimization algorithm,
enabling effective shape customization with limited actuators. To
validate our proposed approach, we fabricate physical prototypes
of the origami spring structures and measure their deformation
behavior, comparing them with the expected results based on our
proposed method. The experimental verifications provide evi-
dence of the feasibility and effectiveness of the proposed
optimization-based approach. By enhancing our understanding of
origami spring structures and proposing control techniques, we
open up possibilities in reconfigurable origami structures, soft
robots, flexible mechanisms, and morphing structures, enabling
the development of more adaptable and efficient solutions.

Results
Geometry and kinematics of origami spring structures. The
origami spring is one of the simplest origami structures that can
be constructed by alternatively folding two perpendicularly
arranged rectangular paper strips of the same size (Fig. 1a).
Generally, origami springs exhibit a similar resting state and
deformation pattern along the axial direction as linear springs
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(left panel in Fig. 1b); however, when external forces are applied
in off-axis directions, various deformation modes can be observed
(right panels in Fig. 1b). To thoroughly investigate the deform-
ability of origami spring structures and eventually achieve precise
spatial shape programmability, a detailed analysis of the geometry
and kinematics of the origami structure is conducted.

Note that the origami spring structure is periodic (Fig. 1c), i.e.,
it consists of repeated arrangements of a basic cell. Therefore,
the geometry of the ith single cell (highlighted in blue in Fig. 1c)
is analyzed in this paper. The cell consists of two square facets,
and the length of their creases is denoted as

ffiffiffi
2

p
a. During

deformation, the square facets undergo an out-of-plane bending
mode. To simplify the analysis, virtual creases (red lines in
Fig. 1d) are introduced along the diagonals of the facets. This
allows for quantifying the non-rigid deformation through the
rotation of the triangular facets. It is worth noting that the
deformation behaviors of the origami structure after introducing
into virtual creases are very close to that of the non-rigid-foldable
origami spring structures, thus facilitating the kinematic
analysis. This also allows us to customize spatial curve design
through inverse kinematics optimization in subsequent studies.
Therefore, the following theoretical and experimental analyses
will be centered around the rigid-foldable origami spring
structures incorporating virtual creases. This approach promises
to provide a more convenient solution for understanding and
manipulating the deformation of non-rigid-foldable origami

structures, facilitating the advancement of both theory and
practical applications.

The simplified unit cell is a one-degree-of-freedom system. Its
folding can be uniquely characterized by folding angle θi (i.e.,
ffDiOiBi, Oi lies in the middle of CiEi). For an origami spring
structure with n unit cells, adjacent cells share a triangular plane
(Fig. 1e, f), so the kinematics can be determined by the rotation
and translation transformation. A detailed derivation of the
kinematics is given in the Methods section.

Utilizing the derived kinematics, we can explore the reachable
workspace of the origami spring structure. Figure 1g showcases
the reachable workspace of an origami spring structure compris-
ing two cells. Within this accessible space, four qualitatively
distinct deformation modes are identified and labeled as C1, C2,
C3 and C4, C1 representing axial stretching, axial compressing,
bending with θ1<θ2, and bending with θ1>θ2, respectively
(Fig. 1h). These fundamental deformation modes can be
combined to reconfigure origami spring structures with multiple
cells into intricate 3D spatial shapes. An example of such a
configuration is depicted in Fig. 1h. This demonstrates the
capability of the origami spring structure to achieve complex and
versatile transformations.

It is noted that while a single cell has only one degree of
freedom, an origami spring structure composed of multiple cells
has multiple degrees of freedom. Effectively tailoring the angles of
constituent cells to approximate intricate spatial curves is a
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Fig. 1 Kinematics of the origami spring structure. a Illustration of the folding process of the origami spring structure. b Photos showing the multi-mode
deformation. c Illustration of a non-rigid-foldable origami spring structure, where the green lines represent the folding creases, and a representative unit cell
is marked in blue. d Simplification of a non-rigid-foldable cell into a rigid-foldable origami by introducing virtual creases (depicted by red lines). e The
rotation and translation transformations of the stacking. The shared facet is denoted in gray. f Illustration of the rigid foldable origami spring structure.
g Schematic diagram illustrating two cells (top panel) and their reachable workspace (bottom panel). Four qualitatively distinct deformation modes are
labeled as C1, C2, C3 and C4, which correspond to axial stretching, axial compressing, bending with θ1<θ2, and bending with θ1>θ2, respectively. h 3D shape
of an origami spring structure achieved by combining the four distinct deformation modes of a cell.
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challenging task, especially given the requirement to minimize the
number of actuators to simplify the control complexity, and this
is one of the issues we will address subsequently.

Approximating 3D curves with full actuation: an optimization-
based approach. Given the rich reconfigurability of origami
spring structures, they have the potential to approximate a variety
of 3D curves. In this section, we elaborate on an optimization
approach that is capable of accurately tuning the actuation angles
of the constituent cells of origami spring structures, facilitating
the approximation of various target curves. Since origami spring
structures usually have a large number of cells and thus a high
aspect ratio, they can be approximated as one-dimensional
structures. To simplify the representation of the 3D shape of the
origami spring structure, we introduce the concept of a center
axis, which represents the characteristics of the origami spring
structure along the length direction while disregarding its cross-
sectional shape. This center axis is defined by points Oi,
(i ¼ 0; 1; � � � ; nþ 1), where nþ 2 represent the total number of
points. The aim is to approximate a target 3D curve, indicated by
the black line in Fig. 2a. To achieve this approximation, we strive
to minimize the distance between the featured points Oi and the
3D curve. The distances can be measured by drawing perpendi-
cular lines from the featured points to the curve, with the points
of intersection denoted as Pi, (i ¼ 0; 1; � � � ; nþ 1). Consequently,
the overall distance is determined by evaluating the distances
between the featured points and their corresponding feet of
perpendicular on the 3D curve. It is important to note that
the first and last points of the origami spring are fixed on the
target 3D curve. Therefore, the overall distance yields
S ¼ s1 þ s2 þ � � � sn, ( si ¼ kOiPik ). The spatial configuration of
the origami spring structure can therefore be obtained by mini-
mizing the overall distance, see the detailed description of the
optimization in the Methods section. The optimization process
can be conducted by classical methods such as Gauss-Newton,
stochastic gradient descent, Particle Swarm Algorithm, or Genetic

Algorithm. Here we use the fmincon optimizer in Matlab for
simplicity, which can successfully find the optimal solution. The
optimization efficiency of these algorithms is not in the focus of
this paper. To showcase the effectiveness of this approach, we first
employ three distinct 3D curves with parametric equation
expressions as target shapes: a ‘C’-shaped curve, a ‘J’-shaped
curve, and a spiral-shaped curve. The parametric equations
representing these curves are provided in Supplementary Notes.

Utilizing the proposed optimization method, we are able to
illustrate the customized shape of the origami spring structure in
Fig. 2b–d. It is evident that the feature points of the structure
closely align with the target 3D curves, indicating a successful
approximation. Noticing that S carries the dimension of length, it
provides a quantitative expression for curve fitting error but
remains scale-dependent. To eliminate the influence of scale, we
introduce the relative error, denoted as e ¼ S=R (R is the total
arc length of the target curve). This adjustment allows for a scale-
independent assessment of fitting accuracy. The resulting relative
errors of the three approximations are all found to be less than
0.66% (see detailed results in Supplementary Table 4). This
signifies a high level of consistency between the customized shape
of the origami spring structure and the target 3D curves,
demonstrating the effectiveness of the proposed optimization
approach in achieving accurate shape customization of the
origami spring structure.

In addition to simple 3D curves with explicit parametric
equation expressions, we explore the customization of more
complex curves, such as a sinusoidal 3D curve with a direct
equation expression and even a monkey tail without an
explicit equation expression. The approach involves transforming
or fitting these 3D curves into parametric equations, which
are then used in conjunction with the proposed method.
Remarkably, the proposed method remains efficient in
customizing the configuration of the origami spring structure,
even for these more challenging curves. Figure 2e, f illustrates
the results, showcasing the customized shapes of the origami
spring structure that closely approximates the target curves.

Fig. 2 Shape customization of the origami spring structure for approximating diverse 3D curves. This highlight its rich reconfigurability and effectiveness
of the optimization approach. The black and red lines denote the target curve and the featured lines on the origami spring structures. Oi is the featured
point of the origami spring structure, while Pi refers to the point on the 3D curve closest to Oi. The coordinate origin is located at the featured point of the
first cell. a Illustration of the target-oriented shape-reconfiguration of the origami spring structure. Shape customization of the origami spring structure for
approximating b a ‘C’-shaped curve, c a ‘J’-shaped curve, d a spiral-shaped curve, e a sinusoidal-shaped curve, and f a monkey tail-shaped curve.
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The relative error is calculated to be 0.60% and 1.81%,
respectively, which demonstrates the versatility and power of
the proposed method in achieving accurate shape customization,
even when dealing with complex 3D curves that may not have
explicit equation expressions. By transforming or fitting
these curves into parametric equations, the origami spring
structure can still be effectively reconfigured to match the
desired shape, showcasing the adaptability and efficiency of the
approach.

The number of constituent cells plays a crucial role in
determining the reconfigurability of the origami spring structure.
Intuitively, a larger number of cells allows for greater flexibility in
customizing the shape to approximate various 3D curves.
However, this increased flexibility comes at the cost of structural
complexity. We reconsider the same 3D curves from Fig. 2b–d
but with different numbers of cells. It is observed that with a
small number of cells, the approximation of the three curves is
poor (Fig. 3). However, as more cells are incorporated into the

Fig. 3 Effects of the number of constituent cells on the approximation of various 3D curves. n refers to the number of constituent cells. Approximation
results for a a ‘C’-shaped curve, b a ‘J’-shaped curve, and c a spiral-shaped curve. The number of constituent cells ranges from 10 to 26, and the
corresponding approximating error is depicted in the bottom right panel in each subplot.
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structure, the shape reconfigurability is greatly enhanced,
resulting in decreased relative errors. This improvement becomes
less evident as more cells are added. Eventually, when a sufficient
number of cells is used, the error reduction becomes marginal.
This suggests that an optimal balance can be achieved between
the structural complexity and the approximating capability of the
origami spring. By carefully selecting the number of constituent
cells, it is possible to optimize the design of the origami spring,
achieving a trade-off between the structural simplicity and the
accuracy of the approximation.

Approximating 3D curves with underactuated origami spring:
an optimization-based approach. In practical applications,
controlling multiple independent origami spring cells to achieve a
desired target configuration can be challenging and resource-
intensive, requiring a large number of actuators. This can result in
increased fabrication and control costs. Therefore, we explore the
possibility of achieving similar shape reconfigurability with fewer
independent actuators, aiming to strike a balance between the
achievable shape complexity and the control complexity, making
it more practical and cost-effective in real-world applications.

In the scenario where there are m (m≤ n) independent
actuators, the folding angles of the actuated unit cells are denoted
as control angles γj (j ¼ 1; 2; � � � ;m). Theoretically, each cell θi
(j ¼ 1; 2; � � � ; n) can take one of the control angles. Particularly,
when m ¼ n, the control angle and the folding angle correspond
to each other. Consequently, there can be millions of
different combinations, resulting in a huge computation burden.
To alleviate this computational challenge, we introduce the
Lagrange multiplier method by minimizing the modified
target Sþ λ∑n

i¼1 ðθi � γ1Þ2ðθi � γ2Þ2 � � � ðθi � γmÞ2, where λ is
the Lagrange multiplier which takes a large number in the
optimization. Therefore, the folding angle θi would automatically
approximate one of the control angles in order to minimize the
overall loss. This process aims to find an initial approximation of
the folding angles, which is defined as the first optimization. After
the first optimization, although the folding angles are very close to
the control angles, there may still be small differences between
them. To further address this discrepancy, we proceed with a
second optimization step. In this step, we directly set the close
folding angles to be equal to the corresponding control angles. By
doing so, we reduce the number of independent variables to be
optimized. As a result, in the second optimization, there are only
m independent control angles that need to be optimized. The
remaining folding angles have already been set to their
corresponding control angles, eliminating the need for further
adjustment. Details of the optimization method are presented in
the Methods section. By conducting these two optimization steps,
we are able to effectively approximate the desired shape while
reducing the number of independent variables, which helps to
streamline the optimization process and reduce computational
complexity.

To assess the efficiency of the proposed optimization approach,
we apply it to approximate the aforementioned three curves using
limited independent actuators. For ‘C’ and spiral-shaped curves,
the independent actuators are two, while for the ‘J’-shaped curve,
the independent actuators are set as three. While the spiral-
shaped curves may appear visually complex, they share the same
deformation mode as the ‘C’ curve, requiring the contraction of
unit cells on one side. The primary difference lies in the degree of
contraction, leading to the use of two actuators for both shapes.
In contrast, the deformation mode for the ‘J’-shaped curve is
more complex, where the upper section stays straight while the
lower section forms a ‘C’ shape, which requires three actuators to
realize. After the first optimization step, the resulting

configuration of the origami spring structure exhibits a favorable
agreement with the target curves (top panels in Fig. 4a–c),
yielding a relative error of 0.32%, 0.91%, and 1.63%, respectively.
The optimized folding angles are presented in Supplementary
Tables 1–3. Remarkably, after the second optimization, where
cells with similar angles are made equal to the corresponding
control angles, the configurations of the origami spring structures
remain very close to the given 3D curves (bottom panels in
Fig. 4a–c). This observation highlights the remarkable ability of
the underactuated origami spring structure to approximate
various 3D curves.

It is noteworthy that the results for the ‘C’ and the spiral-
shaped curves exhibit similarities. Specifically, both of them
require two independent actuators and share the same arrange-
ment of actuators. The only variation lies in the values of the
actuation angles (Supplementary Table 1 and Supplementary
Table 3). Through a systematic exploration of potential actuation
angles, this deterministic structure demonstrates superior recon-
figurability, encompassing ‘C’-shaped and spiral-shaped curves,
as well as various other intricate configurations (see details in
Supplementary Discussion 1). This observation underscores that
the same arrangement of drivers can realize multiple distinct
spatial configurations, thereby affirming the rich reconfigurability
inherent in origami spring structures, even when they are
underactuated.

When dealing with more complicated 3D curves, such as
the sinusoidal curve shown in Fig. 4d, it becomes evident that a
structure with only 2 actuators is insufficient for accurate
approximation (left panel of Fig. 4d). In such cases, more
actuators need to be incorporated to enhance the reconfigurability
of the origami spring structure and improve the approximation
accuracy. By increasing the number of independent actuators, a
better fit to the target curve can be achieved. In the extreme case,
if there are enough independent actuators to match the number
of unit cells, the problem degenerates to full actuation (Fig. 2e),
which notably improves the approximation. It is important to
note that the computed outputs for the number of independent
actuators and their control angles are not unique. Given a target
curve, there can be multiple optimization results, all of them
corresponding to good fitting accuracy, but the optimized
number of actuators and the actuation angles are different. In
practical applications, it is not always feasible or cost-effective to
incorporate a large number of independent actuators. Therefore,
it is important to consider the intermediate situation where the
number of actuators is limited. Figure 4d provides insight into the
relationship between the fitting error and the number of
independent actuators. As expected, the fitting error decreases
as the number of independent actuators increases. This suggests
that a greater number of actuators enhances the reconfigurability
of the origami spring structure, leading to an improved
approximation of the 3D curve. However, it is important to note
that the rate of improvement in fitting error diminishes as more
independent actuators are introduced. This indicates that beyond
a certain threshold, the performance improvement becomes less
evident. The conflict between actuation complexity and reconfi-
gurability can be balanced to achieve a better fit of 3D curves
according to specific requirements. Designers should carefully
weigh the number of independent actuators against the desired
reconfigurability. To effectively approximate a 3D curve, the
configuration needs to be optimized according to given
constraints, taking into account factors such as manufacturing
cost, control complexity, and target accuracy. In practice, we
adopt a pragmatic strategy, starting with a single actuator and
gradually increasing the number. We evaluate the decrease in
fitting error resulting from each additional actuator, comparing it
to a predefined threshold (e.g., 10% for curves in Fig. 4). If the
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reduction falls below this threshold, we consider the marginal
benefit of adding a new actuator negligible and refrain from
further increments. Since our goal is to reconfigure the origami
spring structure to a specified spatial curve with as few actuators
as possible, this incremental approach strikes a balance between
approximation accuracy and actuation cost while minimizing the
computational burden.

Experiments. The primary objective of the experiment is to verify
the effectiveness of the optimization approach in approximating
3D curves, particularly in scenarios where limited actuators are
employed. The experimental setup comprises three key compo-
nents: the origami spring structure, the control system, and the
motion acquisition system (as depicted in Fig. 5). These com-
ponents work together to facilitate the experimental process and
data collection. For motion acquisition, a commercial Vicon
optical motion capture system is employed. This system consists
of 10 high-speed optical cameras that precisely measure, track,
and record the complete motion trajectory and configuration of
the origami spring structure (shown in Fig. 5a). By capturing the
movement of the structure, valuable data is obtained for further
analysis; The control system, on the other hand, consists of servo
motors and custom-designed 3D-printed mounting devices
(shown in Fig. 5b, c). These servo motors serve as the actuators,
responsible for controlling the folding angles of the origami
spring structure. Depending on the number of independent
variables, the control system can provide up to 4 actuators,

offering flexibility in shape customization; To ensure the origami
spring structure’s rigidity during operation, specific materials are
utilized. The facets of the structure are constructed using 3D-
printed polylactic acid (PLA), while the creases are made of
polyethylene film (as depicted in Fig. 5b, d) that are thin
(0.02 mm) and light, and have a high tensile modulus that ensures
minimal stretching deformation during folding, allowing the
facets to rotate about the creases as intended. The above material
selections and fabrication processes provide the necessary stability
and flexibility for the folding motion of the origami spring
structure. In addition, to minimize the effects of facet thickness
on folding, notches were reserved along the edges where facets are
connected. These notches could prevent undesired contact during
the folding process. To facilitate accurate tracking and identifi-
cation by the motion capture system, markers are mounted on the
extension of the origami spring structure. These target points act
as markers, aiding the optical motion capture system in precisely
capturing the structure’s movements and configurations. By
integrating these components and materials, the experimental
setup enables the comprehensive investigation of the origami
spring structure’s behavior, including its folding motion, control
mechanism, and accurate data acquisition.

In this experimental verification, we re-examine the ‘C’-shaped,
‘J’-shaped, and spiral-shaped curves as the target curves. The
actuation angles for achieving these configurations with limited
actuators can be found in Supplementary Tables 1–3. Note that a
subset of unit cells shares identical actuation angles. This allows

Fig. 4 Shape customization of the origami spring structure for various 3D curves with limited actuators after first and second optimization.
a Approximating a ‘C’-shaped curve with 2 actuators, b approximating a ‘J’-shaped curve with 3 actuators, c approximating a spiral-shaped curve with 2
actuators. d Approximating a sinusoidal-shaped curve with different numbers of actuators. The effects of the number of actuators for approximation are
shown in the right panel.
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these unit cells to be driven collectively by a single actuator.
Specifically, we threaded the actuation cable sequentially through
these unit cells with the same actuation angles, which are depicted
with the same color in Fig. 6a–c. This threading strategy enables
synchronized folding of these cells, resulting in coordinated
deformations. Based on the optimization results shown in Fig. 4,
two independent actuators suffice the approximation of ‘C’ and
spiral-shaped curves due to their inherent deformation modes,
while the ‘J’-shaped curve demands three independent actuators
to ensure accurate approximation, as its intricate geometry
necessitates a more complex actuation scheme. The entire
structure is driven by the servo motors fixed to the top acrylic
plate. The actuation length refers to the amount of shortening of
the actuation cable when folding the origami spring structure.
Note that the actuation cable is arranged between vertices Ai and
Ci of each unit cell, the actuation length can then be calculated
from the change in distance between these two vertices, denoted
as ΔkAiCik. Depending on the number of unit cells (denoted as
Mk, k ¼ 1; 2; � � � ;m, see Supplementary Tables 1–3) sharing the
same actuation angle, the total actuation length can be expressed
as MkΔkAiCik.

During the experiment, the servo motors are driven synchro-
nously to actuate the origami spring structure (detailed video

recordings can be found in Supplementary Video). The config-
urations and trajectory of the structure are recorded using
the Vicon optical motion capture system, as shown in Fig. 6d–f.
The captured data provides valuable insights into the behavior
and motion of the origami spring structure throughout
the actuation process. After the actuation, the final state of the
origami spring structure is visualized from the front and
side views in Fig. 6g–i. In order to compare with the experimental
results, we also calculated the theoretical spatial location of
the markers on the extension lines. The obtained curvature
closely resembles the experimental measurement, as shown in
Fig. 6j–l, quantitative comparisons are available in Supplementary
Discussion 2. This indicates the effectiveness of the optimization
method in approximating the desired shapes. However, it is
important to note that there may be slight disparities between
the achieved configuration and the target curve, which primarily
arise from the actuation errors of the individual unit cells.
Specifically, cells near the drive end of the structure tend to have
smaller angles compared to the theoretical values because of
the influence of gravity and friction. Despite these small
variations, the overall shape of the origami spring structure
remains highly consistent with the desired target curve. The
analysis of the experimental results provides valuable insights into
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the limitations and sources of error in the shape customization
process. By understanding these factors, further improvements
and refinements can be made to enhance the accuracy and
reliability of the origami spring structure in approximating
complex 3D curves.

While our current experiments focused on rigid folding
origami structures with virtual creases, we recognize their
limitations in representing the flexibility of origami spring
structures typically made from flexible materials. Our future
research direction will involve working with flexible materials,
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necessitating the development of more accurate flexible models
and advanced optimization methods. This approach will allow us
to explore the intricacies of flexible origami structures in a more
precise manner, aligning our work more closely with real-world
applications.

Conclusion
In conclusion, our study has explored the potential of origami
spring structures as a solution for approximating complex 3D
curves and achieving intricate configurations using a limited
number of actuators. By introducing virtual creases and incor-
porating rotation and translation transformations, we have
established the spatial kinematics of origami springs, allowing for
accurate descriptions of their spatial configurations. The devel-
opment of inverse kinematics optimization algorithms has further
enabled the determination of optimal configurations that closely
approximate desired 3D curves, facilitating the creation of diverse
and complex shapes. Moreover, our research has addressed the
challenges associated with underactuated situations, unlocking
possibilities in reconfigurable origami structures, soft robotics,
flexible mechanisms, and morphing structures. To validate our
approach, we have conducted a series of experimental verifica-
tions, providing tangible evidence of the feasibility and effec-
tiveness of our proposed method.

As highlighted in this paper, the application of an origami
spring structure to approximate the shape of a monkey tail is a
prime example of the potential application of this structure in the
field of bioinspired soft robotics. The origami spring structure
could be used to develop soft robots emulating monkey tails,
specialized in grasping elongated objects. The significance of our
proposed methodology extends far beyond this special case.
Given the inherent reconfigurability of the origami spring
structure and its ability to accurately approximate diverse three-
dimensional shapes under the proposed optimization-based
approach, it opens the door to exploring and implementing a
wide array of biomimetic structures. For instance, structures
similar to an elephant trunk, a squid tentacle, or an inchworm
body can be realized using the proposed method. These biomi-
metic structures have excellent adaptability to various grasping
and locomotion scenarios, thereby providing unlimited possibi-
lities for future soft robot development.

Methods
Geometry and kinematics of origami spring structures. The
simplified unit cell is a one-degree-of-freedom system. Its folding
can be uniquely characterized by folding angle θi (i.e., ffDiOiBi,
Oi lies in the middle of CiEi). Therefore, the coordinates of each
vertex can be derived by

OiAi
��! ¼ �OiCi

��!
;

OiDi
��! ¼ OiBi

��!
cos θi þ ðOiBi

��!
´AiCi
��!Þ sin θi;

CiEi
��! ¼ CiAi

��!
cos βi þ ðCiAi

��!
´DiBi
��!Þ sin αi;

8>><
>>: ð1Þ

where folding angle αi (i.e., ffAiEiCi) is a function of θi:

αi ¼ arccos
1� sin θi
3þ cos θi

� �
: ð2Þ

For an origami spring structure with n unit cells, the adjacent
cells share one triangular plane (Fig. 1e), therefore, their
coordinates follow

Aiþ1 ¼ Ci;Biþ1 ¼ Di;Ciþ1 ¼ Ei: ð3Þ
Thus, the kinematics of the ðiþ 1Þth unit cell can be

determined by the rotation and translation transformation. Here,
Oi and Oiþ1 are chosen as origins, and the corresponding

cartesian coordinates are shown in Fig. 1e. Based on the spatial
relationship, the translation vector

Oiþ1
Oi

P and rotation matrix
Oiþ1
Oi

R of coordinate system fOiþ1g with respect to coordinate
system fOig can be derived as follows

Oiþ1
Oi
P ¼ p1 p2 p3 1

� �T
;

Oiþ1
Oi
R ¼

r11 r12 r13
r21 r22 r23
r31 r32 r33

2
64

3
75; ð4Þ

where

p1 ¼ aðcos βi � 1Þ; p2 ¼
a sin βi sin θi;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos θi;jÞ

q ; p3 ¼ a sin βi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos θi;j

2

s
;

r11 ¼ � cos βi; r12 ¼
1� cos βi

Qi
; r13 ¼ �

sin βi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos θi;jÞ

q
Wi

;

r21 ¼ � sin βi sin θi;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos θi;jÞ

q ; r22 ¼
cos θi;j
Qi

� sin βi sin θi;j

Qi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos θi;jÞ

q ;

r23 ¼
2 cos βi sin θi;j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos θi;jÞ

q
sin βi

Wi
;

r31 ¼ �
sin βi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos θi;j

q
ffiffiffi
2

p ; r32 ¼

r33 ¼
ffiffiffi
2

p
sin βi sin θi;j

Wi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cos θi;jÞ

q � 2 cos βi cos θi;j
Wi

;

ð5Þ

Qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2 cos βi �

ffiffiffi
2

p
sin βi sin θi;j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos θi;j

qr
;

Wi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� cos θi;j � cosð2βiÞð1� cos θi;jÞ � 2

ffiffiffi
2

p
sinð2βiÞ sin θi;j=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos θi;j

qr
:

From this, the coordinate transformation matrix of the
adjacent cells yields

Oiþ1
Oi
T ¼

Oiþ1
Oi
R

Oiþ1
Oi
P

0 1

" #
4 ´ 4

: ð6Þ

With the coordinate transformation matrix (6), any vertex
defined in the coordinate system fOig can be derived via their
description in fOiþ1g (denoted as Oiþ1V, Oiþ1V 2 R4 ´ 1)

OiV ¼ Oiþ1
Oi
TOiþ1V: ð7Þ

Similarly, the vertex defined in the coordinate system fO1g can
be written as

O1V ¼ O2
Oi
TO3
Oi
T � � � On

On�1
TOnV: ð8Þ

Using this approach, it becomes possible to determine the
position of any vertex within the origami spring structure relative
to the base coordinate system. Consequently, a wide range of
deformation modes exhibited by the origami spring structure can
be accurately described and analyzed using this methodology.

Generalized algorithm for approximating 3D curves with full
actuation. The overall distance is determined by the sum of the
distances between the featured points and their corresponding
feet of perpendicular on the 3D curve. It is important to note that
the first and last points of the origami spring are fixed on the
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target 3D curve. Therefore, the overall distance yields

S ¼ ∑
n

i¼1
si; si ¼ kOiPik : ð9Þ

The spatial configuration of the origami spring structure can
therefore be obtained by solving the following optimization
problem:

min
θ

S ðθ1; θ2; � � � ; θnÞ;
subject to

kO0P0k ¼ 0; kOnþ1Pnþ1k ¼ 0:

ð10Þ

In this paper, the 3D curves are described by parametric
equations

x ¼ gðtÞ; y ¼ kðtÞ; z ¼ mðtÞ; t 2 ½tmin; tmax�: ð11Þ
Therefore, the feet of perpendicular Pi can be easily determined

by

min
ti

xOi
� gðtiÞ

� 	2
þ yOi

� kðtiÞ
� 	2

þ zOi
�mðtiÞ

� 	2
; ð12Þ

and the optimization problem can be rewritten as

min
θ;t

S ðθ1; θ2; � � � ; θn; t1; t2; � � � ; tnÞ;

subject to

xO1
� gðtminÞ

� 	2
þ yO1

� kðtminÞ
� 	2

þ zO1
�mðtminÞ

� 	2
¼ 0;

xOn
� gðtmaxÞ

� 	2
þ yOn

� kðtmaxÞ
� 	2

þ zOn
�mðtmaxÞ

� 	2
¼ 0:

8><
>:

ð13Þ
The optimization process is conducted using the fmincon

optimizer in Matlab, which could successfully find the optimal
solution.

Generalized algorithm for approximating 3D curves with
underactuation. In the scenario where there are m (m≤ n)
independent cells and the control angles are denoted as γj
(j ¼ 1; 2; � � � ;m), each cell θi (j ¼ 1; 2; � � � ; n) could take one of
the control angles. We introduce the Lagrange multiplier method.
Specifically, the large number of possible combinations could be
approximately satisfied by solving the following optimization
problem:

min
θ;t;γ

S ðθ1; θ2; � � � ; θn; t1; t2; � � � ; tnÞ þ λ ∑
n

i¼1
ðθi � γ1Þ2ðθi � γ2Þ2 � � � ðθi � γmÞ2;

subject to

xO1
� gðtminÞ

� 	2
þ yO1

� kðtminÞ
� 	2

þ zO1
�mðtminÞ

� 	2
¼ 0;

xOn
� gðtmaxÞ

� 	2
þ yOn

� kðtmaxÞ
� 	2

þ zOn
�mðtmaxÞ

� 	2
¼ 0;

8><
>:

ð14Þ
where λ is the Lagrange multiplier which takes a large number in
the optimization. Therefore, the cell angle θi would atomically
approximate one of the control angles in order to minimize the
overall loss. This process aims to find an initial approximation of
the cell angles, which is defined as the first optimization.

After the first optimization, although the cell angles are very
close to the control angles, there may still be small differences
between them. To further address this discrepancy, we proceed
with a second optimization step. In this step, we directly set the
close cell angles to be equal to the corresponding control
angles. By doing so, we reduce the number of independent
variables to be optimized. As a result, in the second optimization,
there are only m (m≤ n) independent control angles that need to
be optimized. The remaining cell angles have already been set to
their corresponding control angles, eliminating the need for

further adjustment:

min
t;γ

S0 ðγ1; γ2; � � � ; γm; t1; t2; � � � ; tnÞ;

subject to

xO1
� gðtminÞ

� 	2
þ yO1

� kðtminÞ
� 	2

þ zO1
�mðtminÞ

� 	2
¼ 0;

xOn
� gðtmaxÞ

� 	2
þ yOn

� kðtmaxÞ
� 	2

þ zOn
�mðtmaxÞ

� 	2
¼ 0:

8><
>:

ð15Þ

We define this process as the Second optimization. By
conducting these two optimization steps, we are able to effectively
approximate the desired shape while reducing the number of
independent variables, which helps to streamline the optimization
process and reduce computational complexity.

Data availability
The data that support the plots within this paper and other findings of this study are
available from the author upon reasonable request

Code availability
The code that supports the findings of this study is available from the corresponding
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