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A data assimilation method to track excitation-
inhibition balance change using scalp EEG
Hiroshi Yokoyama 1,2✉ & Keiichi Kitajo1,3✉

Recent neuroscience studies have suggested that controlling the excitation and inhibition (E/I)

balance is essential for maintaining normal brain function. However, while control of time-

varying E/I balance is considered essential for perceptual and motor learning, an efficient

method for estimating E/I balance changes has yet to be established. To tackle this issue, we

propose a method to estimate E/I balance changes by applying neural-mass model-based

tracking of the brain state using the Ensemble Kalman Filter. In this method, the parameters of

synaptic E/I gains in the model are estimated from observed electroencephalography signals.

Moreover, the index of E/I balance was defined by calculating the ratio between synaptic E/I

gains based on estimated parameters. The method was validated by showing that it could

estimate E/I balance changes from human electroencephalography data at the sub-second

scale, indicating that it has the potential to quantify how time-varying changes in E/I balance

influence changes in perceptual and motor learning. Furthermore, this method could be used

to develop an E/I balance-based neurofeedback training method for clinical use.
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A balance between synaptic excitation and inhibition (E/I)
plays a crucial role in the neural mechanisms underlying
social behavior, neuropsychiatric disorder-related symp-

toms, perceptual performance, sleep function, and synaptic
homeostasis. For example, an animal study has shown that
synaptic E/I imbalance within the prefrontal cortex leads to
autistic-like social dysfunction1. In the context of human neu-
roscience, studies using concurrent transcranial magnetic stimu-
lation and electroencephalography (TMS-EEG) recordings have
reported evidence of a relationship between cortical GABAergic
inhibition/glutamatergic excitation and psychiatric disorders2,3.
Therefore, the disruption of E/I balance in the human brain could
also lead to social dysfunction. With the recent advances in
neurotransmitter imaging using magnetic resonance spectroscopy
(MRS), the in-vivo E/I balance can be evaluated within the intact
human brain. For instance, two human studies suggested the
essential role of controlling E/I balances for the consolidation of
perceptual and motor memory4,5. Both studies indicated that the
excitation-dominant changes in E/I balance resulting from down-
regulation of GABA concentration played a role in facilitating
plastic changes during perceptual and motor learning. In addi-
tion, one of these studies4 revealed that the continued training of
a skill after performance improvement (i.e., overlearning) led to
the enhancement of inhibition-dominant changes in E/I balance
and consolidation of synaptic plasticity, resulting in the stabili-
zation of perceptual learning. Therefore, it is important to track
time-varying changes in E/I balance to understand the functional
mechanisms of perceptual learning. However, the temporal
dynamics of changes in E/I balance during perceptual learning are
still unknown since temporal changes in in-vivo neuro-
transmitters are difficult to track on a moment-to-moment basis
because it takes about 10 min for MRS to acquire data from a
region of interest. To address these issues, it is important to
establish a method that can measure temporal changes in E/I
balance in the intact human brain on a moment-to-moment
basis.

The changes in E/I balance can be considered as changes in
synaptic current mediated by glutamatergic excitation and
GABAergic inhibition. Thus, E/I balance changes would lead to
changes in the dynamics of postsynaptic potentials, local field
potentials, and scalp EEG. We predicted that the activity in
human scalp EEG would reflect the temporal dynamics of E/I
balance. In fact, recent TMS-EEG studies suggested that TMS-
evoked potentials (TEP) in scalp EEG reflected both GABAergic
and glutamatergic mediated functions2,3,6,7. However, to our
knowledge, an efficient method to directly quantify the E/I ratio
using only observed EEG signals has not been established. To this
end, we propose a new model-based method to estimate temporal
changes in E/I balance from observed EEG signals by applying
neural-mass (NM) model-based tracking of the brain state using
the Ensemble Kalman Filter (EnKF). The EnKF8,9 was developed
to assimilate the nonlinear dynamical models with observed data.
In the field of control theory, the nonlinear Kalman filter scheme
(including the EnKF) is applied not only to predict time-series
data but also to estimate model parameters. Furthermore, com-
putational studies indicated that the time-evolving dynamics of
EEG signals (EEGs) can be formulated as a nonlinear dynamical
system, such as in the NM model10, which models interactions
between pyramidal cells, excitatory interneurons, and inhibitory
interneurons. Based on the above, we assumed that, by directly
assimilating the NM model to observed human scalp EEGs, the
temporal changes in E/I balance could be quantified according to
the NM model parameters representing the E and I synaptic gains
estimated from the observations. Our proposed method to eval-
uate the in-vivo E/I balance in the brain has the potential to be an

effective way of overcoming the above-mentioned limitation of
the prior method.

Here, we introduce an overview of our proposed method. In
this method, to predict the time-series of the observed EEGs and
estimate the NM model parameters in parallel, the single-channel
time-series of the EEGs are sequentially fitted to an NM model10

using variational Bayesian noise adaptive constrained EnKF
(vbcEnKF) on a sample-by-sample basis. Using the estimated
parameters reflecting the E and I synaptic gains, the temporal
changes in the ratio of E and I postsynaptic activities are eval-
uated as a putative index of the model-based E/I balance (mE/I
ratio).

To validate our proposed method, two datasets were analyzed.
First, we applied our proposed method to the synthetic data
generated by the NM model with known temporal changes in the
model parameters. By doing so, we confirmed that the estimated
model parameters obtained using our method were consistent
with the exact model parameters. Next, we applied our method to
an open dataset of experimental EEG signals measured from
healthy humans while sleeping11. In this way, we tested whether
our proposed method could detect the time-varying changes in E/
I balance during sleep from observed EEG signals.

Results
Proposed method. In our proposed method, we evaluate the
time-varying changes in the E/I ratio according to the parameters
reflecting the E and I synaptic gains in the NM model (see the
description for the NM model parameters A and B in “Methods”
section). The single-channel time series of observed EEGs are
sequentially fitted to the model based on the data assimilation
scheme using vbcEnKF. We provide an outline of our proposed
method, especially concerning how the time-varying changes in
the E/I balance are estimated from observed EEGs using
vbcEnKF. For more mathematical details on vbcEnKF, please see
the Methods section and Supplementary Methods.

In this study, we assumed that the observed EEGs yt could be
formulated as the following state-space form of the NM model:

xtþ1 ¼ f ðxtÞ þ ζ t ; with ζ t � N ð0;QÞ;
yt ¼Hxt þ wt ; with wt � N ð0; η�1

t RÞ and ηt � Gðα; βÞ;
ð1Þ

where xt ¼ vt ; θt
� �T

stands for the state variables containing the
NMmodel variables vt and the model parameters θt. The variableH
indicates the linear coefficient for the observation model. The

function f(xt) is formulated as f ðxtÞ ¼ vt þ
R tþ1
t gðvt ; θtÞdt; θt

n oT
,

where the term
R tþ1
t gðvt ; θtÞdt indicates the numerical integral of

the NM model g(vt, θt), which is implemented by the fourth-order
Runge-Kutta method with time-step Δt. In our method, Δt is set to
the sampling interval of the observed data. Detailed descriptions of
the NMmodel are provided in the Methods section. The variable ζt
represents the state noise that follows the Gaussian distribution
N ð0;QÞ. The variables wt and ηt are the observation noise and
noise scaling factor that follow the Gaussian distribution
N ð0; η�1

t RÞ and gamma distribution Gðα; βÞ, respectively. Q and
R are the fixed covariance parameters for the state and observation
noise, respectively. In our method, the state xt and observation yt
follow Gaussian distributions as xt � N ðxt ; PtÞ and
yt � N ðHxt ; η�1

t RÞ, respectively. To estimate the state xt and the
noise scaling factor ηt from the observation yt, the following
equation based on Bayesian theory can be applied:

pðxt ; ηtj y1:tÞ / pðytj xt ; ηtÞ � pðxt ; ηtj y1:t�1Þ; ð2Þ
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where y1:t indicates the observation set as {y1, y2, …, yt}. In such a
case, if xt and ηt are independent, the joint posterior distribution
p(xt, ηt ∣ y1:t) in equation (2) can be solved by minimizing the
Kullback-Leibler divergence between the variational Bayesian
approximation q(xt)q(ηt) and the exact distribution p(xt, ηt ∣ y1:t)12:

argmin : DKL½qðxtÞqðηtÞ k pðxt; ηtj y1:tÞ�: ð3Þ
In our proposed method, by combining the solution to equation
(3)12–16 and the constrained EnKF-based17–20 state estimation
scheme (which we named vbcEnKF), we can derive an estimation
rule of the state xt ¼ fvt ; θtgT and noise scaling factor ηt (see the
Methods section and Supplementary Methods for more details on
vbcEnKF). On the basis of these solutions, the time-varying
changes in the model variable vt and parameter θt can be estimated
from the observed EEGs yt on a sample-by-sample basis. Since the
estimated θt is containing the parameters representing the E and I
synaptic gains, i.e.,A(t) and B(t) in the NMmodel (see theMethods
section for more details), the time-varying changes in the E/I
balance can be quantified by calculating the ratio of these
parameters. Therefore, the evaluation index of the E/I ratio (mE/I
ratio: mE/I(t)=A(t)/(A(t)+ B(t))) can be calculated from the
estimated θt. Using this index, we can directly estimate the time-
varying changes in the E/I ratio from the observed EEG signals. A
schematic of this proposed method is shown in Fig. 1.

Verification with numerical simulation. To confirm whether
our proposed method can correctly estimate the temporal chan-
ges in model parameters from the observed data, we applied our
method to synthetic data generated by an NM model with known
parameter changes. Moreover, as described in the Methods sec-
tion, our proposed method applied the combination approach of
EnKF with a variational Bayesian noise adaptive algorithm12–16 to
avoid reduction in estimation accuracy caused by the non-
stationarity of the observation noise. Therefore, we also evaluated
whether the estimated covariance of observation noise was con-
sistent with exact noise covariance containing the synthetic EEG
signal. In addition, since the EnKF is based on the sequential
Monte Carlo (sMC) method for Bayesian probability estimation,
both the initial seed value and ensemble size for the random

sampling should affect the error of state estimation. Therefore, to
compare the prediction error according to the ensemble size and
initial random seed of sMC sampling, we selected ensemble sizes
from 40 to 500 with 20 steps and applied these to the same
synthetic data 50 times with a different initial random seed for
each ensemble size (see the Methods section for a more detailed
description of simulation settings).

The results of this validation are shown in Figs. 2 and 3.
Figure 2 shows examples of state estimation results with Nens= 40
and 200. While the predicted EEG time series was similar to the
exact synthetic EEG between both ensemble size conditions
(Fig. 2a, d), the estimation of the mE/I ratio tended to be accurate
with respect to the increase of ensemble size (Fig. 2b, e).
Moreover, the estimation of the model parameters also tended to
be accurate depending on the increase of ensemble size (Fig. 2c,
f). To quantitatively reveal the prediction skill according to the
ensemble size in our method, we then assessed the accuracy of
EEG signal prediction and observed the estimated noise
covariance (Fig. 3). As shown in Fig. 3a, the prediction error of
the EEG signal, based on the mean absolute error score, showed a
tendency toward decreasing the error with an increase in the
ensemble size Nens. This tendency was also found in the
estimation results of observation noise covariance (Fig. 3b).
Moreover, estimated noise covariance converged to exact noise
covariance with Nens≥ 200.

In summary, the proposed approach was able to predict the
model states and estimate parameters, and Nens≥ 200 was
required to guarantee an accurate prediction with a smaller
prediction error.

Sleep EEG analysis. To confirm the neurophysiological validity of
our proposed method, we applied it to real human EEG data
obtained from ref. 11. The main aim of this validation was to
assess whether our proposed method can track the sleep-
dependent changes in the E/I balance between nonrapid eye
movement (NREM) and rapid eye movement (REM) stages, such
as those that are reported in both animal and human studies21,22.
Moreover, in the following analysis, we also compare the eva-
luation results between a prior method of EEG-based E/I ratio

Fig. 1 Overview of the proposed method. The single-channel time-series data from observed electroencephalography (EEG) are sequentially predicted by
a neural-mass (NM) model using the variational Bayesian noise adaptive constrained Ensemble Kalman Filter (vbcEnKF), and the state variable xt, which is
containing the parameters A and B representing the E and I synaptic gains in the model, is estimated from the observed EEGs yt. Based on our assumption
that the changes in the excitation-inhibition (E/I) balance are reflected by changes in the estimated model parameters A and B, we propose the model-
based evaluation index for the E/I ratio: (mE/I ratio=A/(A+ B)).
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analysis23 and our proposed method. The dataset from ref. 11

includes EEG recorded during day-night periods (over around
20 h) from healthy participants at their home. The sleep-stage
markers were scored manually by referring to recorded signals,

and a more detailed description of the task settings is provided in
the original paper11. In general, when sleeping, EEG oscillations
between the delta and lower beta frequency band change
depending on the sleep stages, such as NREM or REM sleep.

Fig. 2 Prediction of electroencephalographic (EEG) time-series data and estimation of unobservable model parameters using synthetic EEG data.
Comparison between the original EEG data and typical predicted EEG results obtained from the first trial out of 50 trials with ensemble sizes of Nens= 40
and 200, respectively. The upper panels in (a) and (d) show the whole time series of synthetic and predicted EEG. The lower three panels in (a) and (d) are
enlarged views of the prediction results for each time interval. Blue and orange lines indicate the exact and predicted values of the EEGs. b, e Estimations of
the model-based excitation-inhibition (mE/I) ratio obtained from 50 trials with ensemble sizes of Nens= 40 and 200, respectively. c, f Estimations of the
five parameters, A, a, B, b, and p, obtained from 50 trials with ensemble sizes of Nens= 40 and 200, respectively. Blue and orange lines in (b–f) indicate
the time series of exact values and the mean of the estimations. Gray color lines in (b–f) indicate the estimated value of each parameter obtained from 50
trials.

Fig. 3 Effects of ensemble size on estimation accuracy. a Violin plots of prediction error scores as a function of the number of ensembles. The probability
densities in these violin plots were estimated using a kernel density estimation method based on the samples obtained from 50 trials. The error bar
indicates the maximum and minimum value of samples. The middle line of the error bar shows the median value of the samples. b Corresponding
estimated observation noise covariance as a function of the number of ensembles. The red dashed line indicates the exact noise covariance of synthetic
electroencephalographic data.
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Moreover, recent animal and human studies in sleep neurophy-
siology have suggested that sleep regulates E/I balance21,22. In
particular, Tamaki et al.22 reported that the changes in the E/I
balance in the early visual area are sleep-stage dependent. Using
simultaneous MRS, the authors found that modulation of the E/I
balance during sleeping played a role in stabilizing visual learning.
Therefore, we applied our method to human sleep EEG data to
determine whether it could track changes in the E/I balance
according to the NREM/REM sleep stage, and compared the
results from our method with those obtained from a prior EEG-
based E/I balance estimation method23 (hereafter called the E/I
slope method. See the Methods section for details). For this
analysis, we used EEG data from 19 healthy participants who
showed typical transitions between the sleep stages during the
first NREM (Stage 1, Stage 2, and Stage 3/4) and REM periods.
Moreover, in the following validation tests, we used an EEG
interval from the first 20-min period before sleep onset to the end
of the first REM period for each participant. In the following
analysis, the interval from the first 20-min period before the sleep
onset was defined as the awake period.

A typical result of the time-series prediction of EEG in one
participant (ID: 4032) is shown in Fig. 4. Our method correctly
tracked the time-evolving dynamics of the original EEG signal
within the sleep and awake intervals (Fig. 4b–d). The results of
the time-varying changes in the mE/I ratio estimated by our
proposed method for two typical participants are shown in 5 a, b.
In our method, while the estimated E/I ratio in the NREM period
increased (i.e., synaptic gain of excitatory interneurons tended to
be dominant during NREM periods), the value in the REM period
decreased (i.e., synaptic gain of excitatory interneuron tended to
be suppressed during REM periods). This result is consistent with
the experimental results of an MRS study conducted by ref. 22.
Moreover, the mE/I ratio estimated by our proposed method in
the awake period was also smaller than that in the NREM period,
and this was seen in both participants’ data (see Fig. 5a, b). A
similar tendency was reported in an animal study21. In contrast to
the estimations of the E/I ratio by our method, the E/I slope
method proposed by ref. 23 could not identify sleep-dependent
changes in either dataset (Fig. 5c, d).

Next, to address the statistical validity of the E/I results, the
time-averaged E/I ratio of each method (our proposed method
and the E/I slope method) was evaluated for each sleep stage
(Awake, State 1, State 2, State 3/4, and NREM) for all 19

participants (Fig. 6). Then, for each E/I estimation method, the
group data of these time-averaged E/I ratios were subjected to a
Kruskal-Wallis test, which is a rank-based nonparametric version
of a one-way ANOVA. This Kruskal-Wallis test showed that the
time-averaged E/I ratios obtained by our method (i.e., time-
averaged mE/I score) were significantly different across distinct
sleep stages (h-statistics H= 32.1325, p < 0.0001, effect size24

η2H ¼ 0:3126), whereas those obtained by the E/I slope method
showed no significant differences across distinct sleep stages (h-
statistics H= 9.1670, p < 0.0570, η2H ¼ 0:0574). Furthermore, in
the result of our proposed method, by subjecting the evaluated
value to Dunn’s multiple comparison test (two-tailed test) and its
pairwise effect size evaluation25, the time-averaged mE/I ratio in
Stage 3/4 (i.e., NREM Stage 3/4) was significantly higher than
those in the Awake, Stage 2, and REM periods (Stage 3/4 vs.
Awake, p < 0.0001, effect size ϕ2= 0.2454; Stage 3/4 vs. Stage 1,
p= 0.001, ϕ2= 0.1592; Stage 3/4 vs. REM, p= 0.0057,
ϕ2= 0.1249; p values were corrected using the Bonferroni
method; effect size is evaluated with Cramer’s ϕ225; Fig. 6a–c).
Moreover, the mE/I ratio in Stage 2 (i.e., NREM Stage 2) was
significantly higher than in the awake period (p= 0.007, effect
size ϕ2= 0.1209). Other paired comparisons of sleep stages
showed no significant differences for the time-averaged mE/I
ratios (Awake vs. Stage 1, p= 1.00, ϕ2= 0.0102; Awake vs REM,
p= 1.00, ϕ2= 0.0221; Stage 1 vs. Stage 2, p= 0.1610, ϕ2= 0.0610;
Stage 1 vs. REM, p= 1.00, ϕ2= 0.0023; Stage 2 vs. Stage 3/4,
p= 1.00, ϕ2= 0.0265; Stage 2 vs. REM, p= 0.5216, ϕ2= 0.0397).
In contrast to the results of our method, as shown in Fig. 6d–f, we
found lower pairwise effect size (, ϕ2≤ 0.1000) and no significant
difference for any pair of sleep stages in the results of the time-
averaged E/I slope values (prior method).

In summary, these results indicated that changes of the mE/I
ratio estimated by our proposed method using observed EEG
signals were consistent with the experimental evidence reported
by prior studies21,22.

Discussion
In this study, we proposed a new approach to track the time-
varying changes in E/I balance from observed EEG data on a
sample-by-sample basis. Using both numerical and empirical
neurophysiological data, our validation results supported our
assumptions, as follows: (1) Temporal changes in the E/I ratio

Fig. 4 Typical examples of predicted electroencephalographic (EEG) signals. a Prediction result of an EEG signal. Blue and orange lines indicate the time
series of observed and predicted EEG signals, respectively. On the x-axes, the position at time= 0 (min) indicates the sleep onset (onset of nonrapid eye
movement:NREM period). The gray shaded area indicates the rapid eye movement (REM) sleep period. Enlarged views of predicted signals with a 0.1 min
time window for three time intervals around sleep onset (b), middle of NREM (c), and around the end of NREM (i.e., the onset of REM) periods (d). The
sleep stages in this dataset were manually determined by well-trained technicians.
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caused by synaptic current changes are reflected in the dynamics
of scalp EEG, and (2) temporal changes in the E/I ratio could be
evaluated using estimated parameters in the NM model with the
EnKF scheme. Moreover, sleep stage-dependent changes in the
mE/I ratio estimated from sleep EEG data (see Figs. 5 and 6) were
consistent with previous experimental MRS results reported by
ref. 22. Based on these previous results and our own, we suggest
that the proposed method could be applied to human EEG to
reveal the sleep-related mechanisms underlying changes in the E/I
ratio. Moreover, while MRS cannot track time-varying changes in
the E/I ratio because of its inherent measurement limitations, our
method can estimate such time-varying changes using the pro-
posed metric, i.e., the mE/I ratio. This difference in the temporal
resolution for tracking E/I balance changes is the most important
advantage of our proposed method.

In human neuroscience, two methods are used to measure E/I
balance changes in the intact brain. The first one is TEP, which is
based on TMS-EEG26,27. Some experimental evidence obtained
using this method has suggested that TEP changes recorded in
human scalp EEGs reflect both GABAergic-mediated inhibitory
and glutamatergic-mediated excitatory functions6,7. Therefore, by
evaluating TEP using TME-EEG methods, we can determine how
intracortical E/I reflects the neural mechanisms underlying a
neuropsychiatric disorder associated with E/I balance changes2,3.
TEP is assessed by calculating the TMS-triggered averaged EEG
signals with TMS stimulation with around 2 s inter-pulse-
intervals over multiple trials26,28, and TMS-EEG-based evalua-
tions of intracortical E/I require at least 60 trials to define the TEP
component of EEG signals28. Therefore, TEP-based cortical E/I
evaluations are limited to measuring EEG signals at intervals of at

Fig. 5 Comparison of the time-varying changes in the excitation-inhibition (E/I) ratio between our proposed method and the E/I slope method. Typical
examples of the results of our proposed method for two participants. The upper panels of (a) and (b) show the time series of the model-based E/I (mE/I)
ratio estimated from the observed EEG signals by our proposed method. Blue lines indicate the time series of the mE/I ratio. The lower panels in (a) and
(b) show the time profiles of sleep-stage changes. Red dotted lines indicate the sleep onset (onset of nonrapid eye movement: NREM period). Gray-shaded
areas indicate the rapid eye movement (REM) period. c, d Typical examples of the results of the E/I slope method for the same two participants.
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least 2 min (2 s inter-pulse-intervals × 60 trials= 120 s) for the
detection of E/I-related EEG components. The second method
employs in-vivo imaging of brain neural metabolites using MRS.
As mentioned in the Introduction, a recent MRS study4 suggested
that overlearning leads to changes in the inhibition-dominant E/I
balance to enhance stabilization of perceptual learning. In addi-
tion, another study22 suggested that sleep-induced E/I balance
changes play a role in consolidation of the memory of skill
learning before sleep. However, since the MRS method cannot
track time-varying changes in E/I balance due to the imaging scan
time constraint (around 10 min to scan a region of interest4,22), it
is not clear how temporal changes in synaptic plasticity are
involved in consolidating the novel perceptual skill. Taken toge-
ther, TMS-EEG and MRS-based methodologies are cutting-edge
measures for estimating the E/I balance from the in-vivo brain;
however, both methods cannot track time-varying changes in the
E/I balance from moment-to-moment. In contrast to these
methods, the method proposed in this study can overcome these
issues by directly estimating time-varying changes in the E/I ratio
from moment-to-moment in the EEG data on a single-trial basis
and on a sub-second scale. The originality of our proposed
method lies in that the method can reconstruct unobserved fea-
tures of the E/I ratio from observed EEG on a single-trial basis by
applying data assimilation techniques. These advantages suggest
that it could be used to advance understanding of how the
synaptic plasticity changes, reflected in the time-course of E/I

balance at the sub-second scale, are involved in perceptual skill
and its enhancement during a learning task. The proposed
method could find applications in neurorehabilitation. For
instance, it could be used to develop a skill training method based
on E/I balance-based neurofeedback for the neurorehabilitation
of patients with severe motor disorders such as stroke.

Concerning previous studies on local field potentials, one study
proposed a time-frequency analysis-based approach to track
temporal changes in E/I balance from local field potentials23. This
study demonstrated that the slope of the log-log plot of the power
spectral density functions between 30 and 50 Hz in local field
potentials (i.e., 1/f power law exponent in the gamma frequency
band) was correlated with the E/I ratio. Therefore, the authors
proposed a power spectral density-based E/I estimation method
(the E/I slope method). Moreover, a recent study29 applied E/I
slope analysis to human EEG data and found a significant dif-
ference in the E/I balance between awake and REM states.
Therefore, we applied this method (called the E/I slope method in
this paper) as a prior method of EEG-based E/I balance estima-
tion for comparisons with the results of our proposed method. As
shown in Figs. 5c, d, and 6d-f, sleep-dependent changes in the E/I
ratio were not observed when using the E/I slope method, unlike
previous findings29. As mentioned in the Results section, no
significant difference in the results of the E/I slope method were
found, regardless of the sleep stages. The failure of the E/I slope
method to detect sleep-stage changes in our dataset may be

Fig. 6 Comparison of the sleep-state dependent changes in the estimated excitation-inhibition (E/I) ratio between our proposed method and the E/I
slope method. a, d The violin plots were obtained from the samples of the time-averaged E/I ratios of 19 participants for each sleep stage, evaluated by our
proposed method and the E/I slope method, respectively. The error bars indicate the maximum and minimum values of samples. The middle lines of the
error bars show the median values of the samples. The blue dots indicate the samples of the time-averaged model-based E/I (mE/I) ratios for each
participant. b, e Statistical results of Dunn’s multiple comparison tests of each pair of E/I ratios by sleep stage for our proposed method and the E/I slope
method, respectively. p values were adjusted using the Bonferroni method. Asterisks (*) indicate p < 0.01 according to Dunn’s multiple comparison test
with Bonferroni correction. The n.s. means the not significant. c, f The pairwise effect sizes of Dunn’s multiple comparison tests corresponding to the
results in (b) and (e).
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because gamma activity (>30 Hz) in EEG tends to be compro-
mised due to electromyogenic artifacts from cranial and ocular
muscles. Moreover, since the sampling frequency of EEG signals
in the dataset we used was 100 Hz (i.e., the meaningful frequency
components of observed EEG in our dataset were below the 50
Hz), the signal of gamma band oscillations over 50 Hz would not
be properly observed in this dataset. This could be considered
why the E/I slope method cannot efficiently detect the sleep-
dependent changes in E/I balance from EEG data. In practice,
power spectra in the gamma band (especially those greater than
50 Hz) of our EEG data were weaker than those of lower fre-
quency bands. In contrast, our proposed method can detect sig-
nificant differences in the mE/I ratio between sleep stages, even
for situations in which the E/I slope method cannot (Figs. 5a, b,
6a-c). Our method directly focused on frequency bands that
indicate sleep-dependent oscillations under 20 Hz (i.e., delta,
theta, and alpha oscillations) to evaluate the mE/I ratio from
observed EEG data with the vbcEnKF scheme in the NM model.
This contrast between our proposed and prior methods highlights
the advantage of our method, in that it can estimate the E/I ratio
from observed EEG data without relying on signal quality or
sampling frequency. Moreover, by directly assimilating the
observed EEG to the NM model, we can interpret how sleep-
dependent EEG oscillations are caused by the synaptic balance
between excitation and inhibition according to changes in the
estimated E/I ratio. This is another advantage of our proposed
method.

To the best of our knowledge, the first study to adapt data
assimilation techniques in neuroscience research was conducted
by ref. 30. That study reported that an unobserved process of
neuronal dynamics associated with cellular excitability during
seizure can be reconstructed from a single observed membrane
potential by assimilating the neuron model behavior to real
observed data. In the past decade, some other studies have also
used data assimilation techniques30–33. In particular, Kuhlmann
et al.32 proposed that the depth of anesthesia can be tracked by
looking at the changes in predicted model parameters of the NM
model from observed human EEG using the unscented Kalman
Filter. These prior studies applied the state and parameter esti-
mation approach using the nonlinear Kalman Filter or Bayesian
filter for the data assimilation of neural data, as with our pro-
posed method. However, those previous methods did not con-
sider the effect of nonstationary observation noise on the
accuracy of model parameter estimation in the Kalman Filter
scheme. In addition, most neurophysiological models contain
parameter constraints to allow for stable dynamics of its model
behavior; however, the prior methods did not consider this issue
when assimilating the model prediction to observed data. Com-
paring our proposed method with those of the above-mentioned
studies, through use of the vbcEnKF scheme, our method can
track the time-evolving dynamics of observed signals while con-
sidering both the effect of nonstationary observation noise and
parameter constraints in the model. As shown in the results of
numerical simulations (see Fig. 3), since the vbcEnKF can cor-
rectly determine the observation noise scale with the ensemble
size Nens≥200, our proposed method can adaptively predict the
EEG time series and E/I ratio while overcoming the effects of
nonstationary observation noise. These significant advantages of
our proposed method are not seen in those previous conventional
methods.

Despite the advantages of our proposed method, some lim-
itations exist. First, our proposed method can be applied only for
single-channel EEG signal, that is, the proposed method cannot
be applied to estimate the network-level dynamics of EEG signals.
Even in the case of the parameter estimation for a single-column
NM model from observed EEG, we must determine 11 state

variables (six state variables and five model parameters) using the
EnKF. Therefore, if we are to estimate the network-level
dynamics of E/I balance changes from multiple-channel EEG
data, an efficient parameter estimation algorithm with the EnKF
scheme for high-dimensional data needs to be developed. In
addition, when estimating the network-level dynamics of the E/I
balance changes from multiple-channel observed EEGs, the effect
of volume conduction should also be considered. To avoid such
an effect, the application of current source density analysis in the
preprocessing of the EEGs could be considered as a possible
method for accomplishing this. However, to address these issues,
further studies are required. Second, our proposed method
remains the effect of the initial setting for state noise covariance
Q. To avoid reducing estimation performance with nonstationary
observed noise, the scale of observation noise covariance is
recursively optimized using the variational Bayesian noise adap-
tation method. However, the scale of state noise covariance Q is
fixed in our proposed method. To consider the effects of non-
stationarity in both state and observed noise, the variational
Bayesian algorithm we applied in this method should be mod-
ified. Third, in the neurophysiological validity evaluation of the
current study, the EEG data that contained the awake period
during the first NREM/REM cycle were excluded from the ana-
lysis because the effect of interrupted sleep on EEG dynamics and
the analysis condition should be controlled in a comparison of
our estimated results and prior evidence reported in both human
and animal studies. As a result, the EEG analysis we conducted
with our proposed method used a relatively small dataset. From a
statistical viewpoint, statistical tests with small sample sizes often
lead to reduced statistical power and an increased risk of type II
errors. Therefore, caution is necessary when interpreting our
sleep EEG dataset results. However, our post-hoc analysis for the
Kruskal-Wallis test revealed that the time-averaged mE/I ratio,
derived from observed EEGs using our method, significantly
varied across different sleep stages, demonstrating a statistically
valid effect size. We, therefore, conclude that our proposed
method can reliably track sleep dependent changes in E/I ratio
from the EEG data used in this study. However, to determine if
our method can generally track the E/I ratio changes during
different conditions such as cognitive ones, further analysis with
larger EEG datasets is necessary. To address this, in our future
work, we plan to apply our proposed method to a more extensive
EEG dataset focused on cognitive tasks to explore the functional
roles of the E/I balance changes.

Methods
Definition of the NM model. The NM model, proposed by
Jansen and Rit10, is a mathematical model for EEG that is for-
mulated with the evolution of the average postsynaptic potential
(PSP) in the three following interacting neural populations:
pyramidal cells, excitatory interneurons, and inhibitory inter-
neurons. This model can be described using the following six
first-order differential equations10:

_v0ðtÞ ¼ v3ðtÞ;
_v1ðtÞ ¼ v4ðtÞ;
_v2ðtÞ ¼ v5ðtÞ;
_v3ðtÞ ¼AaSigmðv1ðtÞ � v2ðtÞÞ � 2av3ðtÞ � a2v0ðtÞ;
_v4ðtÞ ¼Aa½pðtÞ þ C2SigmðC1v0ðtÞÞ� � 2av4ðtÞ � a2v1ðtÞ;
_v5ðtÞ ¼BbC4SigmðC3v0ðtÞÞ � 2bv5ðtÞ � b2v2ðtÞ;

with; SigmðvÞ ¼ 5:00

1þ exp 0:56ð6:00� vÞ� � ;
ð4Þ
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where variables v0, v1, and v2 represent the postsynaptic potential
of pyramidal cells, excitatory interneurons, and inhibitory inter-
neurons, respectively. The synthetic EEGs generated in the NM
model are calculated by y(t)= v1(t)− v2(t). The fixed constants
Cn (where, n= 1,…, 4) account for the number of synapses
established between two neuron populations. In this study, Cn

was fixed as C1= 135, C2= 108, and C3= C4= 33.75, drawing
from previous studies10. The other five parameters in the NM
model, A, a, B, b and p, are time-variant parameters and the
target-to-state estimation in the vbcEnKF scheme based on
observational EEG data in our proposed method. Parameters A
and B represent the E and I synaptic gains, respectively. These
two parameters control the amplitude of the PSP generated by E
and I interneurons. The parameters a and b indicate the inverse
of the time constant for excitatory PSP (EPSP) and inhibitory PSP
(IPSP). The rhythm of oscillation (dominant frequency band) of
the EEG signals generated in the NM model is configured by a
and b. Parameter p represents the background noise input of the
model. The behavior of the EEG signals generated in the NM
model is bifurcated by the value of p. In this study, p was esti-
mated within the range of 120–320, based on the study by ref. 10

that showed that alpha-like limit cycle behavior was observed in
the generated signal of the NM model when p was distributed in
the above range. Moreover, an interval constraint for estimation
of the inverse of the time constant a in EPSP was chosen as
a= 5–200 to satisfy τe[ms]= 5–200, where τe= a−1. Addition-
ally, the constraint for the inverse of the time constant b in IPSP
was chosen to satisfy τi[ms]= 5–200, where τi= b−1. The
boundary intervals for parameters a and b were selected so that
the NM model could generate delta to beta rhythms, on the basis
of the report by ref. 34.

State and parameter estimation of the NM model. To track the
time-varying changes in the NM model states and parameters, we
applied the modified algorithm of an EnKF scheme. The EnKF is
a well-known recursive data forecasting algorithm for data
assimilation and is used in the research field of weather
forecasting8,9. Moreover, the EnKF works well for predicting time
series of nonlinear dynamical systems. Since the observed EEG
signal can be formulated using a nonlinear system such as the
NM model, the EnKF scheme can be applied to directly estimate
the system’s state and parameters in the NM model from the
observed EEG data. However, the extent of the noise contained in
the time series of observed neurophysiological signals such as
EEG is usually unknown, and the noise component can be
nonstationary. In addition, as we mentioned earlier, when esti-
mating the NM model’s state and its five parameters A, a, B, b
and p from observed EEGs, we gave the boundary constraint for
each parameter so that the signal generated in the NM model
showed EEG-like limit cycle behavior (see Supplementary
Methods for details). To estimate the state and parameters of the
NM model from observed data while considering these issues, we
combined a variational Bayesian noise adaptive algorithm in a
linear/nonlinear Kalman Filter12–16 and constrained state esti-
mation in the Kalman Filter scheme17–20 with a conventional
EnKF8,9. This method is hereinafter referred to as the variational
Bayesian noise adaptive constrained EnKF (vbcEnKF). In this
section, we will give a short description of the vbcEnKF algorithm
for state and parameter estimation in the NM model. A more
detailed mathematical description is given in the Supplementary
Methods.

To apply the vbcEnKF approach to estimate the states and
parameters in the NM model, the six first-order differential
equations in the model were transformed to the state-space form,

as shown below.

_vt ¼

_v0ðtÞ
_v1ðtÞ
_v2ðtÞ
_v3ðtÞ
_v4ðtÞ
_v5ðtÞ

2
666666664

3
777777775
¼

v3ðtÞ
v4ðtÞ
v5ðtÞ

AaSigmðv1ðtÞ � v2ðtÞÞ � 2av3ðtÞ � a2v0ðtÞ
Aa½pðtÞ þ C2SigmðC1v0ðtÞÞ� � 2av4ðtÞ � a2v1ðtÞ

BbC4SigmðC3v0ðtÞÞ � 2bv5ðtÞ � b2v2ðtÞ

2
666666664

3
777777775
¼ gðvt; θtÞ;

ð5Þ
state model:

xtþ1 ¼
vt þ

R tþ1
t gðvt ; θtÞdt

θt

" #
þ ζ t

¼ f ðvt ; θtÞ þ ζ t ;

ð6Þ

where; ζ t � N ð0;QÞ;

observation model:

yt ¼Hxt þ wt

¼ 0; 1;�1; 0; 0; 0½ �;O1 ´ 5� � vt
θt

� �
þ wt ;

ð7Þ

where; wt � N ð0; η�1
t RÞ; ηt � Gðα; βÞ;

where vt ¼ fv0ðtÞ; v1ðtÞ; ¼ :; v5ðtÞgT and θt= {A(t), a(t), B(t),
b(t), p(t)}T indicate the state and parameter vectors of the NM
model, respectively. Note that vtþ1 ¼ vt þ

R tþ1
t gðvt ; θtÞdt was

implemented with the fourth-order Runge-Kutta method with
step size Δt (sampling interval). The variable ζt is state noise that
follows the normal density N ð0;QÞ. Variable wt is observation
noise, which follows the normal distribution N ð0; η�1

t RÞ. More-
over, ηt is a noise scale parameter that follows the gamma
probability Gðα; βÞ. As mentioned above, applying the variational
Bayesian scheme, the observation noise covariance η�1

t R is
adaptively optimized by estimating the noise scale parameter, ηt,
on a sample-by-sample basis12–16. See the Supplementary
Methods for more details.

By applying the above-mentioned state-space form of the NM
model to the vbcEnKF algorithm, model state and parameters
were recursively estimated from observed EEG data on a sample-
by-sample basis. The whole algorithm of this method includes the
following five steps:

1. Initialize the parameters for the probabilities
x0 � N ðx0; P0Þ, ζ0 ~N(0,Q), w0 � N ð0; η�1

0 RÞ, and
η0 � Gðα0; β0Þ.

2. Predict the system’s state based on the current parameters
of the probability density N ðxt ; PtÞ in the state model (see
the Prediction step in Algorithm 1).

3. Get new observed data yobst and update the parameters of
probability densities of the state model and noise scaling
factor ηt (see the Update step in Algorithm 1).

4. After updating the state xt+1, if the constraints for variable
xt+1 are violated, the projection of the updated variable xt+1

in the Update step (see Algorithm 1) is corrected so that the
variables are within a feasible range.

5. Repeat steps 2–4.

For step 1, the initial parameter value of the probability density
for the state variable xt was set at x0 ¼ O1 ´ 11 (Note: xt= {vt, θt},
vt 2 R6, θt 2 R5). The observation noise covariance R was set
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at R= 50 in both the numerical simulation and real EEG
data analysis. The initial setting for Gða0; b0Þ was set to
a0= 1 and b0= 0.5. The state noise covariance Q was
selected differently depending on the analysis. In the
numerical simulation, the covariance Q was fixed as
Q ¼ diag Δt � 10�2 � I1 ´ 6; 10�3 � I1 ´ 5� �� 	

. In the EEG analysis,
Q was fixed as Q ¼ diag Δt � I1 ´ 6; 10�3 � I1 ´ 5� �� 	

. Δt indicates
that the sampling interval was set as Δt= 0.01 in this study. The
number of ensembles Nens for the EnKF scheme was specified in
each analysis (see the following section for more details). The
summary of the whole algorithm of vbcEnKF is shown in
Algorithm 1, and mathematical details are presented in
the Supplementary Methods.

Algorithm 1. The variational Bayesian noise adaptive con-
strained Ensemble Kalman Filter (vbcEnKF) algorithm

(1) Prediction step:

X ðiÞ
t ¼ f ðX ðiÞ

t�1Þ þ vi; withX ðiÞ
t�1 � N ðxt�1; Pt�1Þ and vi � N 0;Qð Þ

xt ¼
1

Nens
∑
Nens

i
X ðiÞ

t ; where;Nens : ensemble size.

Pt ¼
1

Nens � 1
∑
Nens

i
ðX ðiÞ

t � xtÞðX ðiÞ
t � xtÞ

T
n o

þ Q

(2) Update step:

αt ¼ αt�1 þ
N
2
; βt ¼ βt�1; hηtiηt ¼ αt=βt

Yt ¼
1

Nens
∑
Nens

i
YðiÞ

t ; withYðiÞ
t ¼ H � X ðiÞ

t

PYY ¼ 1
Nens � 1

∑
Nens

i
ðYðiÞ

t � YtÞðYðiÞ
t � YtÞ

T
n o

þ hηti�1
ηt
R

PXY ¼ 1
Nens � 1

∑
Nens

i
ðX ðiÞ

t � xtÞðYðiÞ
t � YtÞ

T
n o

Kalman Gain : K ¼PXYP
�1
YY

X ðiÞ
tþ1 ¼X ðiÞ

t þ Kðyobst þ wi � YðiÞ
t Þ; withwi � N 0; hηti�1

ηt
R


 �
xtþ1 ¼

1
Nens

∑
Nens

i
X ðiÞ

tþ1

Ptþ1 ¼Pt � KPYYK
T

βtþ1 ¼ βt þ
1
2

k yobst �Hxtk2 þHTPtH

R

(3) Constraint:

max : ln pðx j yÞ ) min : ðx � xtþ1ÞTP�1
tþ1ðx � xtþ1Þ

such that ; dL ≤Dxtþ1 ≤ dU

x̂L ¼ xtþ1 � Ptþ1D
TðDPtþ1D

TÞ�1ðDxtþ1 � dLÞ
x̂U ¼ xtþ1 � Ptþ1D

TðDPtþ1D
TÞ�1ðDxtþ1 � dU Þ

if dL;n > xtþ1;n : xtþ1;n ¼ x̂L;n
if dU ;n<xtþ1;n : xtþ1;n¼ x̂U ;n

where; n¼f1; ¼ ;Nsg;Ns : # state

Estimation of the mE/I ratio. As mentioned above, the ampli-
tude of the EPSP and IPSP produced by the NM model can be
influenced by the E and I synaptic gain parameters (A, B). These
parameters play a key role in mediating the characteristics of the
synthetic EEGs. Therefore, in our proposed method, A and B
were estimated from observed EEG signals by the vbcEnKF
scheme. Subsequently, the E/I balance is evaluated as the

temporal changes in the ratio of A to B. To track time-varying
changes in this putative E/I ratio, we proposed the index of the E/
I ratio, which we named the model-based E/I ratio (mE/I ratio),
calculated using the following equation:

mE=IðtÞ ¼ ÂðtÞ
ÂðtÞ þ B̂ðtÞ ;

ð8Þ

where ÂðtÞ and B̂ðtÞ are E and I synaptic gain parameters esti-
mated by our proposed method. The value of the mE/I ratio is
sequentially calculated when updating the parameters in the NM
model, on a sample-by-sample basis.

Numerical simulation. To confirm the validity of our proposed
method, we first applied our method to synthetic data generated
by the NM model to clarify whether our method can sequentially
estimate changes in the model parameters. Moreover, since the
EnKF algorithm is based on the sMC method for Bayesian
probability estimation, we considered the following two condi-
tions under which to evaluate the effects of state and parameter
estimation accuracy. First, we tested the effects of the ensemble
size for the sMC method in the EnKF scheme. In this simulation,
the number of ensembles selected ranged from 40 to 500, with
20 steps. Second, we tested the effects of the initial seed of the
random generator in the sMC. Since this value would affect the
time evolution of the state estimation in the NM model, our
proposed method was applied to the synthetic EEG data 50 times
with different initial random seed values for each ensemble size
condition.

The synthetic EEG were generated by the NM model using a
numerical integration with the fourth order Runge-Kutta method
with the time step dt= 0.01 (i.e., a sampling frequency of
100 Hz). The total sample length of the generated data was 3000
(i.e., the total time length of each dataset was t= 30 s). The
generated synthetic EEG data consisted of two segments
separated by the event of the parameter changes. The exact value
of parameters and the timing of the parameter changes are shown
below.

AðtÞ ¼ 3:25 ðt ≤ 15sÞ
4:25 ðt>15sÞ

�
;

aðtÞ ¼100;

BðtÞ ¼ 22 ðt ≤ 15sÞ
19 ðt>15sÞ

�
;

bðtÞ ¼ 50 ðt ≤ 15sÞ
52 ðt>15sÞ

�
;

pðtÞ �N ð220; 22Þ;

ð9Þ

After generating synthetic EEG data with the above parameter
settings, we applied our proposed method 50 times with a
different initial random seed for each ensemble size condition. To
test whether our method could correctly detect the parameter
changes from observed data with noisy sampling, white noise was
added to the synthetic EEG data using N ð0; 1:3Þ. The covariance
of the generated white noise is set to σ2= 1.3 to create a situation
that considers the synthetic observed EEG signals to be strongly
distorted by large observational noise. In this simulation setting,
the synthetic observed EEGs are generated to satisfy the condition
that the signal-to-noise ratio is under 5.0 (i.e., log10ð5Þ � 0:699
dB). As an example, the exact signal-to-noise ratio value of the
certain synthetic observed EEGs was 3.838 (i.e., 0.598 dB).

Next, we evaluated the estimation error score of synthetic EEGs
and the standard deviation of estimated noise covariance, which
was obtained from 50 trials of the estimation for each ensemble
size condition. The estimation error score was calculated using

ARTICLE COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-023-00143-7

10 COMMUNICATIONS ENGINEERING |            (2023) 2:92 | https://doi.org/10.1038/s44172-023-00143-7 | www.nature.com/commseng

www.nature.com/commseng


the mean absolute error function described by the following
equation:

MAE ¼ 1
Nt

∑
Nt

t¼0
jyobs;t � ŷtj; ð10Þ

where yobs,t and ŷt are the observed (exact) and predicted EEG at
time sample t, and Nt is the total number of samples.

EEG analysis with open dataset. To confirm its neurophysiolo-
gical validity, we applied our proposed method to an open EEG
dataset11 to assess whether it could detect changes in E/I balance
between the NREM/REM sleep stages.

The open dataset used consisted of EEG data recorded with a
bipolar montage and a single pair of electrodes located in Pz and
Oz areas based on a 10–10 system (sampling frequency= 100
Hz). In this dataset, the EEG data were obtained from 197
participants in their own homes during day-night periods by
ref. 11. A more detailed description of the task settings is provided
in the original paper. This dataset is available at the following
PysioNet repository: https://physionet.org/content/sleep-edfx/1.0.
0/#ref1. During this validation, datasets that contained awake
periods during the first NREM period in sleep marker data were
excluded to control the analysis conditions and avoid the effect of
interrupted sleep on the EEG activity. As a result, we only used
EEG data of 19 healthy participants who displayed a typical
transition between sleep states during the first NREM and REM
periods. Moreover, in the following validation, we used EEG data
epochs that included the first 20-min period from sleep onset
time to the end of the first REM period for each participant.

Preprocessing of EEG. To reduce the effects of artifacts (e.g.,
nose movement, eye movement, and eye blink signals), we first
applied an artifact removal method with empirical mode
decomposition35,36. A detailed description of this method is
provided in the original articles35,36. After removing artifacts,
EEG data were band-pass filtered between 0.6 and 20 Hz with a
zero-phase finite impulse response filter (the number of taps=
6000; transition with 0.1 Hz; window function=Hanning
window).

E/I ratio evaluation. After preprocessing, the EEG data were
applied the vbcEnKF algorithm, and the mE/I ratio was
sequentially calculated when updating the state and parameters of
the NM model on a sample-by-sample basis. For the statistical
analysis of the mE/I ratio, a temporally averaged mE/I ratio for
the distinct five sleep stages (awake, stage 1, Stage 2, Stage 3/4,
and REM) of each participant was calculated. The Kruskal-Wallis
test was used to examine the differences in the mE/I ratio between
the sleep stages. Moreover, to determine whether there were
significant differences in the rank mean between specific pairs of
sleep-stage-averaged mE/I ratios, Dunn’s multiple comparisons
test (two-tailed test) was also applied after the Kruskal-Wallis test.
Moreover, in both statistical tests (Kruskal-Wallis test and Dunn’s
multiple comparison test), the effect size was also evaluated. In
the Kruskal-Wallis test, the value of effect size was assessed with
the eta squared η2H

24. The pairwise effect size in Dunn’s multiple
comparison test was calculated with Cramer’s ϕ2 25.

Comparison with a prior method. To compare the estimations
of sleep-dependent changes in the E/I ratio between our proposed
method and prior methods, we applied the previous method of E/
I estimation proposed by ref. 23 to the same sleep EEG datasets11

that we used in this study. The previous E/I estimation method23

evaluated E/I balance changes using power spectral density ana-
lysis of EEG signals. As mentioned in the “Result and Discussion”

section, Gao et al.23 found that the slope of the log-log plot of
power spectral density from 30 to 50 Hz (i.e., 1/f power law
exponent in the gamma frequency band) was correlated with the
changes in the E/I ratio based on numerical simulation, which
indicates that the E/I balance can be quantified according to this
slope (hereinafter called the E/I slope method)23. More details on
the E/I slope method can be found in the original article23. The
sleep-dependent E/I balance changes for the EEG datasets used in
this study were also evaluated by applying the E/I slope method,
and these results were compared with those generated using our
proposed method.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The raw sleep EEG dataset obtained by ref. 11 is available at https://physionet.org/
content/sleep-edfx/1.0.0/#ref1. All data used to reconstruct the results described in this
paper are available at Zenodo research repository: https://doi.org/10.5281/zenodo.
10109709.

Code availability
The programming code used to reconstruct all the results in this paper was implemented
using the language Python and is available at Zenodo research repository: https://doi.org/
10.5281/zenodo.10109709.
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