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Photonic signal processor based on a Kerr
microcomb for real-time video image processing
Mengxi Tan1,2,3, Xingyuan Xu4, Andreas Boes 3,5, Bill Corcoran6, Thach G. Nguyen4, Sai T. Chu 7,

Brent E. Little8, Roberto Morandotti 9, Jiayang Wu2, Arnan Mitchell3 & David J. Moss 2✉

Signal processing has become central to many fields, from coherent optical tele-

communications, where it is used to compensate signal impairments, to video image pro-

cessing. Image processing is particularly important for observational astronomy, medical

diagnosis, autonomous driving, big data and artificial intelligence. For these applications,

signal processing traditionally has mainly been performed electronically. However these, as

well as new applications, particularly those involving real time video image processing, are

creating unprecedented demand for ultrahigh performance, including high bandwidth and

reduced energy consumption. Here, we demonstrate a photonic signal processor operating at

17 Terabits/s and use it to process video image signals in real-time. The system processes

400,000 video signals concurrently, performing 34 functions simultaneously that are key to

object edge detection, edge enhancement and motion blur. As compared with spatial-light

devices used for image processing, our system is not only ultra-high speed but highly

reconfigurable and programable, able to perform many different functions without any

change to the physical hardware. Our approach is based on an integrated Kerr soliton crystal

microcomb, and opens up new avenues for ultrafast robotic vision and machine learning.
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Image processing, the application of signal processing techni-
ques to photographs or videos, is a core part of emerging
technologies such as machine learning and robotic vision1,

with many applications to LIDAR for self-driving cars2, remote
drones3, automated in-vitro cell-growth tracking for virus and
cancer analysis4, optical neural networks5, ultrahigh-speed
imaging6,7, holographic three-dimensional (3D) displays8,9, and
others. Many of these require real-time processing of massive
real-world information, placing extremely high demands on the
processing speed (bandwidth) and throughput of image proces-
sing systems. While electrical digital signal processing (DSP)
technologies10 are well established, they face intrinsic limitations
in energy consumption and processing speed such as the well-
known von Neumann bottleneck11.

To overcome these limitations, optical signal processing offers
the potential for much higher speeds2, and this has been achieved
using a variety of techniques including silicon photonic crystal
metasurfaces12, surface plasmonic structures13, and topological
interfaces14. These free-space, spatial-light devices offer many
attractions such as compact footprint, low power consumption,
and compatibility with commercial cameras and optical micro-
scopes. However, they tend to be non-reconfigurable fixed sys-
tems designed to perform a single fixed function. On a more
advanced level, human action recognition through processing of
video image data, has been achieved using photonic
computers15,16. However, these were achieved either in com-
paratively low speed systems15 or in high bandwidth (multi-
TeraOP regime) systems based on bulk-optics that is incompa-
tible with integration16. To date, optical systems, especially those
compatible with integration17, still have not demonstrated that
are capable of processing of large data sets of high-definition
video images and at ultrahigh speeds—enough for real-time video
image processing.

Here, we demonstrate an optical real-time signal processor for
video images that is reconfigurable and compatible with inte-
gration. It is based on components that are either already inte-
grated or have been demonstrated in integrated form, and
operates at an ultrahigh bandwidth of 17 Terabits/s. This is suf-
ficient to process ~400,000 (399,061) video signals both con-
currently and in real-time, performing up to 34 functions on each
signal simultaneously.

Here, the term “functions” refers to signal processing opera-
tions comprised of fundamental mathematical operations that are
performed by the system, which in our case relate to object image
edge enhancement, detection and motion blur. These functions
operate on the input signal to extract or enhance these key
characteristics and include both integral and fractional order
differentiation, fractional order Hilbert transforms, and integra-
tion. For differentiation and Hilbert transforms we perform both
integral order and a continuous range of fractional order trans-
forms. Therefore, while there are 3 basic types of functions that
we perform, with the inclusion of a range of integral and frac-
tional orders we achieve 34 functions in total. Importantly, these
34 functions are all achieved without any change in hardware, but
only by tuning the parameters of the system. Furthermore,
beyond these 34 functions, the range of possible functions is in
fact unlimited given that the system can process a continuous
range of arbitrary fractional and high-order differentiation and
fractional Hilbert transforms.

Our system is comparable to electrical DSP systems but with
the important advantages that it operates at multi-terabit/s
speeds, enabled by massively parallel processing. It is also very
general, flexible, and highly reconfigurable—able to perform a
wide range of functions without requiring any change in hard-
ware. We perform multiple image processing functions in real-
time, which are essential for machine vision and microscopy for

tasks such as object recognition or identification, feature capture,
and data compression12,13. We use an integrated Kerr soliton
crystal microcomb source that generates 95 discrete taps, or
wavelengths as the basis for massively parallel processing, with
single channel rates at 64 GigaBaud (pixels/s). Our experimental
results agree well with theory, demonstrating that the processor is
a powerful approach for ultrahigh-speed video image processing
for robotic vision, machine learning, and many other emerging
applications.

Results
Principle of operation. The operational principle of the video
image processor is based on the RF photonic transversal
filter18–20 approach, as represented by Eq. (1) and illustrated in
Fig. 1a–c(i–iii). We employ wavelength division multiplexed
(WDM) signals to provide the different taps, or channels– each
wavelength representing a single tap/channel. We also use WDM
as a central means of accomplishing both single and multiple
functions simultaneously. The tap delays required by Eq. 1 are
achieved here by an optical delay line in the form of standard
single-mode fiber (SMF) in order to perform the wavelength (i.e.,
tap or channel) dependent delays. We use WaveShaper to flatten
the comb and implement the channel weightings for the trans-
versal filter for each function, as well as to separate different
groups of wavelengths to perform parallel and simultaneous
processing of multiple functions. We used a maximum of 95
wavelengths supplied by a soliton crystal Kerr microcomb that
produced a comb spacing of ~50 GHz. The transfer function of
the system is given by

HðωÞ ¼ ∑
N�1

n¼0
hðnÞe�jωnT ð1Þ

where ω is the RF angular frequency, T is the time delay between
adjacent taps (i.e., wavelength channels), and h(n) is the tap
coefficient of the nth tap, or wavelength, which can be calculated
by performing the inverse Fourier transform of H(ω)18–20. In Eq.
(1), the tap coefficients can be tailored by shaping the power of
comb lines according to the different computing functions (e.g.,
differentiation, integration, and Hilbert transformation), thus
enabling different video image processing functions. For micro-
combs with multiple equally spaced comb lines transmitted over
the dispersive SMF, in Eq. (1) T is given by T ¼ D ´ L ´4λ,
where D is the dispersion coefficient of the SMF, L is the length of
the SMF, Δλ is the spectral separation between adjacent comb
lines (in our case 48.9 GHz) and the RF bandwidth of the system
is given by f= 1/T. The optical delay lines play a crucial role in
achieving simultaneous processing by introducing wavelength
dependent controlled time delays to the different channels,
enabling the functions to be processed independently and in
parallel. These time delays coincide with the requirements of the
transversal filter function (Eq. 1) and ensure that the input signals
for each function are properly aligned and synchronized. To
change the system bandwidth one needs to change the time delay
between adjacent wavelengths. While this is generally fixed for a
given system, it can be changed by either using different lengths
of SMF or alternatively adding a length of dispersion compen-
sating fiber (DCF) which effectively reduces the net dispersion D
of the fiber, equivalent to decreasing the SMF fiber length. To
achieve dynamic tuning of the RF bandwidth would require a
tunable delay line which is beyond the scope of our work.

All 95 wavelengths from the microcomb were passed through a
single output port WaveShaper which flattened the comb and
weighted the individual lines according to the required tap
weights for the particular function being performed. The
weighted wavelengths were then passed through an electro-
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optic modulator which was driven by the analog input video
signal. The output function was finally generated by summing all
of the wavelengths, achieved by photodetection of all
wavelengths.

The setup for the massively parallel signal processing
demonstration is shown in Fig. 2, which uses an approach
similar to that used for our ultrahigh-speed optical convolution

accelerator5. Figure 2 shows the results for 34 different functions,
which are listed in detail along with their individual parameters in
Supp. Table S1. In this work, for the ultrahigh-speed demonstra-
tion we chose fewer taps for each function—typically 5—in order
to increase the number of functions we could perform, while
maximizing the overall speed or bandwidth. We found that 5 taps
was the minimum number that was able to achieve good

Fig. 1 Operation principle of the RF photonic video image processor. PD photodetector. a Diagram illustration of the flattening method applied to the
input video frames including both horizontally and vertically. b Schematic illustration of experimental setup for video image processing. c The processed
video frames after (i) 0.5 order differentiation for edge detection, (ii) integration for motion blue, and (iii) Hilbert transformation for edge enhancement.
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Fig. 2 Massively parallel multi-functional video processing. EDFA erbium doped fiber amplifier, MRR micro-ring resonator, EOM electro-optical Mach-
Zehnder modulator, SMF single-mode fiber, WS WaveShaper. PD photodetector, OC optical coupler. Detailed parameters for each function have been
shown in Supp. Table S1.
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performance, striking a balance between complexity and
efficiency, providing satisfactory performance for the desired
functions while minimizing the number of required elements. We
were able to achieve 34 functions simultaneously overall. As for
the initial tests, the microcomb lines were fed into a WaveShaper
then weighted and directed to an EO modulator followed by the
SMF delay fiber. Lastly, the generated RF signal for each function
was resampled and converted back to digital video image frames,
which formed the digital output signal of the system.

In our experiments the analog input video image frames were
first digitized and then flattened into 1D vectors (X) and encoded
as the intensities of temporal symbols in a serial electrical
waveform by a high speed analog to digital converter with a
resolution of 8 bits per symbol at a sampling rate of 64 gigabaud
(see Methods). In principle, for analog video signals this A/D and
D/A step can be avoided. We added this step since this allowed us
to dramatically increase the speed of the video signal over
standard video rates in order to fully exploit the ultrahigh-speed
of our processor.

The use of WDM and WaveShapers allows for very flexible
allocation of wavelengths and highly reconfigurable tuning. By
employing these components in a carefully designed configura-
tion where each function only requires a limited number of
wavelengths, multiple functions can be simultaneously processed.
By configuring the WaveShapers appropriately according to the
transfer function, different functions can be applied to different
groups of wavelength channels, facilitating simultaneous proces-
sing of multiple functions across the entire microcomb spectrum.

In the experiments presented here, we demonstrate real-time
video image processing, simultaneously executing 34 functions
encompassing edge enhancement, edge detection, and motion blur.
Edge detection serves as the foundation for object detection, feature
capture, and data compression12,13. We achieve this by temporal
signal differentiation with either high integral or fractional order
derivatives that extract information about object boundaries within
images or videos. We also perform a motion blur function based on
signal integration that represents the apparent streaking of moving
objects in images or videos. It usually occurs when the image being
recorded changes during the recording of a single exposure, and has
wide applications in computer animation and graphics21. Edge
enhancement or sharpening based on signal Hilbert transformation
is also a fundamental processing function with wide applications22.
It enhances the edge contrast of images or videos, thus improving
their acutance. The standard Hilbert transform implements a 90
degree phase shift and is commonly used in signal processing to
generate a complex analytic signal from a real-valued signal. We
also employ arbitrary, or fractional order, Hilbert transforms which
have been shown to be particularly useful for object image edge
enhancement23. These processing functions not only underpin
conventional image or video processing24,25 but also facilitate
emerging technologies such as robotic vision and machine
learning2,4.

To achieve fractional order operations, the system utilizes the
concept of optical fractional differentiation and Hilbert
transforms26. This is accomplished by carefully designing the
WaveShapers in the optical signal processing setup with the
appropriate set of weights (phase and amplitude) for shaping the
optical signals in the frequency domain, and their configurations
can be adjusted to achieve different fractional order operations.
While we use off-the-shelf commercial WaveShapers, in practice
these can be realized using various techniques compatible with
integration, such as cascaded Mach-Zehnder interferometers or
programmable phase modulators. These components enable precise
control over the spectral phase and amplitude profiles of the optical
signals, allowing the realization of fractional order operations.

A key feature of our system that was critical in achieving high
fidelity and performance signal processing was the improvement
we obtained in the frequency comb spectral line shaping
accuracy. To accomplish this we employed a two-stage shaping
strategy (see methods)27 where a feedback control path was
employed to calibrate the system and further improve the comb
shaping accuracy. The feedback loop in the optical signal
processing system plays a crucial role in ensuring the optimiza-
tion of signal processing quality. It involves monitoring the
system’s output and feeding it back to adjust the tap weights in
order to achieve the best performance (see Methods for more
detail). The error signal was generated by directly measuring the
impulse response of the system and then comparing it with ideal
tap coefficients. Note that this type of feedback calibration
approach is challenging and rarely used for analog optical signal
computing, such as the systems based on either spatial-light
metasurfaces12,28 or waveguide resonators29,30, for example.

Our system is based on a soliton crystal (SC) microcomb
source, generated in an integrated MRR18–20 (Fig. 3(a, b),
Supplementary Note 1, Supplementary Fig. S1–7). Since their
first demonstration in 200731, and subsequently in CMOS
compatible integrated form32, optical frequency combs generated
by compact micro-scale resonators, or micro-combs32–35, have
led to significant breakthroughs in many fields such as
metrology36, spectroscopy35,37, telecommunications33,38, quan-
tum optics39,40, and radio-frequency (RF) photonics18–20,41–44.
Microcombs offer new possibilities for major advances in
emerging applications such as optical neural networks5, fre-
quency synthesis29, and light detection & ranging (LIDAR)2,45,46.
With a good balance between gain and cavity loss as well as
dispersion and nonlinearity, soliton microcombs feature high
coherence and low phase noise and have been highly successful
for many RF photonic applications19,23,47–51.

SC microcombs, multiple self-organized solitons52, have been
highly successful particularly for RF photonic signal
processing18–20,26,53–56, ultra-dense optical data transmission33,
and optical neuromorphic processing5,57. They feature very high
coherence with low phase noise56, are intrinsically stable with
only open-loop control (Supplementary Note 1, Supplementary
Fig. S2 and Supplementary Movie S1) and can be simply and
reliably initiated via manual pump wavelength sweeping. Further,
they have intrinsically high conversion efficiency since the intra-
cavity energy is much higher than for single-soliton states5,33.
Our microcomb has a low free spectral range (FSR) of ~48.9 GHz,
closely matching the ITU frequency grid of 50 GHz, and
generates over 80 wavelengths in the telecom C-band, which
serves as discrete taps for the video image processing system.

Experimental results—static images. Since each frame of a
streaming video signal is essentially a static image, we initially
benchmarked the system single function system performance on
static images with varying numbers of taps to understand the
tradeoffs in performance. Figure 4a(i–iii), b(i–iii), c(i–iii), d(i–iii),
e(i–iii), f(i–iii), g(i–iii), h(i–iii), i(i–iii) shows the experimental
results of static image processing using the above RF photonic
system. We conducted initial experiments to investigate the
performance of the transfer functions with 15, 45, and 75 taps for
single function performance, where the WaveShaper was set to
zero out any unneeded wavelengths. These experiments were
performed on single static images—i.e., a single frame of the video
signal, as shown in Fig. 4. This was aimed at exploring the
influence of the tap number on the signal processing performance
and determining the optimal tap number for the subsequent
massively parallel signal processing demonstration. This allowed
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us to assess these tradeoffs between complexity, accuracy, and
efficiency in the signal processing operations.

The original (unprocessed) high definition (HD) digital images
had a resolution of 1080 × 1620 pixels. The results for edge
detection based on signal differentiation with orders of 0.5, 0.75,
and 1 are shown in Fig. 2a–c, respectively. In each figure, we show
(i) the designed and measured spectra of the shaped comb, (ii) the
measured and simulated spectral response, and (iii) the measured
and simulated images after processing. The measured comb
spectra and spectral response were recorded by an optical
spectrum analyser (OSA) and a vector network analyser (VNA),
respectively. The experimental results agree well with theory,
indicating successful edge detection for the original images.

In Fig. 3d–f, we show the results for motion blur based on
signal integration with different tap numbers of 15, 45, and 75,
respectively. These are also in good agreement between the
experimental results and theory. The blur intensity increases with
the increased number of taps, reflecting the fact that there is
improved processing performance as the number of taps
increases. Compared with discrete laser arrays that feature bulky
sizes, limiting the number of available taps, microcombs
generated by a single MRR can operate as a multi-wavelength
source that provides a large number of wavelength channels, as
well as greatly reducing the size, power consumption, and
complexity. This is very attractive for the RF photonic transversal
filter system that requires a large number of taps for improved
processing performance.

Figure 3g–I show the results of edge enhancement based on
signal Hilbert transformation (90° phase shift) with different
operation bandwidths of 12 GHz, 18 GHz, and 38 GHz, respec-
tively. In our experiment, the operation bandwidth was adjusted
by changing the comb spacing (2 FSRs vs 3 FSRs of the MRR) and
the fiber length (1.838 km vs 3.96 km). Note that having to
change the fiber length in principle can be avoided by using
tunable dispersion compensators58,59. The WaveShaper can
accommodate any FSR (channel spacing) as long as it fits

roughly within telecom band channel spacings. Thus the system is
very flexible and can accommodate any FSR by the WaveShaper
or delay by changing the length of SMF if a different microcomb
device is used. Alternatively, the WaveShaper can be used to filter
out certain channels if a larger effective channel spacing is desired
compared to the source FSR. The tradeoff in varying the FSR is
that smaller FSRs yield lower bandwidths whereas larger FSRs
reduce the number of wavelengths within the telecom C band. As
can be seen, the edges in the images are enhanced, and the
experimental results are consistent with the simulations.

We also demonstrate more specific image processing such as
edge detection based on fractional differentiation with different
orders of 0.1‒0.9, edge enhancement based on fractional Hilbert
transformation with different phase shifts of 15°‒75°, and edge
detection with different operation bandwidths of 4.6 GHz ‒
36.6 GHz (Supplementary Note 2, Supplementary Fig. S3‒S6). By
changing the relevant parameters, this resulted in processed
images with different degrees of edge detection, motion blur, and
edge enhancement. By simply programming the WaveShaper to
shape the comb lines according to the designed tap coefficients,
different image processing functions were realized without
changing the physical hardware. This reflects the high reconfigur-
ability of our video image processing system, which is challenging
for image processing based on spatial-light devices12–14. In
practical image processing, there is not one single processing
function that has one set of parameters that can meet all the
requirements. Rather, each processing function requires its own
unique set of tap weights. Hence, the high degree of reconfigur-
ability and versatility of our image processing system is critical to
meet diverse and practical processing requirements.

Experimental results—real-time video. In addition to static
image processing, our microcomb based RF photonic system can
also process dynamic videos in real-time. Our results for real-time
video processing are provided in supplementary Movie S2, while

Fig. 3 Soliton crystal (SC) microcomb used for video image processing. The SC microcomb is generated in a 4-port integrated micro-ring resonator
(MRR) with an FSR of 48.9 GHz. Optical spectra of (i) Pump. (ii) Primary comb with a spacing of 39 FSRs. (iii) Primary comb with a spacing of 38 FSRs. (iv)
SC micro-comb. a Optical spectrum of the micro-comb when sweeping the pump wavelength. b Measured soliton crystal step of the intra-cavity power.
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Fig. 4 Experimental results of image processing. a‒c Results for edge detection based on differentiation with order of 0.5, 0.75, and 1, respectively.
d–f Results for motion blur based on integration with tap number of 15, 45, and 75, respectively. g–I Results for edge enhancement based on Hilbert
transformation with operation bandwidth of 18 GHz, 12 GHz, and 38 GHz, respectively. a‒I (i) shows the designed and measured optical spectra of the
shaped microcomb, (ii) shows the measured and simulated spectral response of the video image processing system, and (iii) shows the measured and
simulated high definition (HD) video images after processing.
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Supplementary Fig. S8–10 show samples of these experimental
results. The supplementary Movie S2. starts off with the first
original source video frames and is followed by the simulation
and experiment results shown side by side for the differentiator,
integrator, and Hilbert transformer. This is then followed by the
34 functions (Supplementary Note 2, Supplementary Table S1)
performed simultaneous by the massively parallel video pro-
cessor. Finally, high order of derivatives are shown, and the video
ends with results based on full two-dimensional derivatives (see
below).

The first original video had a resolution of 568 × 320 pixels and
a frame rate of 30 frames per second. Supplementary Fig. S8a
shows 5 frames of the original video, together with the
corresponding electrical waveform after digital-to-analog conver-
sion. Supplementary Fig. S8b–d show the corresponding results
for the processed video after edge detection (0.5 order fractional
differentiation), motion blur (integration with 75 taps), and edge
enhancement based on a Hilbert transformation with an
operation bandwidth of 18 GHz, respectively. As for the static
image processing, the real-time video processing results show
good agreement with theoretical predictions.

To fully exploit the bandwidth advantage of optical processing,
we further performed massively parallel real-time multi-func-
tional video processing. The experimental setup and results are
shown in Fig. 4 and Supplementary Note 2, Supplementary
Fig. S8–10. We used 95 comb lines around the C band in our
demonstration. After flattening and splitting the comb lines via
the first WaveShaper, we obtained 34 parallel processors, most of
which consisted of five taps. We simultaneously performed 34
video image processing functions, including fractional differen-
tiation with fractional order from 0.05 to 1.1, fractional Hilbert
transformation with phase shift from 65° to 90°, an integrator,
and bandpass Hilbert transformation with a 90° phase shift (see
Supplementary Table S1 for detailed parameters for each
function). The corresponding total processing bandwidth equals
64 GBaud × 34 (functions) × 8 bits = 17.4 Terabit/s ‒ well beyond
the processing bandwidth of electrical video image processors10.

Discussion
To analyze the performance of our video image processor, we
evaluated the processed images based on the ground truth for
both quantitative and qualitative comparisons60. We used
respective ground truths for the evaluation of 3 BSD (Berkeley
Segmentation Database) images after edge detection and com-
pared relevant performance parameters with the same images
processed based on the widely used Sobel’s algorithm61,62. (In
signal processing and data analysis, “Ground Truth” typically
refers to the objectively true or correct values or information that
serves as a reference for evaluating the performance or accuracy
of a system or algorithm.) Fig. 5 shows the images processed
using Sobel’s algorithm and our video image processor (including
differentiation with different orders from 0.2 to 1.0). The com-
parison of the performance parameters including performance
ratio (PR) and F-Measure is provided in Table 1, where higher
values of these parameters reflect a better edge detection perfor-
mance. As can be seen, our differentiation results for PR and
F-Measures are better than Sobel’s approach, reflecting the high
performance of our video image processor.

The maximum input rate we used was 64 GBaud, or Giga-
pixels/s. This, combined with the fact that we performed 34
channels with a video resolution of 568 × 320 that resulted in
181,760 pixels at a frame rate of 30 Hz, yields 5,452,800 pixels/s,
resulting in simultaneous real-time processing of 64 × 109 × 34/
(181,760 × 30)= 399,061 video signals per second. For HD videos
(720 × 1280= 921,600 pixels) at a frame rate of 50 Hz, this

equates to ~47,222 video signals in parallel. The processing
throughput can be increased even further by using more comb
lines in the L-band.

We provide the root mean square errors (RMSEs) in Supple-
mentary Fig. S7 and Table S2 to quantitatively assess the agree-
ment between the measured waveforms and the theoretical results
for different image processing functions. We find that for the
Hilbert transformer, for example, with tunable phase shift, the
RMSE values ranged from 0.0586 to 0.1045, depending on the
specific phase shift angle. These RMSE values provide a quanti-
tative measure of the agreement between the experimental mea-
surements and the theoretical predictions. Lower RMSE values
generally indicate a better correspondence between the two. Our
results for the RSMEs indicate that the measured waveforms
closely align with the expected behavior of the respective image
processing functions.

The processing accuracy of our system is lower than electrical
DSP image processing but higher than analog image processing
based on passive optical filters13,22,30 (see Supplementary Fig. S7
and Table S1). Different lengths of fiber were used to be com-
patible with the different spacings of the different FSRs used (set
by the Waveshaper) and to achieve an optimum RF bandwidth.
This is mainly a result of the hybrid nature of our system, which
is equivalent to electrical DSP systems but implemented by
photonic hardware. There are a number of factors that can lead to
tap errors during the comb shaping, thus leading to a non-ideal
frequency response of the system as well as deviations between
the experimental results and theory. These mainly include a
limited number of available taps, the instability of the optical
microcomb, the accuracy of the WaveShapers, the gain variation
with wavelength of the optical amplifiers, the chirp induced by
the optical modulator, the second-order dispersion (SOD)
induced power fading, and the third-order dispersion (TOD) of
the dispersive fiber. Chirp-induced errors refers to distortions
that arise in the signal processing system due to the presence of
chirp in the optical signals. Chirp (frequency modulation or shift
in time) can be caused by various factors, such as dispersion or
nonlinearity in the optical components.

We encode the image pixels directly on to the optical signal
using the intensity modulator. The reason we slice the input
image is because our AWG performs 1 dimensional signal
operations, otherwise this is not necessary. There are a variety of
ways to slice the input image. The video signal is encoded
without any time delay onto the optical wavelengths. For pro-
cessing the signal, although SMF is used to achieve the incre-
mental delay lines required by the transversal filter transfer
function, it does not slow down the speed of the system but only
adds to the latency. For the same image/video signal with the
same delay line, we only need one modulator to encode the input
signal. We pre- post- the image using the arbitrary waveform
generator to digitize the analog signal and convert it into a high
speed analog signal to enable us to perform with the full cap-
ability of our signal processor. In principle this pre- post- pro-
cessing is not necessary since the system can process and output
analog signals directly. The AWG does not form a fundamental
part of our processor.

In terms of the energy efficiency of the optical signal processor,
we use the same approach as reported elsewhere5. The power
consumption of the comb source is estimated to be 1500 mW
while that of the EDFAs is estimated at 2000mW (100 mW for
each EDFA) and for the intensity modulator is ~3.4 V × 0.01
A= 34 mW. The overall computing speed of the optical signal
processor is 2 × 34 × 5 × 62.9= 21.386 TeraOPs/s. As such, the
energy per bit of the optical signal processor is roughly
(1500+ 2000+ 34 × 19) mW/21.386 TeraOPs/s= 0.194pJ/
operation.
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The number of available taps can be increased by using MRRs
with smaller FSRs or optical amplifiers with broader operation
bandwidths. The accuracy realized by the WaveShapers and the
optical amplifiers was significantly improved by using a two-stage
comb shaping strategy as well as the feedback loop calibration
mentioned previously27. By using low-chirp modulators, the chirp-

induced tap errors can be suppressed. The discrepancies induced by
the SOD and TOD of the dispersive fibers can also be reduced by
using a second WaveShaper to compensate for the group delay ripple
of the system (see Supplementary Note 3, Supplementary Fig. S11).

Our massively parallel photonic video image processor, which
operates on the principle of time-wavelength-spatial multiplexing,

Fig. 5 Comparison of BSD images processed using the Sobel’s algorithm with video image processor after edge detection. Differentiation with different
orders of 0.2, 0.4, 0.6, 0.8, and 1.0 are used for the edge detection with our video image processor. The Sobel results were performed electronically.
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similar to the optical vector convolutional accelerator in our
previous work5, is also capable of performing convolution
operations for deep learning neural networks. This opens up new
opportunities for image or video processing applications in
robotic vision and machine learning. In particular, each parallel
function can be trained and performed as many as 34 kernels
with a size of 5 by 1 for the convolutional neural network,
therefore could ultimately achieve a neural network, avoiding the
bandwidth limitation given by the analog-to-digital converters.
Note that, without the use of an AWG or OSC, our processor
could directly process analog signals, while with the use of an
AWG and OSC it can also process digital signals. Hence it
effectively is equivalent to electrical DSP.

Although the system presented here operated at a speed of ~17
Terabits/s, it is highly scalable in speed. Figure S12 shows a video
image processor using the C+ L+ S bands (with 405 wavelengths
distributed over 81 processors with 5 taps each in size) and
19 spatial paths, all exploiting polarization, yielding a total pro-
cessing bandwidth of 1.575 Petabits/s (Supplementary Note 4).

Our system is highly compatible with integrated technologies
and so there is a strong potential for much higher levels of
integration, even reaching full monolithic integration. The core
component of our system, the microcomb, is already fully inte-
grated. Further, all of the other components have been demon-
strated in integrated form, including integrated InP spectral
shapers59, high-speed integrated lithium niobite modulators63,64,
integrated dispersive elements59, and photodetectors65. Finally,
low power consumption and highly efficient microcombs have
been demonstrated with single-soliton states66 and laser cavity-
soliton Kerr combs67,68, which would greatly reduce the energy
requirements. A key advantage to monolithic integration would
be the ability to integrate electronic elements on-chip such as an
FPGA module for feedback control. Finally, being much more
compact, the monolithically integrated system should be much
less susceptible to the environment, thus reducing the required
level of feedback control.

Conclusions
In conclusion, we report the first demonstration of video image
processing based on Kerr microcombs. Our RF photonic pro-
cessing system, with an ultrahigh processing bandwidth of
17.4 Tbs/s, can simultaneously process over 399,061 video signals
in real-time. The system is highly reconfigurable via program-
mable control, and can perform different processing functions
without changing the physical hardware. We experimentally
demonstrate different video image processing functions including
edge detection, motion blur, and edge enhancement. The
experimental results agree well with theory, verifying the effec-
tiveness of using Kerr microcombs for ultrahigh-speed video
image processing. Our results represent a significant advancement
for fundamental photonic computing, paving the way for prac-
tical ultrahigh bandwidth real-time photonic video image pro-
cessing on a chip.

Methods
Microcomb generation. We use SC microcombs generated by an
integrated MRR (Fig. 3 and Supplementary Fig. S1–6) for video
image processing. The SC microcombs, which include multiple
self-organized solitons confined within the MRR, were also used
for our previous demonstrations of RF photonic signal
processing26,53–56, ultra-dense optical data transmission33, and
optical neuromorphic processing5,57.

The MRR used to generate SC microcombs (Fig. 3b) was
fabricated based on a complementary
metal–oxide–semiconductor (CMOS) compatible doped silica
glass platform32,33. It has a radius of ~592 μm, a high quality
factor of ~1.5 million, and a free spectral range (FSR) of
~0.393 nm (i.e., ~48.9 GHz). The low FSR results in a large
number of wavelength channels, which are used as discrete taps
in our RF photonic transversal filter system for video image
processing. The cross-section of the waveguide was 3 μm× 2 μm,
resulting in anomalous dispersion in the C-band (Supplementary
Fig. S1). The input and output ports of the MRR were coupled to
a fiber array via specially designed mode converters, yielding a
low fiber-chip coupling loss of 0.5 dB/facet.

In our experiment, a continuous-wave (CW) pump light was
amplified to 30.5 dBm and the wavelength was swept from blue to
red. When the detuning between pump wavelength and MRR’s
cold resonance became small enough, the intra-cavity power
reached a threshold, and optical parametric oscillation driven by
modulation instability (MI) was initiated. Primary combs
(Fig. 3d(ii, iii)) were first generated, with the comb spacing
determined by the MI gain peak33,34,69. As the detuning changed
further, a second jump in the intra-cavity power was observed,
where distinctive ‘fingerprint’ SC comb spectra (Fig. 3d-iv)
appeared, with a comb spacing equal to the MRR’s FSR. The SC
microcomb arising from spectral interference between the tightly
packaged solitons circulating along the ring cavity exhibits high
coherence and low RF intensity noise (Fig. 3c), which are
consistent with our simulations (Supplementary Movie S1). It is
also worth mentioning that the SC microcomb is highly stable
with only open-loop temperature control (Supplementary Fig. S2).
In addition, it can be generated through manual adiabatic pump
wavelength sweeping—a simple and reliable initiation process
that also results in much higher energy conversion efficiency than
single-soliton states5.

Microcomb shaping. To achieve the designed tap weights, the
generated SC microcomb was shaped in power using liquid
crystal on silicon (LCOS) based spectral WaveShapers. We used
two-stage comb shaping in the video image processing experi-
ments. The generated SC microcomb was pre-flattened and split
by the first WaveShaper (Finisar 16000 S), which yields an
improved optical signal-to-noise ratio (OSNR) and a reduced loss
control range for the second-stage comb shaping. The pre-
flattened and split comb was then accurately shaped by the sec-
ond WaveShaper (Finisar 4000 S) according to the designed tap

Table 1 Comparison of performance parameters of images processed using Sobel’s algorithm and our video image processor.

BSD image no. 118,035 42,049 35,010

PR F-measure PR F-measure PR F-measure

Sobel 12.2488 0.0068996 15.8362 0.0049214 11.3226 0.011988
Differentiation order—0.2 12.7891 0.016586 20.1547 0.021603 18.3944 0.021787
Differentiation order—0.4 13.629 0.014815 20.9594 0.024451 18.6818 0.022378
Differentiation order—0.6 15.249 0.013748 21.0244 0.024771 19.8858 0.02388
Differentiation order—0.8 16.2559 0.013491 21.4386 0.022484 20.0704 0.023491
Differentiation order—1.0 17.4338 0.014391 22.1003 0.020635 20.6862 0.026481
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coefficients for different video image processing functions. The
positive and negative tap coefficients were achieved by separating
the wavelength channels into two spatial outputs of the second
WaveShaper and then detected by a balanced photodetector
(Finisar BPDV2150R).

In order to improve the comb shaping accuracy, a feedback
control loop was employed for the second WaveShaper. First, we
used RF Gaussian pulses as the system input and measured
replicas of the input pulses in different wavelength channels.
Next, we extracted peak intensities of the system impulse
response and obtained accurate RF-to-RF tap coefficients. Finally,
the extracted tap coefficients were subtracted from the ideal tap
coefficients to obtain an error signal, which was used to calibrate
the loss of the second WaveShaper. After several iterations of the
comb shaping loop, an accurate impulse response that compen-
sated for the non-ideal impulse response of the system was
obtained, thus significantly improving the accuracy of the RF
photonic video image processing. Directly measuring the system
impulse response is more accurate compared to measuring the
optical power of the comb lines, given the slight difference
between the two ports into the balanced detector. The shaped
impulse responses for different image processing functions are
shown in the Supplementary Figs. S3‒6.

Derivative (from fractional to high order). The transfer function
of a differentiator is given by

HðωÞ / ðjωÞN ð2Þ
where j equals to

ffiffiffiffiffiffiffi�1
p

, ω represents the angular frequency, and N
is the order of differentiation, which in our case can be both
fractional70 and integral18, even complex. The experiment results
for both fractional and integral order differentiation can be seen
in Supplementary Movie S2. The fractional-order is tunable from
0.05 to 1.1, with a step of 0.05. We achieved high order differ-
entiation with an order of 2, 2.5, 3, which to the best of our
knowledge, is the highest order of derivative that can be achieved
for video image processing.

Two-dimensional video image processing. Normally, processing
functions such as differentiation, operating on video signals, only
result in a one dimensional process—since it acts on individual
lines of the video raster image. However, by appropriately pre-
processing the video signal it is possible to obtain a fully two-
dimensional derivative71. fz(x, y) represent the zth frame of a
video signal with O × P pixels, where x= 0, 1, 2, …, O − 1, y= 0,
1, 2, …, P − 1. Thus, the two-dimensional derivative result is
given by:

Dzðu; vÞ ¼ ∑
M�1

u¼0
hxðuÞe�jωxuT∑N�1

v¼0 hyðvÞe�jωyvT ð3Þ

where M, N is the number of taps, u= 0, 1, 2, …, M—1, v= 0, 1,
2, …, N − 1.

The electrical input data was temporally encoded by an
arbitrary waveform generator (Keysight M8195A). The raw input
matrices were first sliced horizontally and vertically into multiple
rows and columns, respectively, which were flattened into vectors
and connected head-to-tail. After that, the generated vectors were
multicast onto different wavelength channels via a 40-GHz
intensity eletro-optic modulator (iXblue). For the video with a
resolution of 303× 262 pixels and a frame rate of 30 frames
per second, we used a sampling rate of 64 Giga samples/s to form
the input symbols. A dispersive fiber was employed to provide a
progressive delay T. Next, the electrical output waveform was
resampled and digitized by a high-speed oscilloscope (Keysight
DSOZ504A) to generate the final output. The magnitude and

phase responses of the RF photonic video image processing
system were characterized by a vector network analyser (Agilent
MS4644B 40 GHz bandwidth) working in the S21 mode. Finally,
we restored the processed video into the original size of the
matrix and took the average of horizontally and vertically
processed video and formed this into a two-dimensional
processed video (Supplementary Movie S2).

Details of the video image dataset. The high definition (HD)
image with a resolution of 1080 × 1620 pixels we performed is a
photo taken by Nikon D5600 in front of the Exhibition building
in the center of Melbourne city, Australia, in 2020. The video of
568 × 320 pixels was captured by a Drone Quadcopter UAV with
Optical Zoom camera (DJL Mavic Air2 Zoom), this was a short
trip during the eastern holiday, in 2019. The author and her
friend were started from Melbourne to Adelaide, passing the pink
lake and playing guitar, this was a great memory before the
pandemic and continuous lockdown in Melbourne. The short
video of the skateboard with a resolution of 303 × 262 pixels was
taken by the author using iPhone SE in front of Victoria Library,
Melbourne, Australia, in 2020.

Data availability
All data is available upon reasonable request to the authors.
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