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A generalized dual-domain generative framework
with hierarchical consistency for medical image
reconstruction and synthesis
Jiadong Zhang 1,6, Kaicong Sun1,6, Junwei Yang1,2,6, Yan Hu1,3,6, Yuning Gu1,6, Zhiming Cui1,6, Xiaopeng Zong1,

Fei Gao 1 & Dinggang Shen1,4,5✉

Medical image reconstruction and synthesis are critical for imaging quality, disease diagnosis

and treatment. Most of the existing generative models ignore the fact that medical imaging

usually occurs in the acquisition domain, which is different from, but associated with, the

image domain. Such methods exploit either single-domain or dual-domain information and

suffer from inefficient information coupling across domains. Moreover, these models are

usually designed specifically and not general enough for different tasks. Here we present a

generalized dual-domain generative framework to facilitate the connections within and across

domains by elaborately-designed hierarchical consistency constraints. A multi-stage learning

strategy is proposed to construct hierarchical constraints effectively and stably. We con-

ducted experiments for representative generative tasks including low-dose PET/CT recon-

struction, CT metal artifact reduction, fast MRI reconstruction, and PET/CT synthesis. All

these tasks share the same framework and achieve better performance, which validates the

effectiveness of our framework. This technology is expected to be applied in clinical imaging

to increase diagnosis efficiency and accuracy.
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Medical imaging as an indispensable imaging technique
plays a critical role in plenty of clinical applications,
such as screening, disease diagnosis, and treatment

planning. The enhancement of image quality has been a central
topic for decades in the field of medical image processing1. Dif-
ferent from natural images which are usually captured directly in
the image domain, medical imaging usually acquires data in the
modality-specific domain such as the k-space domain for mag-
netic resonance imaging (MRI)2, and the sinogram domain for
computed tomography (CT)3 and positron emission tomography
(PET)4. To take advantage of the acquisition property of medical
imaging, one should exploit the underlying information patterns
in both the acquisition domain and the image domain. Moreover,
one can apply more sophisticated constraints such as cycle con-
sistency within and across domains to better regularize the
solution space for generative tasks.

Medical image reconstruction and synthesis are the typical
generative tasks in medical imaging, and can strongly benefit
from the aforementioned dual-domain cycle-consistency scheme.
Medical image reconstruction is one of the pillars of medical
imaging. Reconstruction tasks usually can be categorized into
two subgroups5: (1) reconstruction in the form of forward/
backward transform such as low-dose CT6–8 and fast MRI
reconstruction9–11; (2) reconstruction as post-processing to
improve image quality such as metal artifact reduction
(MAR)12–14 and super-resolution (SR)15–17. Most of the recent
dual-domain-based medical image reconstruction works exploit
dual-domain information by individual sub-networks, which are
connected either in parallel branches18,19 or sequentially in a
cascaded manner20–22, which can be further used for the diag-
nosis tasks23,24. The backbone of the sub-networks can be UNet-
like19,21,22,25, Transformer26, or recently emerged Diffusion
model27. In particular, Jun et al.19 utilize two parallel UNet-
shaped networks serving as regularizations in the k-space and
image domains, respectively, for MRI reconstruction.
Reseachers21 also adopt sequentially cascaded sinogram and
image networks for simultaneous metal artifact reduction and
low-dose CT reconstruction. Although these existing recon-
struction methods20,28–31 have taken dual-domain information
into account for better data consistency and overall performance,
to our best knowledge, these networks are task-specifically
designed and there is limited work that uses a generalized fra-
mework for dual-domain reconstruction. More importantly, there
is no study yet considering structured consistency constraints
which cover multi-level constraints within and across domains
for better regularization of the solution domain.

Different from image reconstruction, medical image synthesis
aims to infer a desired imaging modality without an actual scan
such as synthesizing imaging modalities which are usually una-
vailable in routine clinical practice, i.e., due to cost. Further, since
different modalities can reveal complementary physical char-
acteristics of the underlying tissues, synthesis of missing or key
modalities can lead to more accurate diagnosis and treatment
planning32,33. Medical image synthesis can be categorized into
inter-modality synthesis and intra-modality synthesis32. The
inter-modality synthesis denotes image synthesis between two
imaging modalities such as from PET to CT34, while the intra-
modality counterpart refers to the studies such as transferring
between different MRI sequences. Most of the existing learning-
based models for medical image synthesis adopt VAE35, GAN36-
based network architecture, and its variations37–39. By resorting
to the adversarial learning strategy, they obtain more plausible
and real-looking images. For example, Dong et al.40 propose a
framework based on cycle-consistent generative adversarial net-
works (CycleGAN) to synthesize CT images from the non-
attenuation corrected PET. Another method MedGAN38, as a

non-application-specific framework, merges the adversarial fra-
mework with several feature-level similarity metrics to facilitate
the similarity match. However, these representative methods,
following the works for natural images, purely manipulate
information in the image domain, without considering inherent
differences in image acquisition between natural images and
medical images. And, ignoring dual-domain cycle consistency
limits their performance in medical image synthesis.

To cope with the above-mentioned issues, we present a gen-
eralized learning-based dual-domain framework for generative tasks
of medical images, by employing hierarchical consistency con-
straints including all possible directional constraints within and
across domains by means of a multi-stage learning strategy. To be
specific, different from the majority of existing generative models
that manipulate in a single domain such as CycleGAN40, we pro-
pose to exploit the underlying patterns in both domains. Moreover,
we aim to build up multi-level similarity constraints between the
source and target images in dual domains to better regularize the
solution space. As shown in Fig. 1a and b, without loss of generality,
for reconstruction or synthesis tasks of medical imaging, there exist
two domains, namely the image domain and the acquisition
domain. The source and target images can be transformed bidir-
ectionally in each domain based on their individual generative
function G. Depending on the applications, function G can be
realized by learning-based or model-based functions. Cross-domain
information can be exchanged by means of the transform function
F and the inverse transform function F−1. The methods can
be applied to various tasks, as shown in Fig. 1c. Inspired by
CycleGAN40, we introduce a multi-stage learning strategy S1–S3
which, respectively, accounts for intra-domain consistency, inter-
domain consistency, and cycle consistency as demonstrated in
Fig. 1d. These hierarchical intra- and inter-domain consistency
constraints construct and consolidate a comprehensive multi-level
similarity match between the source and target images. Particularly,
the intra-domain consistency stage S1 imposes the primary con-
sistency constraint within the individual domain. To preserve the
inter-domain consistency, in stage S2 we introduce a sequential
constraint as marked by black arrows. Lastly, to further strengthen
the similarity match, in stage S3 we adopt the cycle-consistency
constraint within and across domains as depicted by yellow and
green arrows. For a detailed description, please refer to the
“Methods” section. We have conducted quantitative and qualitative
analyses of the proposed framework from different aspects. Our
framework achieves remarkable performance gain in many repre-
sentative generative tasks in medical imaging including low-dose
PET and CT reconstruction, MAR, fast MRI reconstruction, and
PET-CT synthesis.

Results
To validate the effectiveness and generalizability of our generative
framework, we carried out extensive experiments for repre-
sentative reconstruction and synthesis tasks for medical imaging
including low-dose PET/CT reconstruction, CT metal artifact
reduction, accelerated MRI reconstruction, and PET-CT synthesis
quantitatively and qualitatively. In Figs. 2 and 3, we demonstrate
the performance of our framework for the above generative tasks
in different cases. In Figs. 4 and 5, we perform an in-depth
analysis of our framework using the noise power spectrum (NPS)
calculated according to the work of Dobbins III et al.41. An ela-
borate investigation of the proposed framework is conducted,
including quantitative and qualitative evaluation, effectiveness,
and ablation studies. In the following experiments, we employ
structural similarity index measurement (SSIM), peak signal-to-
noise ratio (PSNR), NPS, and standardized uptake values (SUV)
for quantitative assessment.
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Low-dose PET/CT reconstruction. CT and PET both are ima-
ging techniques based on ionizing radiation. To reduce radiation
exposure risk in clinical applications, low-dose CT and low-dose
PET are often preferred. Comparing to standard-dose CT and
PET, the reconstruction of low-dose ones usually suffers from
severe artifacts and noise, which may greatly affect a physician’s
diagnosis42,43. Hence, the development of effective reconstruction
algorithms for low-dose PET/CT is a critical task that has an
urgent demand in clinical practice. In this experiment, we eval-
uate the effectiveness of the proposed framework on low-dose

PET/CT reconstruction, where the Radon transform is used as the
transform function F.

Performance evaluation. To evaluate the performance of our
framework for low-dose PET/CT reconstruction, we compare the
proposed reconstruction model with several representative
learning-based reconstruction methods, including UNet44,
RUNet45, p2pGAN46, CycleGAN40, and MedGAN38, and also a
recent dual-domain reconstruction method, i.e., iBP-Net47. We
use the acquired low-dose images as source data and the

Fig. 2 Application of the proposed framework on different reconstruction tasks. For each of the tasks, we demonstrate the reconstructed images for two
typical cases with their corresponding error maps compared to the ground-truth (GT) images. Ordered subset expectation-maximization (OSEM), filtered
back projection (FBP), and zero filling (ZF) are traditional methods for PET, CT, MAR, and MRI reconstruction.

Fig. 1 Overview of our proposed dual-domain generative framework with hierarchical consistency for medical image reconstruction and synthesis.
a Framework for fast magnetic resonance imaging (MRI) medical reconstruction task. b Framework for positron emission tomography (PET) and computed
tomography (CT) synthesis task. c Applications of the proposed generative framework, including low-dose PET/CT reconstruction, metal artifact reduction,
fast MRI reconstruction, and PET-CT synthesis. d The proposed multi-stage training strategy, including Stage 1 (S1) intra-domain consistency, Stage 2 (S2)
inter-domain consistency, and Stage 3 (S3) cycle consistency.
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standard-dose images as target data. The experimental results are
summarized in Table 1. We can see that p2pGAN and MedGAN
achieve better performance than RUNet by means of adversarial
learning. CycleGAN slightly outperforms p2pGAN and MedGAN
by using cycle-consistency. However, these methods only use
image-domain information without considering sinogram pat-
terns. Compared to the case of using only image-domain meth-
ods, iBP-Net combines the advantages of both domains, leading
to better reconstruction performance than other comparison
methods. On the other hand, iBP-Net reconstructs low-dose
images using the cascaded dual-domain networks, which cannot
explicitly guarantee dual-domain consistency. In contrast, our
method exploits dual domains with multi-level consistency con-
straints and achieves the best performance in terms of both SSIM
and PSNR metrics. To conduct a clinical evaluation of the
reconstructed PET uptakes, we calculate SUV bias (SUVmean and

SUVmax) using the ground-truth standard-dose PET uptakes and
report results in Table 1. These results show better performance
of our method than other comparison methods.

Effectiveness of dual-domain hierarchical consistency in low-dose
PET/CT reconstruction. The proposed generative framework
contains multi-stage consistency constraints, consisting of intra-
domain consistency (S1), inter-domain consistency (S2), and
cycle-consistency (S3) to build up similarity match in a hier-
archical manner between the source and target images within and
across domains in bi-directions, i.e., from target to source and
source to target. In this experiment, we perform an in-depth
analysis of the effectiveness of the introduced dual-domain and
hierarchical consistency scheme for low-dose PET/CT recon-
struction. In particular, we evaluate the impact of each stage from
S1 to S3 by ablation study on both reconstruction tasks. Besides,

Fig. 3 Visual comparison of synthesized positron emission tomography (PET) and computed tomography (CT) images for six typical cases by different
methods. The error maps are located beneath the corresponding reconstructed images. CT and PET images of the same row are paired.
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we conduct ablation study also for the cases of using single and
dual domains.

Quantitative results are summarized in Table 2. Different
consistency constraints are involved in the corresponding stages
from S1 to S3 as shown in Fig. 1. From the table, we can see that
there indeed exists noticeable performance improvement for both
tasks when using hierarchical consistency constraints by multi-
stage learning strategy. To evaluate the importance of the dual-
domain scheme in the proposed generative framework, we carried
out experiments based on PET/CT reconstruction tasks. From

Table 2, we can see that the dual-domain scheme achieves better
performance than the single-domain as expected. The utilization
of a dual-domain scheme allows the generative framework to
better exploit the latent patterns in a complementary way.
Moreover, it enables the integration of hierarchical consistency
constraints into the framework.

Metal artifact reduction. Metal artifacts caused by the presence
of metal implants such as dental fillings can generate abnormal

Table 1 Quantitative comparison with representative learning-based methods for low-dose PET/CT reconstruction.

Tasks Low-dose PET reconstruction Low-dose CT reconstruction

Method SSIM PSNR SUVmean SUVmax SSIM PSNR

RUNet45 0.8064 ± 0.1028 35.07 ± 1.03 8.70 ± 6.79 6.23 ± 5.94 0.9311 ± 0.0823 41.02 ± 2.31
p2pGAN46 0.9844 ± 0.0129 37.55 ± 1.20 5.99 ± 9.04 3.92 ± 5.02 0.9712 ± 0.0510 42.41 ± 1.79
CycleGAN40 0.9861 ± 0.0078 37.85 ± 1.18 7.79 ± 5.86 -6.63 ± 1.04 0.9811 ± 0.0086 41.90 ± 0.94
MedGAN38 0.9863 ± 0.0093 37.72 ± 1.11 4.01 ± 8.16 -8.31 ± 4.59 0.9613 ± 0.0577 41.53 ± 2.05
iBP-Net47 0.9859 ± 0.0154 38.47 ± 1.28 6.84 ± 3.97 5.96 ± 1.79 0.9812 ± 0.0143 42.71 ± 0.97
Ours 0.9939 ± 0.0124 39.57 ± 1.03 3.62 ± 5.83 3.54 ± 2.40 0.9910 ± 0.0032 43.57 ± 0.85

Best performance is highlighted in bold font.

Fig. 4 The noise power spectrum analysis (NPS) for different reconstruction tasks. The error map between the reconstructed image and the ground-
truth (GT) image is regarded as the noise image for NPS calculation.

Fig. 5 The noise power spectrum (NPS) analysis of the synthesized images by different state-of-the-art methods. The error map between the
synthesized image and the ground-truth (GT) image is used as the noise map for NPS calculation.
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streaks across images and severely impede the detection and
diagnosis of disease. Metal artifact reduction (MAR) has hence of
great importance in clinical practice for decades48–51. In this
experiment, we evaluate the effectiveness of the proposed fra-
mework on MAR in CT images and hence, Radon transform is
used for transformation between domains.

Performance evaluation. To demonstrate the advancement of our
framework for MAR, we compare with other representative MAR
methods such as the conventional linear interpolation (LI)48 and
normalized metal artifact reduction (NMAR)49 methods, and
learning-based RCN50, CycleGAN39, attention-based MAR51

(AttenMAR), and DudoNet28 on two datasets (with details pro-
vided in the “Methods” section). It is worth noting that our MAR
model does not depend on complex pre-processing steps, such as
pre-segmentation of the implant, and the model is easy to train

and re-implement. Since we have metal-free images as references,
we adopt the conventional metrics PSNR and SSIM for quanti-
tative assessment. From the experimental results provided in
Table 3, we can observe that AttenMAR and the proposed model
achieve much better performance than the others in terms of
average SSIM and PSNR on both datasets. In comparison with
AttenMAR, the performance gain of our model is mainly from
the use of hierarchical consistency within and across domains.

Effectiveness of dual-domain hierarchical consistency in MAR. We
have shown the effectiveness of hierarchical consistency and dual-
domain on low-dose PET/CT reconstruction in the previous
section. In this additional experiment, we validate the influence of
hierarchical consistency within and across domains on MAR. We
perform an ablation study and report the results in Table 4. We
can see the impact of hierarchical consistency constraints from S1

Table 3 Quantitative comparison with representative methods for MAR on both in-house teeth CBCT dataset and public
DeepLesion dataset.

Method CBCT DeepLesion

SSIM PSNR SSIM PSNR

LI48 0.8427 ± 0.0954 31.75 ± 2.89 0.9089 ± 0.0983 30.72 ± 2.75
NMAR49 0.9378 ± 0.0812 31.54 ± 2.68 0.9102 ± 0.0889 31.89 ± 2.01
CycleGAN39 0.8469 ± 0.2234 31.55 ± 2.97 0.7201 ± 0.1403 30.72 ± 1.97
RCN 0.9286 ± 0.1865 33.60 ± 1.69 0.9302 ± 0.1351 33.81 ± 1.44
AttentionMAR51 0.9507 ± 0.0537 36.25 ± 1.23 0.9421 ± 0.1056 34.71 ± 1.75
DuDoNet28 0.9572 ± 0.0492 36.74 ± 1.54 0.9492 ± 0.1123 35.23 ± 1.69
Ours (RUNet-8) 0.9328 ± 0.0573 35.02 ± 1.36 0.9203 ± 0.1518 33.76 ± 2.82
Ours (RUNet-16) 0.9599 ± 0.0487 36.84 ± 1.13 0.9327 ± 0.1275 34.79 ± 2.07
Ours (RUNet-32) 0.9634 ± 0.0295 36.91 ± 1.08 0.9502 ± 0.0872 35.93 ± 1.99

Best performance highlighted in bold font.

Table 4 Ablation study of the proposed framework for MAR on both in-house teeth CBCT dataset and public DeepLesion
dataset.

Setting CBCT DeepLesion

SSIM PSNR SSIM PSNR

S1 0.9303 ± 0.0812 34.28 ± 1.95 0.9305 ± 0.2433 32.85 ± 2.78
S1+ S2 0.9527 ± 0.0534 35.86 ± 1.38 0.9396 ± 0.2153 34.71 ± 1.88
S1+ S3 0.9579 ± 0.0572 36.35 ± 1.58 0.9427 ± 0.2272 35.02 ± 2.15
S2+ S3 0.9531 ± 0.0423 36.21 ± 1.86 0.9404 ± 0.1955 34.88 ± 2.32
S1+ S2+ S3 0.9634 ± 0.0295 36.91 ± 1.08 0.9502 ± 0.0872 35.93 ± 1.99
Image domain 0.9601 ± 0.0563 35.87 ± 1.56 0.9371 ± 0.1732 34.35 ± 2.30
Dual-domain 0.9634 ± 0.0295 36.91 ± 1.08 0.9502 ± 0.0872 35.93 ± 1.99

Best performance is highlighted in bold font.

Table 2 Ablation study of the proposed framework for low-dose PET/CT reconstruction including multi-stage and dual-domain
schemes.

Setting Low-dose PET reconstruction Low-dose CT reconstruction

SSIM PSNR SSIM PSNR

S1 0.8064 ± 0.1028 35.07 ± 1.03 0.9311 ± 0.0823 41.02 ± 2.31
S1+ S2 0.9788 ± 0.0274 37.22 ± 1.70 0.9771 ± 0.0138 42.02 ± 0.91
S1+ S3 0.9816 ± 0.0225 37.51 ± 1.49 0.9762 ± 0.0167 42.49 ± 0.95
S2+ S3 0.9837 ± 0.0201 38.25 ± 1.96 0.9835 ± 0.0137 42.95 ± 0.98
S1+ S2+ S3 0.9939 ± 0.0124 39.57 ± 1.03 0.9910 ± 0.0032 43.57 ± 0.85
Image domain 0.9815 ± 0.0139 37.02 ± 1.41 0.9666 ± 0.0172 41.94 ± 1.81
Dual-domain 0.9939 ± 0.0124 39.57 ± 1.03 0.9910 ± 0.0032 43.57 ± 0.85

Best performance is highlighted in bold font.
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to S3 on both datasets. The multi-stages scheme not only
improves the mean of different assessment metrics but also the
individual standard deviation, which indicates better robustness
for different test samples. Besides, the use of a dual-domain
scheme allows greater performance improvement than a single-
domain scheme in terms of SSIM, PSNR, and NRMSE.

Fast MRI reconstruction. MRI is a commonly used non-invasive
and radiation-free medical imaging technique. Despite its
advantages in high spatial resolution and multi contrasts, a major
limitation of MRI is the slow acquisition speed, since multiple
times of radiofrequency (RF) pulses are required to fill in the
k-space for encoding spatial-frequency information, and also each
contrast has to be scanned separately. Consequently, such lengthy
acquisitions can lead to patient discomfort and severe motion
artifacts in the acquired images52. Meanwhile, this also limits the
availability of scanners. Therefore, the development of fast MRI
reconstruction algorithms can greatly improve the efficiency of
data acquisition and subsequent diagnosis. In this experiment, we
validate our framework for fast MRI reconstruction and use
Fourier transform as the transform function F.

Performance evaluation. For the sake of demonstrating the
effectiveness of dual-domain and hierarchical consistency, we
evaluate the performance of our framework using two backbones,
namely UNet53 and E2EVarNet54 as the generative functions. In
particular, UNet acts as GI

t ;G
A
t in both domains and shares the

same weights. Data-consistency mapping55 is utilized as GI
s;G

A
s .

The same setting is implemented for the E2EVarNet backbone. It
is worth noting that more sophisticated generative functions can
be used in our framework for possibly better performance. We
evaluate the proposed reconstruction model using an in-house
MRI dataset containing 62 T2-weighted (T2w) MR images.
We compare reconstructed images by our model with the

corresponding baseline methods, for the acceleration rates of
4× and 8×. Quantitative evaluation is provided in Table 5. In
addition, we also compare with the state-of-the-art MRI recon-
struction method, i.e., DuDoRNet20. Due to hardware restriction,
the number of recurrent blocks is set as 2 for fair comparison, and
the optimization is performed for 1000 epochs. As can be
observed, compared to both representative baseline methods, our
proposed model provides better performance in all the evaluation
metrics for both acceleration rates.

Effectiveness of dual-domain hierarchical consistency in MRI
Reconstruction. By taking the native dual-domain representation of
MRI data into account, our framework can exploit patterns in both
domains and regularize the optimization in a structured manner.
To demonstrate the effectiveness of the introduced dual-domain
hierarchical consistency constraints, we conduct an ablation study
and summarize the quantitative analysis in Table 6. As we can see,
the hierarchical consistency constraints improve the performance of
MRI reconstruction stepwise which coincides with the aforemen-
tioned results for the PET/CT reconstruction and MAR tasks.
Besides, it is shown that the utilization of dual-domain information
brings a noticeable improvement in reconstruction performance for
both acceleration factors than using solely single-domain data.

PET-CT synthesis. Both PET-to-CT and CT-to-PET syntheses
have great potential in clinical applications. In routine clinical
practice, CT is used for anatomical localization for PET. Synthesis
of CT from PET can avoid additional radiation caused by CT,
which is of great importance for reducing radiation dose. From
another perspective, since PET is more expensive than CT and is
not as easily available as CT, synthesis of PET from CT is in fact
also of great practical interest. In this experiment, we use PET-to-
CT and CT-to-PET syntheses as case studies to evaluate and ana-
lyze the effectiveness of our proposed framework on synthesis tasks.

Table 6 Ablation study of the proposed framework for MRI reconstruction based on the UNet backbone on the in-house dataset
for 4× and 8× acceleration rates.

Setting 4× 8×

SSIM PSNR SSIM PSNR

S1 0.9808 ± 0.0061 37.05 ± 1.89 0.9734 ± 0.0093 35.31 ± 2.23
S1+ S2 0.9862 ± 0.0042 39.13 ± 1.81 0.9762 ± 0.0085 35.75 ± 2.49
S1+ S3 0.9862 ± 0.0036 39.48 ± 1.64 0.9781 ± 0.0069 36.04 ± 1.71
S2+ S3 0.9863 ± 0.0038 39.50 ± 1.71 0.9781 ± 0.0062 35.87 ± 1.38
S1+ S2+ S3 0.9866 ± 0.0041 39.53 ± 1.73 0.9782 ± 0.0069 36.88 ± 1.80
Image domain 0.9808 ± 0.0061 37.05 ± 1.89 0.9734 ± 0.0093 35.31 ± 2.23
Dual-domain 0.9866 ± 0.0041 39.53 ± 1.73 0.9782 ± 0.0069 36.88 ± 1.80

Best performance is highlighted in bold font.

Table 5 Quantitative evaluation of our framework based on two representative backbones UNet and E2EVarNet using the
in-house dataset for 4× and 8× acceleration rates.

Network 4× 8×

SSIM PSNR SSIM PSNR

UNet53 0.9808 ± 0.0061 37.05 ± 1.89 0.9734 ± 0.0093 35.31 ± 2.23
UNet (Ours) 0.9866 ± 0.0041 39.53 ± 1.73 0.9782 ± 0.0069 36.88 ± 1.80
E2EVarNet54 0.9653 ± 0.0073 36.12 ± 1.64 0.9481 ± 0.0121 33.29 ± 1.41
E2EVarNet (Ours) 0.9703 ± 0.0069 37.00 ± 1.46 0.9561 ± 0.0116 34.13 ± 1.38
DuDoRNet20 0.9861 ± 0.0055 38.08 ± 2.21 0.9733 ± 0.0110 34.70 ± 2.10

Best performance is highlighted in bold font.
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Performance evaluation. In this experiment, our network has the
same structure as the one used for low-dose PET/CT reconstruction.
We compare our synthesis model with the representative approa-
ches, including UNet44, RUNet45, p2pGAN46, CycleGAN40, and
MedGAN38. These networks are widely used for medical image
synthesis, especially for PET-CT synthesis. Note that only Cycle-
GAN and our framework can jointly learn the two tasks, i.e., PET-
to-CT synthesis and CT-to-PET synthesis. Others are single-
direction synthesis models and are thus trained for these two
synthesis tasks independently. The quantitative results of all the
studied models are summarized in Table 7. For the PET-to-CT task,
our framework achieves SSIM up to 0.9843 and outperforms the
other methods by a large margin. With respect to the CT-to-PET
task, the proposed network also shows superior performance than
the other models. To evaluate the SUV bias of reconstructed PET
images in a CT-to-PET reconstruction task, we demonstrate the
performance of each method in Table 7, indicating the superiority
and feasibility of our framework. To better visualize the performance
improvement, we show perceptual evaluation in Fig. 3. The PET-to-
CT images are demonstrated in the left panel, and the CT-to-PET
results are shown in the right panel. For each task, we illustrate six
locations of the human brain. We can clearly see that, in comparison
to other methods, the synthesized CT and PET images by the
proposed model are more consistent with the GT images, which
coincides with the above quantitative assessment. Our results indi-
cate that, by resorting to dual-domain cycle consistency, the pro-
posed generative framework achieves promising performance for
synthesis tasks. The noise power spectrum comparisons presented in
Fig. 5 provide further evidence for the superior performance of our
method. In both PET-to-CT and CT-to-PET synthesis tasks, our
method exhibits the lowest noise power across spatial frequency.
This indicates the great advantage of our dual-domain and hier-
archical consistency learning approach.

Effectiveness of dual-domain hierarchical consistency in PET-CT
synthesis. To better understand the effectiveness of each stage for

synthesis tasks, we perform an ablation study on PET-CT
synthesis and provide experimental results in Table 8. When
comparing the performance obtained by S1+ S2 against S1, we
can clearly see the impact of inter-domain consistency on the
synthesis performance. When integrating the cycle consistency S3
into S1+ S2, we can see further improvement for both cases,
which indicates the importance of cycle consistency within and
across domains. From quantitative analysis, we can conclude that
the multi-stage consistency constraints are well-designed for our
framework and each stage provides different kinds of supervision
to improve overall performance in a complementary way. Besides,
we also conduct experiments to evaluate the dual-domain scheme
for PET-CT synthesis tasks. Particularly, we compare the per-
formance with and without using the sinogram domain infor-
mation and list the quantitative results in Table 8. We can see
great performance improvement induced by the sinogram
domain information in terms of average SSIM, PSNR, and
NRMSE for both PET-to-CT and CT-to-PET synthesis tasks.

Discussion
In this paper, we propose a generalized dual-domain framework
for medical image reconstruction and synthesis based on hier-
archical consistency constraints within and across domains. In
particular, the dual domain can be interpreted as an image
domain and another domain of interest, such as an image
acquisition domain. Different from the conventional CycleGAN
framework, where cycle consistency is performed between the
source and target images using an unsupervised learning scheme
in a single modality, e.g., the image domain, our proposed dual-
domain-based generative framework adopts the principle of
hierarchical consistency in dual domains based on supervised
learning. Leveraging dual domains not only coincides with the
inherent characteristics of medical imaging but also allows better
exploitation of the underlying patterns in both acquisition and
image domains. Without loss of generality, by involving four

Table 8 Ablation study of the proposed framework for PET-CT synthesis on in-house dataset.

Setting PET-to-CT CT-to-PET

SSIM PSNR SSIM PSNR

S1 0.9569 ± 0.0484 35.54 ± 1.02 0.9491 ± 0.0390 34.82 ± 1.62
S1+ S2 0.9810 ± 0.0319 37.30 ± 1.21 0.9612 ± 0.0312 36.02 ± 1.27
S1+ S3 0.9573 ± 0.0482 37.15 ± 1.76 0.9486 ± 0.0582 35.66 ± 1.89
S2+ S3 0.9828 ± 0.0327 38.01 ± 1.11 0.9384 ± 0.0598 36.21 ± 1.58
S1+ S2+ S3 0.9843 ± 0.0123 38.33 ± 0.55 0.9658 ± 0.0436 36.76 ± 1.25
Image domain 0.9783 ± 0.0155 36.24 ± 1.01 0.9379 ± 0.0759 34.84 ± 1.96
Dual-domain 0.9843 ± 0.0123 38.33 ± 0.55 0.9658 ± 0.0436 36.76 ± 1.25

Best performance is highlighted in bold font.

Table 7 Quantitative comparison with other state-of-the-art methods for PET-CT synthesis based on the in-house dataset.

Tasks PET-to-CT CT-to-PET

Method SSIM SSIM SSIM PSNR SUVmean SUVmax

UNet44 0.9581 ± 0.0427 35.10 ± 1.06 0.9160 ± 0.0357 33.52 ± 1.05 9.02 ± 4.22 −7.48 ± 6.86
RUNet45 0.9569 ± 0.0484 35.54 ± 1.02 0.9491 ± 0.0390 34.82 ± 1.62 8.12 ± 2.74 −9.62 ± 1.07
p2pGAN46 0.9666 ± 0.0200 35.18 ± 0.98 0.9391 ± 0.0484 35.04 ± 1.67 9.52 ± 3.19 −9.36 ± 1.90
CycleGAN40 0.9646 ± 0.0197 35.49 ± 1.04 0.9581 ± 0.0402 35.70 ± 2.01 8.86 ± 6.43 −8.06 ± 2.81
MedGAN38 0.9706 ± 0.0111 35.70 ± 0.64 0.9091 ± 0.0658 35.83 ± 2.77 7.36 ± 7.58 −5.04 ± 2.07
Ours 0.9843 ± 0.0123 38.33 ± 0.55 0.9658 ± 0.0436 36.76 ± 1.25 4.98 ± 3.07 3.27 ± 4.46

Best performance is highlighted in bold font.
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generative functions between the source and target images in dual
domains, bi-directional mappings across images and domains are
enabled, although, for certain tasks, some of the generative
functions are not necessary to be learned. More importantly,
unlike most of the existing dual-domain-based generative meth-
ods which either adopt sequentially cascaded or parallel-
connected sub-networks for processing the individual domain
patterns, we explicitly impose hierarchical consistency, including
intra-domain consistency, inter-domain consistency, and cycle
consistency. These hierarchical consistency constraints are
stepwise integrated into three stages of generative framework
during the training, to achieve a multi-level similarity match in
a stabilized and structured way. In extensive experiments, mul-
tiple representative generative tasks are investigated, and the
proposed generative framework achieves superior performance
compared to the corresponding state-of-the-art methods in dif-
ferent applications. Furthermore, we have performed compre-
hensive analysis and in-depth ablation study from different
perspectives to evaluate the effectiveness of the dual-domain and
hierarchical consistency design in several representative gen-
erative tasks.

We first carried out experiments to evaluate our framework
for low-dose PET and low-dose CT reconstruction. We collected
70 standard-dose PET volumes with a total of 1540 slices and
also 8 standard-dose CT volumes with 5326 slices in total.
Following the standard simulation procedure, we generated
corresponding low-dose counterparts. By using hierarchical
dual-domain constraints, the proposed reconstruction model
obtains great performance gain compared to representative
reconstruction methods.

Furthermore, we have also evaluated our framework for metal
artifact reduction in Cone-beam CT (CBCT). We conducted
experiments on two datasets. The first one contains 100 CT
volumes of teeth from local hospitals with 5500 selected slices in
total, and the second one is a subset of the public dataset Dee-
pLesion which contains 4118 slices. Compared to competitive
approaches such as AttenMAR51 and RCN50, our proposed fra-
mework exhibits remarkable improvement in terms of average
PSNR and SSIM on both datasets.

To further validate the effectiveness of our proposed frame-
work, we carried out experiments for MRI reconstruction. The
development of an MRI reconstruction algorithm is of clinical
importance since it can improve image quality by alleviating
severe aliasing effects due to k-space subsampling. In the
experiment, an in-house dataset which consists of 24-coil T2w
MR brain images of 62 subjects is employed. We construct our
reconstruction model based on two representative backbones,
namely UNet53 and E2EVarNet54. Experiments show that the
proposed framework obtains noticeable performance gain on
both backbones for 4× and 8× acceleration rates.

Besides experiments for reconstruction tasks, we perform
experimental evaluation also for the task of PET-CT synthesis
based on an in-house dataset containing 65 paired PET/CT brain
volumes. In comparison with existing state-of-the-art methods
for image synthesis such as MedGAN38 and p2pGAN46, our
proposed framework achieves great quantitative improvement,
which coincides with the qualitative performance in visual
perception.

In summary, from the above evaluations for different recon-
struction and synthesis tasks, we can see that, one can always use
a UNet-shaped network as the baseline backbone for the indivi-
dual generative functions G, and separately designed network
structure for different applications can further facilitate the model
performance. Moreover, although different generative functions
can be selected for different applications, all models share the

same dual-domain framework with hierarchical consistency
constraints and achieve remarkable performance improvement in
their respective applications. Therefore, we can conclude that the
proposed generative framework is general for medical image
reconstruction and synthesis.

Methods
Datasets
Low-dose PET/CT reconstruction. For the low-dose reconstruction
task, 70 low-dose PET images were simulated from the corre-
sponding standard-dose counterparts according to the sampling
principle of PET. Specifically, we randomly generated low-dose
sinograms by downsampling the standard-dose ones and used the
OSEM algorithm to get paired low-dose and standard-dose PET
images. We cropped and resampled the paired volumes to the
resolution of 128 × 128 with a pixel size of 2.344 × 2.344 mm2. In
the experiments, 1078 2D slices were randomly chosen as the
training set, 154 slices as the validation set, and 308 samples as
the testing set. For low-dose CT reconstruction, we collected eight
standard-dose CT volumes and simulated the low-dose CT
volumes by decreasing the operating current (mA) and the
number of projections. We cropped and resampled CT volumes
to the same resolution, and used slices in the axial view to gen-
erate the 2D dataset with 5326 samples in total. The resolution of
low-dose and standard-dose CT images is 512 × 512 with a pixel
size of 0.820 × 0.820 mm2. We randomly chose 3897 samples as
the training set, 585 samples as the validation set, and the rest
844 samples as the testing set.

Metal artifact reduction. We have validated the proposed dual-
domain cycle-consistent MAR network on two datasets, one in-
house Cone-Beam CT (CBCT) dataset of teeth images and one
public dataset (a subset of DeepLesion56). For the first dataset, we
collected 100 high-quality teeth CBCT volumes from local hos-
pitals. All the CT volumes have the same resolution of
1 × 1 × 1 mm3 and the same size of 400 × 400 in the transverse
view. All the individual teeth were annotated by experienced
dentists. We randomly selected 5500 slices from the collected
metal-free volumes, in which 4400 slices were used for training
and the rest 1100 for testing. We followed the experiment setup in
ref. 57 to simulate the metal-affected images, where 1–4 teeth were
selected as the implant metals based on the segmentation anno-
tation in each selected slice for simulating metal artifacts. For the
second dataset, we selected a subset of DeepLesion as suggested
by Liao et al.14. 3918 metal-free CT slices in conjunction with 90
metal masks were employed to generate metal-affected images for
training, and other 200 metal-free CT images with 10 metal
masks were used for testing.

Fast MRI reconstruction. An in-house dataset consisting of 62
multi-coil MR brain images was used to evaluate our proposed
framework for MRI reconstruction. The dataset contains 24-coil k-
space data of 62 subjects scanned with a 3T MR scanner using a
T2w pulse sequence (TR= 4226ms, TE= 104.8 ms). Each image
has a spatial resolution of 0.7 × 0.7 × 5mm3. To augment the
training dataset, rigid transform with a random rotation within ±
10° and random translation in the range of ±15mm was applied to
the data. For each subject, we normalized the image based on
intensity and extracted the axial slices for both contrasts. The 24-
channel complex-valued images were cropped to 320 × 320 to
remove the background area and the Fourier transform was per-
formed to obtain the corresponding k-space data. A Cartesian
Gaussian random under-sampling pattern was applied to achieve
the acceleration rate of 4× and 8×, where 6 center lines were always
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acquired. In such a way, we extracted 1248 slices from the
62 subjects and randomly split them into 503, 241, and 504 for
training, validation, and testing, respectively.

PET-CT synthesis. For PET-CT synthesis, we used 65 paired PET
and CT brain images acquired from the uEXPLORE PET/CT
system. We cropped and resampled these paired volumes to the
resolution of 128 × 128 with a pixel size of 2.344 × 2.344 mm2. We
selected the middle 20 axial slices to aggregate a total of
1300 samples. 1000 samples were randomly chosen as the
training set, 60 samples were set as the validation set, and the rest
240 samples were used for testing.

Generative framework. As shown in Fig. 1, our proposed fra-
mework consists of four generative functions, namely the target-
to-source GI

s and the source-to-target GI
t in the image domain

and GA
s ;G

A
t in the second domain such as the sinogram domain.

Depending on the applications, the generative functions can be
as complex as highly nonlinear mappings such as convolutional
neural networks, or as simple as linear mappings such as a fully
connected layer or a sampling map. Each function aims to build
up a mapping between the source and target images in the
corresponding domain. In conjunction with the forward and
backward transforms F and F−1 such as the Radon transform for
CT and PET while the Fourier transform for MRI, one can
construct a dual-domain and bidirectional framework as shown
in Fig. 1b. Thanks to the architecture of the proposed frame-
work, one can exploit and aggregate patterns in the individual
domain, and also build up multi-stage bidirectional consistency
constraints. By resorting to the hierarchical bidirectional con-
straints, one can strengthen the coupling of different repre-
sentations and obtain a more robust solution to the inverse
problem. In particular, the hierarchical bidirectional consistency
constraints consist of three stages: Stage 1 performs intra-
domain consistency by building up relations and constraints
between the source and target images in each domain inde-
pendently; Stage 2 aims for constructing connections across
domains to preserve inter-domain consistency; Stage 3 inte-
grates bidirectional cycle consistency within and across domains
into the framework to achieve hierarchical consistency. Detailed
description of each stage is given below.

Algorithm 1. Multi-stage training strategy

Stage 1: Intra-domain consistency. As the cornerstone of hier-
archical consistency, intra-domain consistency is achieved by
training the generative functions GI

s;G
A
s ;G

I
t;G

A
t independently in

a supervised manner. Specifically, we perform bidirectional
training between source and target images in each domain to set
up the shortest local consistency and pave the way for inter-
domain consistency in the second stage. Given the paired source
image xs and target image xt such as paired CT and PET or
artifact-contaminated and artifact-free CT images, the individual
loss functions of GI

s;G
A
s ;G

I
t;G

A
t are formulated as follows:

LI
t ¼ Exs;xt

jjGI
tðxsÞ � xtjj1;

LI
s ¼ Exs;xt

jjGI
sðxtÞ � xsjj1;

LA
t ¼ Exs ;xt

jjGA
t ðFðxsÞÞ � FðxtÞjj1;

LA
s ¼ Exs ;xt

jjGA
s ðFðxtÞÞ � FðxsÞjj1:

ð1Þ

Stage 2: Inter-domain consistency. Stage 2 is designed to construct
and strengthen the coupling of dual-domain information for
inter-domain consistency by integrating additional cross-domain
constraints. In particular, the bidirectional consistency, namely
from source to target and target to source, is performed sepa-
rately. For the source-to-target direction, we alternately train GI

t
and GA

t by the loss defined in Eqs. (2) and (3), respectively. When
training GI

t , we freeze the parameters of GA
t ; and when training

GA
t , we freeze GI

t . Following such a training strategy, we can
achieve cross-domain consistency for the source-to-target direc-
tion efficiently.

LI
t ¼Exs ;xt

jjGI
tðxsÞ � xtjj1

þ λ1Exs
jjGI

t ðxsÞ � F�1ðGA
t ðFðxsÞÞÞjj1;

ð2Þ

LA
t ¼Exs;xt

jjGA
t ðFðxsÞÞ � FðxtÞjj1

þ λ2Exs
jjGA

t ðFðxsÞÞ � FðGI
tðxsÞÞjj1;

ð3Þ

Similarly, based on the loss functions in Eqs. (4) and (5), we
can train GI

s and GA
s alternatively and preserve the dual-domain

consistency for the target-to-source direction.

LI
s ¼Exs;xt

jjGI
sðxtÞ � xsjj1

þ λ3Ext
jjGI

sðxtÞ � F�1ðGA
s ðFðxtÞÞÞjj1;

ð4Þ
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LA
s ¼Exs;xt

jjGA
s ðFðxtÞÞ � FðxsÞjj1

þ λ4Ext
jjGA

s ðFðxtÞÞ � FðGI
sðxtÞÞjj1;

ð5Þ

Stage 3: Cycle consistency. In Stage 2, we have built up the con-
sistency from source to target and target to source. In Stage 3, we
intend to extend the consistency constraints by involving cycle
consistency within and across domains. The cycle consistency has
two directions, namely from source to source in anti-clockwise
direction and from target to target in clockwise direction. The
source-to-source direction is to fine-tune GI

t by freezing the
parameters of the other functions, while the target-to-target is to
fine-tune GI

s. Each of these two directions contains cycle con-
sistencies in dual domains. For example, for the source-to-source
direction, the source image goes through GI

t and GI
s to complete

the cycle in the image domain. For the dual-domain cycle, in
conjunction with the pre-trained GA

s and GA
t whose parameters

are frozen, the anti-clockwise cycle across domains preserves the
self-similarity of the source image. The loss function for updating
GI
t based on the source-to-source cycle is described as

Lt ¼Exs;xt
jjGI

tðxsÞ � xtjj1
þ ξ1Exs

jjG1
s ðGI

t ðxsÞÞ � xsjj1
þ ξ2Exs

jjF�1ðGA
s ðFðGI

tðxsÞÞÞÞ � xsjj1;
ð6Þ

The first term is the primary supervision as defined in Stage 1.
The second and the third terms are, respectively, the image-
domain cycle consistency loss and the cross-domain cycle con-
sistency loss. ξ1 and ξ2 are hyper-parameters to balance the
importance of the two cycle-consistency losses.

Similarly, the target-to-target direction for updating GI
s follows

the same scheme as above. The loss function for the clockwise
direction is expressed in Eq. (7).

Ls ¼Exs ;xt
jjGI

sðxtÞ � xsjj1
þ ξ3Ext

jjGI
tðGI

sðxtÞÞ � xtjj1
þ ξ4Ext

jjF�1ðGA
t ðFðGI

sðxtÞÞÞÞ � xtjj1;
ð7Þ

The hierarchical consistency constraints and the corresponding
training strategy are summarized in Algorithm 1. It is worthy to
mention that in the testing phase, we only perform GI

t or G
I
s to

obtain the network output although both directions have been
trained.

Statistics and reproducibility. Our proposed framework was
implemented on the PyTorch platform, and all the experiments
were conducted on the NVIDIA GeForce GTX A100 with 40 GB
RAM and the Intel(R) Xeon(R) Silver 4214R CPU.

For low-dose PET/CT reconstruction and PET-CT synthesis,
we used RUNet45 as the generative functions, i.e., GI

s and GI
t , and

adopted the Fully Connected Network (FCN)58 as GA
s and GA

t .
We set the weights λ1–λ4 and ξ1–ξ4 as 0.5. Adam optimizer was
employed to train four networks in all stages, and the learning
rate of three stages was set as 0.005, 0.002, and 0.002, respectively.
For low-dose PET reconstruction, the training time of our
method is about 21 h, and other comparison methods took about
13 h (RUNet), 17 h (p2pGAN), 17.5 h (MedGAN), 16.5 h
(CycleGAN), and 19 h (iBP-Net) for training. For low-dose CT
reconstruction, the training time of our method is about 71 h, and
other comparison methods took about 36.5 h (RUNet), 49 h
(p2pGAN), 55 h (MedGAN), 52.5 h (CycleGAN), and 63.5 h
(iBP-Net) for training. For PET-CT synthesis, the training time of
our method is 22.5 h, and other comparison methods took
about 25.5 h (U-Net), 25.5 h (RUNet), 30.5 h (p2pGAN), 17 h
(MedGAN), and 35 h (CycleGAN) for training.

For MAR, we employed four identical RUNet (initial filters of
8, 16, and 32, respectively) as the generative functions for both
domains. For the CBCT dataset, the minimum and maximum CT
densities were respectively clipped to −1000 HU and 2000 HU.
All the images were normalized based on the attenuation
coefficients (μH2O

¼ 0:192) as the network input. For the
Deeplesion dataset, we follow the preprocessing in ref. 50. The
network was optimized by the Adam optimizer with a learning
rate of 0.0001 for 20 epochs and the mini-batch size was set as 8
and 6 for CBCT and Deeplesion, respectively. The weights of the
spatial domain loss and projection loss were set as 10 and 0.1,
respectively, because the intensity values in the projection domain
are usually large. The weighting parameters λ1–λ4 for each stage
were chosen as 0.2 and ξ1–ξ4 were set as 0.1. The experiments are
performed on a shared server. The training time of our method is
about 18.5 h for the CBCT dataset and other compared methods
are about 14.5 h (CycleGAN), 11 h (RCN), 8 h (AttentionMAR),
and 16 h (DuDoNet). The training time of our method on the
Deeplesion dataset is about 13 h and other compared methods are
about 16 h (CycleGAN), 14 h (RCN), 13 h (AttentionMAR), and
18 h (DuDoNet).

For fast MRI reconstruction, the proposed framework is
evaluated on the backbones of UNet and E2EVarNet. The
constructed models were trained until convergence within 100
epochs with the learning rate of 2 × 10−4 using the Adam
optimizer59. The designed model for MRI reconstruction consists
of only two generative functions, namely GI

t;G
A
t from the source

to the target direction, the loss terms associated with the
coefficients of λ3, λ4, ξ1, and ξ3 are not applicable. The values of
λ1 and λ2 were both chosen as 0.5. The weights ξ2 and ξ4 were
empirically selected as 0.5 by simple grid searching on the
validation set. The output of the reconstruction network in
the image domain is used during inference. The training time of
our method is about 1.5 h with UNet as the backbone, and 6.5 h
with E2EVarNet as the backbone, while the comparison method
DuDoRNet took 15.5 h for training.

Data availability
The authors declare that partial data will be released to support the results of this study
(https://github.com/ZhangJD-ong/Medical-image-reconstruction-and-synthesis), with
permission from respective data centers. The full datasets are protected because of
privacy issues and regular policies in hospitals. All relevant data supporting the findings
of this study are available from the corresponding author upon reasonable request. Any
data use will be restricted to non-commercial research purposes.

Code availability
All custom code used in this work, including that used to train and test the framework,
can be obtained from the following publicly accessible GitHub page: https://github.com/
ZhangJD-ong/Medical-image-reconstruction-and-synthesis.
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