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Drone swarm strategy for the detection and
tracking of occluded targets in complex
environments
Rakesh John Amala Arokia Nathan1, Indrajit Kurmi1 & Oliver Bimber 1✉

Drone swarms can achieve tasks via collaboration that are impossible for single drones alone.

Synthetic aperture (SA) sensing is a signal processing technique that takes measurements

from limited size sensors and computationally combines the data to mimic sensor apertures

of much greater widths. Here we use SA sensing and propose an adaptive real-time particle

swarm optimization (PSO) strategy for autonomous drone swarms to detect and track

occluded targets in densely forested areas. Simulation results show that our approach

achieved a maximum target visibility of 72% within 14 seconds. In comparison, blind sam-

pling strategies resulted in only 51% visibility after 75 seconds and 19% visibility in 3 seconds

for sequential brute force sampling and parallel sampling respectively. Our approach provides

fast and reliable detection of occluded targets, and demonstrates the feasibility and efficiency

of using swarm drones for search and rescue in areas that are not easily accessed by humans,

such as forests and disaster sites.
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Drone swarms often explore a collaborative behavior to
perform as an intelligent group of individuals and achieve
objectives that would be impossible or impractical to

achieve individually1–5. Single drones within the swarm can
perceive their local environment and then act accordingly with or
without direct awareness of the swarm’s overall objective. They
have been used for surveillance and environment mapping6–10,
airbase communication networking11–13, target detection and
tracking14–17, infrastructure inspection and construction18–20, or
load transport and delivery21, and are particularly useful in areas
that are not easily accessible by humans, such as forests and
disaster sites22–24.

Drone swarms utilize either a centralized control system6,7,13

(where either an omniscient drone or an external computer
performs communication and pre-plans actions) or a decen-
tralized control system8,10,11,20,24 (drones communicate with each
other and make decisions locally). Hand-crafted1,25,26 or auto-
matically designed algorithms (e.g., heuristics-based, evolu-
tionary-based, learning-based1,2,27–37) have been applied to
implement various swarm behaviors (e.g., flocking, formation
flight and distributed sensing) for achieving a desired objective
(e.g., path planning, task assignment, flight control, formation
reconfiguration and collision avoidance).

Meta-heuristic algorithms (e.g., genetic algorithms, differential-
equation-based algorithms, ant-colony and particle swarm opti-
mization (PSO)) exploit non-Markovian properties of a problem
(i.e., each individual drone has only a partial observation of the
swarm). Their inherent ability to deal with credit assignment has
led to these approaches being more widely adopted than classical
and learning-based algorithms (e.g., deep-learning neural net-
work, reinforcement-learning) in the swarm literature. PSO in
particular is computationally efficient, robust, and can be incor-
porated into hierarchical planning structures.

Synthetic aperture (SA) sensing is a signal processing technique
that takes measurements of limited size sensors and improves
them by computationally combining their samples to mimic
sensor apertures of physically impossible width. In recent dec-
ades, it has been applied in various fields, such as radar38–40,
radio telescopes41,42, interferometric microscopy43, sonar44,45,
ultrasound46,47, LiDAR48,49, and imaging50–52.

With airborne optical sectioning (AOS)53–64, we have intro-
duced an optical SA imaging technique for removing partial
occlusion caused by vegetation (cf. Fig. 1a). Drones equipped with
conventional cameras are used to sample images above forest.
These images have a wide depth of field, due to the cameras’
narrow apertures (i.e., small lenses, usually a few millimeters).
They are registered and integrated to mimic shallow depth of field
images as would have been captured by a very wide-aperture
camera (using a lens that covers the sampling area, several meters
in diameter). Computationally focusing the resulting integral
image on the forest ground by registering the single images
appropriately with respect to the drones’ sampling positions
emphasizes the targets’ signal while very quickly suppressing (due
to the shallow depth of field) the signals of occluders above. The
unique advantages of AOS, such as its real-time processing cap-
ability and wavelength independence, open many new application
possibilities in contexts where occlusion is problematic. These
include, for instance, search and rescue, wildlife observation,
wildfire detection, and surveillance. We have demonstrated that
image processing techniques, such as classification61 and anomaly
detection63, are significantly more efficient in the presence of
occlusion when applied to integral images rather than to single
images.

We have previously presented several sampling techniques for
AOS. Early approaches used single, sequentially sampling drones
that followed predefined waypoints53–61 or autonomously

determined flight paths that were dynamically planned based on
classification results62 (cf. Fig. 1b). Sequential sampling does not
support moving targets, as long sampling periods result in strong
motion blur. Initially, parallel sampling strategies were investi-
gated, which used large 1D camera arrays with a fixed sampling
pattern instead of single cameras (cf. Fig. 1c). They supported
motion detection and tracking, but were cumbersome to handle,
difficult to fly stably, and resulted in undersampled integrals. In
all of these cases, varying forest properties, such as changing local
occlusion densities, could not be considered for optimized sam-
pling. Due to their high complexity, local viewing conditions
could not be reconstructed in real time during scanning, and were
impossible to model or learn because of their high degree of
randomness. However, knowing sparser forest patches through
which targets could be observed with less occlusion and possibly
even from more oblique viewing angles could make AOS sam-
pling significantly more efficient than sampling blindly. The
sampling pattern could then adapt adequately and dynamically to
local viewing conditions.

In this article, we demonstrate that PSO is a suitable instru-
ment for solving this problem. Here, we consider an autonomous
swarm of drones that explores optimal local viewing conditions
for AOS sampling. They approximate the optical signal of
extremely wide and adaptable airborne lens apertures (see Sup-
plementary Movie Abstract).

While PSO has a long history in modeling real-time swarm
behavior32–37, the objective function for AOS is not constant
(especially in the case of target motion), highly random (forest
occlusion), neither linear nor smooth, and certainly not differ-
entiable. We present a PSO variant and a new objective function
that can cope with these challenges and that considers additional
sampling constraints, such as enforcing minimal sampling steps
because smaller ones would not contribute to occlusion
removal54,57. Furthermore, we explain how PSO hyper-
parameters are directly related to SA properties, such as the
aperture diameter, and show that collision avoidance can be
achieved by simple altitude offsets without significant reduction
in sampling quality.

Experiments reveal that, in contrast to previous blind sampling
strategies, which are based on predefined waypoint flights (where
sampling is either sequential or parallel), drone swarms adapt to
optimal viewing conditions, such as low occlusion density and
large target view obliqueness (which increases the projected
footprint of the target). Furthermore, they combine sequentially
and parallelly recorded samples. Both increase visibility sig-
nificantly while reducing sampling time. Lastly, moving targets
can be detected and tracked even under difficult through foliage
conditions.

We acknowledge that blind brute force sampling with an
infinite number of samples over the entire search area may yield
similar visibility results, but is unsuitable for time-sensitive
applications such as search and rescue operations where time
and drone battery life are limited. To address this limitation,
the proposed adaptive swarm sampling approach is evaluated
against blind sampling methods (sequential and parallel) based
on visibility (%) and time (seconds), demonstrating superior
performance. This comparison is considered equitable because
the primary goal is to locate the target swiftly and reliably,
which is an optimization issue that cannot be resolved by
dense brute force search due to performance and complexity
restrictions.

Our approach using autonomously exploring swarms of drones
can lead to faster and much more reliable detection of strongly
occluded targets, such as missing persons in search and rescue
missions, animals during wildlife observation, hot spots during
wildfire inspections, or security threats during patrols.
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Results
We applied a procedural forest model (cf. Fig. 2a) to simulate the
AOS sampling process in four spectral bands (visible and far
infrared, RGB+thermal), for different forest occlusion densities

and sampling procedures (parallel, sequential, single drones,
camera arrays, swarms), as well as for moving and static targets.
Implementation details are summarized in Implementation, and a
comparison between simulated and real integral images is

Fig. 1 Blind sampling strategies for target detection and tracking in forested environments using airborne optical sectioning. a Airborne optical
sectioning sampling principle: after image registration and integration, misaligned occluders above the focused ground surface are suppressed, while
aligned targets on the ground surface are emphasized. b A single-camera drone prototype that sequentially samples the synthetic aperture (SA) to detect
static targets (persons lying on the ground) in a dense forest61, 62. c A drone prototype with a parallelly sampling camera array that spans a 10-m wide 1D
SA supports the detection and tracking of moving targets (walking persons) in a dense forest63. b Classification as well as c anomaly detection and tracking
through foliage becomes possible in integral images across multiple time steps t while it remains unfeasible in single images (with many false positives and
true negatives).

Fig. 2 Impact of blind sampling strategies on target visibility in a simulated procedural forest environment. a Our simulation environment was a 1 ha
procedural forest with one hidden avatar. b Blind brute force sequential sampling, as in the case of a single-camera drone that sequentially samples the SA
(Fig. 1b)61, d led to a maximum target visibility (MTV) of 51% after a long period of 75 s. c Blind parallel sampling, as with an airborne camera array
(Fig. 1c)63, was fast, but d resulted in only 19% MTV after a short period of 3 s. Our objective function O models target visibility by the contour size of the
largest connected pixel cluster (blob) computed from anomalies in color (RGB) and thermal channels, as explained in Objective Function. Note that the
yellow boxes highlight the target, the white arrows show the movement of the drones between time steps t− 1 and t, the blue lines represent the total
sampling paths, and the gray area shows the integrated ground coverage at time t. Simulation parameters: drone’s ground speed= 10m/s, forest
density= 300 trees/ha, b single-camera drone sampling sequentially a 36 × 38m SA with a 4 × 2m resolution, c array of 10 cameras sampling at 1 m inter-
camera distance with 2m steps in the flight direction (as shown for the prototype in Fig. 1c). See Supplementary Movie 1.
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provided in Supplementary Note 1 (cf. Supplementary Fig. S1).
All experiments were evaluated with the objective function pre-
sented in Objective function. It determines the target visibility,
and we consider it in % (given that the highest visibility of an
unoccluded target is known and 100%). Note that the maximum
target visibility (MTV) under occlusion over the entire sampling
time provides the best hint of a potentially detected target. Our
PSO approach, with its collision avoidance strategy and hyper-
parameters, is explained in Particle swarm optimization, Collision
avoidance, and Hyper-parameters. We conclude with a discussion
of the results in the Discussion and conclusion.

The goal of the following experiments was the automatic
detection of a standing or walking person in occluding forest. We
compare different sampling options for this task: (1) a single
sequentially sampling drone (as shown in Fig. 1a) following a
predefined 2D search grid at constant altitude (40 m AGL), (2) an
airborne array of 10 parallelly recording cameras (as shown in
Fig. 1b) while following a predefined 1D search path at constant
altitude (40 m AGL), and (3) swarms of 3, 5, and 10 drones
following our PSO at various individual altitudes for collision
avoidance (swarm average altitude is always 40 m AGL), as
explained in Collision avoidance. In all cases, starting conditions
and flight speed (10 m/s) were identical, and the images captured
(sequentially and parallelly) were integrated in overlapping
ground surface regions. We also investigated different forest
densities: sparse (300 trees/ha), medium (400 trees/ha), and dense
(500 trees/ha).

Previous blind strategies that sample based on predefined
waypoints (i.e., sequentially with a single-camera drone or par-
allelly with camera arrays) were reconsidered in the experiment
shown in Fig. 2a–d. The single-camera drone that carries out
blind brute force sampling has a SA size similar to that of the
adaptive swarm approach in the default scanning pattern. In
contrast, the blind parallel sampling camera array has a SA size of
only 9 m. Larger arrays are impractical because they are difficult
to maintain and do not allow proper flight stabilization due to the
extreme lever arms, as explained in ref. 63. While brute force
sequential sampling led to a relatively high visibility improvement
through occlusion removal after a relatively long time (51% MTV
after 75 s), parallel sampling resulted very quickly with only
marginal visibility improvements (19% MTV after 3 s). In both
cases, local occlusion densities of the forest or view obliqueness of
the target were not considered. Note that the geometric dis-
tribution behavior of visibility improvement that can be observed
for sequential sampling with an increasing number of integrated
images matches the findings made with the statistical model
described in ref. 54.

Adaptively sampling drone swarms that consider local occlu-
sion density and target view obliqueness, however, can sig-
nificantly increase visibility while reducing sampling time, as
shown in the next experiment (Fig. 3a–e). Under the same con-
ditions as for the experiments in Fig. 2, an MTV of 72% was
reached after 14 s because the swarm found and converged over
gaps or sparse density regions in the vegetation while preferring
oblique target views. Our PSO that guides the swarm behavior
considers sequentially as well as parallelly captured samples for
maximizing target visibility, as explained in detail in Methods.

The size of the swarm clearly matters, as shown in the
experiment in Fig. 4a–c, f. Larger swarms profit from a wider SA
and a denser sampling. They consequently led to better visibility
(max. 72% for n= 10, 35% for n= 5, and 22% for n= 3) and
larger sampling coverage. However, if the swarm becomes too
large or the SA is extremely wide, then the field of view coverage
of the drones’ cameras (i.e., the overlapping ground region cov-
ered by the swarm) is reduced to zero for drones at the SA’s
periphery.

With increasing forest density, visibility decreases because of
denser occlusion, as can be seen in the experiment in Fig. 4c–e, g.
By repeating the experiment shown in Fig. 3, MTV drops from
72% (300 trees/ha) down to 42% (400 trees/ha) and 31% (500
trees/ha). The averaged outcomes of three simulation runs for
each of the six scenarios illustrated in Fig. 4 are detailed in
Supplementary Note 3 (cf. Supplementary Fig. S3). Note that our
simulations were conducted for an extended period of time but
the plots in Figs. 2–4, were cut off at the point where there was no
further improvement observed in the objective. The full simula-
tion results are available in the Supplementary material.

Moving targets can also be detected and tracked. For the
experiment shown in Fig. 5a–i, the average differences between
the target’s ground truth position, motion speed, motion direc-
tion and the corresponding estimations of our PSO were 0.59 m,
0.09 m/s, and 9.21/circ, respectively. When the target leaves the
swarm’s view, the swarm starts to diverge into the default scan-
ning pattern toward the last known target position. When the
target stops, the swarm mainly converges into a circular SA
pattern. If the target is inside the swarm’s view while moving, the
swarm converges and diverges depending on the local occlusion
situation. Note that its convergence and divergence behavior may
also be attributed to the target moving in and out of the swarm’s
field of view. This is illustrated in Fig. 5i. Supplementary Note 4
presents a further motion example (cf. Supplementary Fig. S4),
while Supplementary Notes 5 and 6 show failure cases for too fast
target motion (cf. Supplementary Fig. S5) and locally too dense
occlusion (cf. Supplementary Fig. S6).

A detailed discussion of these results is provided in the Dis-
cussion and conclusion.

Methods
Particle swarm optimization. In order to determine the particle
positions at time t+ 1, classical PSO algorithms65–68 add the fol-
lowing velocity vectors to the current positions at time instance t:

Vtþ1
i ¼ c0 � Vt

i

� �þ c1 � r1 Pi
best � Pt

i

� �
þ c2 � r2 Gbest � Pt

i

� �
;

ð1Þ

where Vt
i is the velocity vector of particle i at time t, Pi

best is the
position of best objective ever explored by particle i, Gbest is the
position of the best objective ever explored by any particle, r1 and r2
are random numbers (0…1), and c0, c1, c2 are the hyper-
parameters. Here, c0 is the inertia weight constant (i.e., how
much of the previous velocity is preserved), c1 is the cognitive
coefficient, which refines the results of each particle, and c2 is the
social coefficient, which refines the results of the entire swarm.

For our problem, two main observations can be made:
(1) Our objective function is based on randomness (forest

occlusion) and is (especially in the case of target motion) not
constant. It is neither linear nor smooth, and certainly not
differentiable. The latter is the reason for choosing PSO in
general, as gradient-decent-based optimizations are not possible.

(2) A bias toward the positions with the best sample values
over history (either for a single particle Pi

best or for the global
swarm Gbest) is not effective if dynamics and randomness affect
the objective function. Sampling multiple times at the same (best)
position does not improve the objective in our case, as no
additional unoccluded parts of the target can possibly be seen.
Therefore, particles must always remain dynamic in our case (and
not converge to a single position), and must cover the SA
effectively.

To address these two observations, our PSO approach must be
much more explorative than exploitative:

(1) The swarm behavior itself is constrained to the current time
instance (i.e., not considering history): random local explorations
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of particles with a bias toward a temporal global leader (i.e., the
best sample at the current time instance), enforcing a minimal
distance constraint that defines the SA properties.

(2) The objective function is conditionally integrated (i.e., a
new sample is integrated only if it improves the objective), using

parallel samples (i.e., samples taken at the current time instance)
and sequential samples (i.e., samples taken at previous time
instances).

(3) Instead of an inertia weight constant, we apply a condition
(i.e., if nothing is found) bias toward a default scanning pattern.

Fig. 3 Particle swarm optimization for enhanced target visibility. a Swarm of 10 drones approaches target in default (linear) scanning pattern and b then
converges d to maximize target visibility. b Our objective function Omodels target visibility by the contour size of the largest connected pixel cluster (blob)
computed from anomalies in color (RGB) and thermal channels. d A maximum target visibility (MTV) of 72% was reached after 14 s by finding and
converging above gaps in the vegetation, c, e as in the close-ups. For comparison, the blind sampling results from Fig. 2 are also d plotted for the same
duration. Note that the white rays (solely used for visualization purposes) indicate direct line of sight between drones and target, the yellow boxes highlight
the target, the white arrows show the movement of the drones between time steps t− 1 and t, the blue lines represent the total sampling paths of the
swarm’s center of gravity, the yellow dots/drones indicate the best sampling position at time t, and the gray area shows the integrated ground coverage at
time t. Simulation parameters (see Methods for details): drones' ground speed = 10m/s, forest density = 300 trees/ha, n= 10, T= 16.3%, Δh= 1 m,
h1= 35m, c1= 1 m, c2= 2 m, c3= 2 m, s= c4= 4.2 m, c5= 0.3. See Supplementary Movie 2.

Fig. 4 Effects of varying swarm size and forest density on target visibility. Increasing swarm size (n= 3, 5, 10 in a–c) f led to better target visibility. Here,
a wider synthetic aperture and a larger number of samples increased the target visibility and consequently the probability of its detection. Increasing forest
density (300, 400, 500 trees/ha in c–e) g decreased target visibility due to denser occlusion. Here, the swarm size was constant (n= 10, as in Fig. 3). Note
that the yellow boxes highlight the target, the white arrows show the movement of the drones between time steps t− 1 and t, the blue lines represent the
total sampling paths of the swarm’s center of gravity, the yellow dots indicate the best sampling position at time t, and the gray area shows the integrated
ground coverage at time t. Note also that the plots end in case of no further visibility improvement. Simulation parameters (see Methods for details):
drones' ground speed= 10 m/s, Δh= 1 m, forest density= a–c 300 trees/ha, d 400 trees/ha, e 500 trees/ha, n= a 3, b 5, c–e 10, T= a 7.93%, b 11.19%,
c 16.3%, d 8.86%, e 8.39%, h1= a 38m, b 39m, c–e 35m, c1= a 0.22 m, b 0.445m, c 1 m, d 1 m, e 1 m, c2= e 0.44m, b 0.89m, c 2 m, d 2m, e 2 m,
c3= a–e 2m, s= c4= a 0.933m, b 1.87m, c 4.2 m, d 4.2 m, e 4.2 m, c5= a–e 0.3. See Supplementary Movie 3.
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Fig. 5 Detection and tracking of moving target. a Starting from the final state shown in Fig. 3, a walking person (speed: 4 m/s) was simulated: a, b moving
13 m downwards, b–d resting for 12 s, d–gmoving 55m upwards, g, h resting. i The target visibility while the swarm is tracking the person is shown, and the
different convergence and divergence phases of the swarm are highlighted. Note that the yellow boxes highlight the target’s ground truth positions, the
white stars indicate the target’s estimated positions, the white arrows show the movement of the drones between time steps t− 1 and t, the blue lines
represent the total sampling paths of the swarm’s center of gravity, the yellow dots indicate the best sampling position at time t, and the gray area shows
the integrated ground coverage at time t. Simulation parameters (see Methods for details): drones' ground speed= 10m/s, Δh= 1 m, forest
density= 300 trees/ha, n= 10, T= 16.3%, h1= 35m, c1= 1 m, c2= 2m, c3= 1.643m, s= c4= 4.2 m, c5= 0.3. See Supplementary Movie 4.
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Algorithm 1 summarizes one iteration of our PSO approach at
time instance t.

Algorithm 1. PSO Iteration
Require: at time t drone i is at position Pt

i
Ensure: ~I

t
best has highest O from Pt

best
if Oð~ItbestÞ<T
1: Lt ¼ line Pt ; SD; sð Þ; s≥ c4
2: Vtþ1

i ¼ c3 � SDþ c5 � Lti � Pt
i

� �
3: Ptþ1

i ¼ Pt
i þ Vtþ1

i
else
4: ~I

t
best ¼ ∑i;t Iti

� �
from Pt

best
5: Vtþ1

i ¼ c1 � norm ðRÞ þ c2 � norm Pt
best � Pt

i

� �
6: Ptþ1

i ¼ Rutherford Pt
i þ Vtþ1

i ; c4
� �

7: update SD, c3 wrt. target appearance
end if

It requires five hyper-parameters that are discussed in more
detail in Hyper-Parameters: c1 is the cognitive coefficient, which
refines each particle’s position randomly, c2 is the social
coefficient, which refines the position of the entire swarm toward
the best sampling position (Pt

best, indicated in yellow in Figs. 3–5)
at time instance t, c3 is the scanning speed of the swarm if nothing
is found (i.e., for the default scanning pattern), c4 is the minimal
sampling distance (minimal horizontal distance of drones), and c5
(0..1) is the speed of particles’ divergence back toward the default
scanning pattern if the target is lost. Note that SD is the
normalized vector between the most recent target position and
the swarm’s center of gravity at that time, R is a random vector,
and that positions and velocities are in 2D (defined on the
horizontal scanning plane that is parallel to the ground plane).

Lines 1–4 implement our conditioned bias toward a default
scanning pattern if nothing is found or a previously found target
is lost. Our default scanning pattern (defined by the function lines
and stored in Lt) is linear (i.e., all drones in a line) and centered at
the center of gravity of all drone positions (Pt) at time instance t,
spaced at distance s ≥ c4, and moving at speed c3 along the
scanning direction SD. A linear scanning configuration moving in
perpendicular direction ensures the widest ground coverage. As
for single drones, scanning direction and speed can be defined by
waypoints. The speed of divergence toward the default scanning
pattern if a target is lost is c5 (0..1).

Lines 5–10 implement the convergence of the swarm if a
potential target is detected. The images captured by all drones (i)
at time (t) are integrated (i.e., registered) to all (i) perspectives.
The perspective at which the computed integral has the highest
objective is the best integral image (~I

t
best) and its corresponding

reference pose is the best sampling position (Pt
best). Once (P

t
best) is

determined, all single images (Iti ) captured by all drones (i) at all

sampling times (t) are further integrated to (~I
t
best) (i.e., registering

to Pt
best and summing) only if integrating Iti improves our

objective (i.e., increases visibility in ~I
t
best). We then determine the

velocities Vtþ1
i for the next time instance t+ 1 by our cognitive

(c1) and social (c2) components. These velocities are applied to
determine the next sample positions Ptþ1

i . The minimal distance
(c4) constraint is enforced by Rutherford scattering69. Finally, the
direction (SD) and speed (c3) of the default scanning pattern are
updated with respect to the detected target appearance (i.e., its
position and motion speed/direction). Position and motion
parameters can be computed from two consecutive iterations
where the target was detected. Here, c3 is the distance by which
the target moves during the iteration time (i.e., duration of the
most recent iteration) plus some delta that guarantees that the
swarm can keep pace with the target (i.e., the swarm is faster than
the target). The updated SD and c3 become effective when the

target is lost. In this case, the swarm diverges at an appropriate
speed toward the default scanning pattern in the direction of the
most recent target appearance.

Our objective function (O) is explained in detail in Objective
function. Its result is compared to a defined limit (T) for
distinguishing a potential target signal from false positives. Note
that we repeat our PSO iterations until, for example, the objective
is high enough to clearly indicate a finding or the process is
aborted manually. More details are presented in the following
sections.

Collision avoidance. For simple collision avoidance, we operate
the drones at various altitudes with uniform height differences of
Δh. Thus, the maximum height difference between the highest
and the lowest drone is Δhmax ¼ Δh � n for n drones in the
swarm. Although different sampling altitudes lead to variations in
spatial sampling resolution on the ground, this has almost no
effect on our integral images.

The ground coverage of a drone depends on the field of view
(fov) of its camera57, and is:

cl ¼ 2 � hl � tan
fov
2

� �� �2

ð2Þ

for the lowest, and

ch ¼ 2 � hl þ Δh � n� � � tan fov
2

� �� �2

ð3Þ

for the highest drone. The average coverage in the integral image
is therefore:

cavg ¼ 2 � tan fov
2

� �� �2
�

h2l þ hl � Δh � ðn� 1Þ� �þ Δh2 2n2�3n�1
6

� �
:

ð4Þ

The corresponding spatial sampling loss ratio due to height
differences is:

SLΔh ¼
cavg
cl

¼ 1þ Δh
hl

� �2
�

2n2�3nþ1
6

� �þ Δh
hl

� �
� ðn� 1Þ:

ð5Þ

The coverage of a single pixel on the ground is (for the lowest
and highest drone, respectively):

cpxl ¼
cl
px

; ð6Þ

cpxh ¼
ch
px

: ð7Þ

The spatial sampling loss ratio due to pose estimation error e54

is:

SLe ¼ 1þ 4e2 þ 4e � ffiffiffiffiffiffifficpxl
p

cpxl
: ð8Þ

Consequently, the total spatial sampling loss ratio is:

SL ¼ SLe � SLΔh: ð9Þ

To avoid that drones at higher altitudes capture images of
drones at lower altitudes, the maximum height difference and the
vertical spacing of the drones depend on the minimal horizontal
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sampling distance (c4) and the cameras’ field of view (fov):

c4 ¼Δhmax � tan
fov
2

� �

¼Δh � ðn� 1Þ � tan fov
2

� �
;

ð10Þ

where n neighboring drones are vertically separated by Δh.
Assuming realistic parameters, for example, Δh= 1 m, n= 10,

fov= 50°, hl= 35 m, px= 512 × 512 pixels, e= 0.05 m (for RTK-
based GPS precision), would make the spatial sampling resolution
drop from 6 × 6 pixels/m2 (sampling at the same altitude) to 5 × 5
pixels/m2 (sampling at different altitudes)—both including the
reduction in spatial sampling resolution due to the pose
estimation error, as discussed in54. Here, SLΔh= 1.28, SLe= 6.57,
SL= 8.4, and c4= 4.19 m.

This example illustrates that, compared to sampling at the
same altitude, sampling at different altitudes has a minimal
impact on the spatial sampling resolution of integral images. This
is due not only to the integration itself (where multiple spatial
sampling resolutions are combined in case they are sampled from
different altitudes), but also to slight misregistrations (due to pose
estimation errors) being much more dominant than resolution
differences (compare SLΔh with SLe above).

A comparison of integral images sampled at different altitudes
and at the same altitude is shown in Supplementary Note 2 (cf.
Supplementary Fig. S2).

Note that the altitude differences for our default (linear)
scanning pattern, as explained in Particle swarm optimization,
were chosen to alternate equally over space as follows: highest,
third-highest, fifth-highest, etc. altitude from the outer-most
position of one side inwards, and second-highest, fourth-highest,
sixth-highest, etc. altitude from the outer-most position of the
opposite side inwards. This maximizes the overlapping ground
coverage57. Higher altitudes for specific drones to avoid down-
wash can be incorporated without affecting the overall approach.

Objective function. If the swarm consists of n drones that sample
over τ time instances, we capture a total of n ⋅ τ single images. At
each time instance t, n images are captured in parallel, while n-
tuples of parallel samples are captured sequentially over τ steps.

To compute the integral image, we first apply a Reed–Xiaoli
anomaly detector70 to the n latest single images captured at the
current time instance t to detect pixels that are abnormal with
respect to the background statistics. Note that all images captured
contain four spectral bands (cf. Fig. 3b): red, green, blue, far
infrared/thermal. Consequently, we detect anomalies in color and
temperature, which has proven to be more efficient than color
anomaly detection or thermal anomaly detection alone71.

We then integrate the masked results (i.e., binarized after
anomaly score thresholding) to cope with different amounts of
image overlap during swarm sampling, using a constant anomaly
score threshold (i.e., 0.9998 = 99.98% in all our experiments). The
registration of these images is relative to one of the n perspectives.
Without occlusion, the choice of the reference perspective is
irrelevant, as the target’s footprint would only shift to different
pixel positions in the integral image for each reference perspective,
but would not change otherwise. With occlusion, however, we can
gain more visibility from some reference perspectives than from
others due to varying visibility from different perspectives.
Therefore, we determine the best integral ~I

t
best with the highest

O( ⋅ ) and its corresponding reference pose Pt
best.

Once Pt
best is known, all single images captured at previous time

steps are also anomaly masked and integrated to ~I
t
best for P

t
best –

but only if they improve the objective (i.e., if they enhance

visibility and in the case of fov overlap—which indicates
overlapping coverage on the ground). Finally, we remove
previously integrated single images of the n latest set from ~I

t
best

if this also leads to an improvement of our objective.
Note that ~I

t
best, P

t
best, and objective ð~ItbestÞ are required for our

PSO interaction (algorithm 1, lines 1, 6, and 7).
Our hypothesis is that the visibility of the target improves with

more integrated samples54. In the absence of occlusion, for
instance, the target should appear fully visible in the integral
image, and its projected pixel footprint should have the
maximum size from oblique viewing angles. However, this
footprint is reduced with increasing occlusion, as only fractions
of it might be reconstructable (i.e., parts that are fully occluded in
all or most samples will remain invisible). It is also reduced by
less oblique viewing angles.

Therefore, our Oð~ItbestÞ function determines the contour size of
the largest connected pixel cluster (i.e., blob, cf. Fig. 3b) among
the abnormal pixels detected and integrated in ~I

t
best, using the

raster chain tree algorithm72. This contour size is our objective
score. According to our hypothesis, an improvement in the
objective score leads to an increase in visibility, making it a
dependable metric for evaluating the effectiveness of detecting
occluded targets. Our previous research61 has also indicated a
strong correlation between visibility and detection rate of a
classifier.

The center of gravity of the blob contour represents the
estimated target position.

Hyper-parameters. After convergence due to a potential finding,
our PSO iterations approximate a solution to the packing circles
in a circle problem73, as illustrated in Fig. 6.

Here, the inner circles represent the possible locations of each
drone at time instance t, while the outer circle represents the SA
area being sampled. To guarantee the minimal horizontal search
distance, it follows that c1+ c2 ≤ c4. To avoid that the cognitive
search behavior of the swarm overrules its social search behavior,
it follows that c1 ≤ c2.

The sampling rate in the default scanning direction is defined
by c3 (i.e., images in the default scanning direction are taken every
c3 meters). After a target has been detected, c3 should be chosen to
be larger than the distance the target can move during the
iteration time (which can be determined automatically), as
explained in Particle swarm optimization). Note that s ≥ c4
represents the sampling rate in the orthogonal direction. The
smoothness of the divergence toward the default sampling pattern
after the target has been lost is controlled by c5 (0..1). The larger,

Fig. 6 Circle packing approximation with particle swarm optimization.
Particle swarm optimization’s approximation to a packing circle in a circle
solution: The possible movement of each drone in one Particle swarm
optimization iteration is c1+ c2, and must be less than or equal to the
minimal horizontal search distance c4. a represents the synthetic aperture
area, c1 and c2 are the cognitive and social components, respectively.
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the quicker the divergence. Low values (e.g., 0.3= 30%) should be
chosen for smooth transitions.

Note that the iteration time varies, as it equals the required
duration of the drone with the longest travel distance to reach its
position. To avoid oversampling, c2− c1 (which is the smallest
possible distance a drone can move in each iteration) must not be
less than the minimum sampling baseline, which depends on
projected occluder sizes, as explained in ref. 54.

Finally, the diameter a of the SA is a= c4 ⋅ rn, where rn is the
packing number74,75 for n circles (i.e., drones) of the packing
circles in a circle problem73. For example, the SA diameter for
n= 10 drones at minimal horizontal sampling distance of
c4= 4.19 m is 15.976 m, as r10= 3.813.

Implementation. Our forest simulation was realized with a
procedural tree algorithm called ProcTree and was implemented
with WebGL. For all our experiments, it computed px= 512 × 512
pixels aerial images (RGB and thermal) for drone flights over a
predefined area and for defined sampling parameters (e.g., way-
points, altitudes, and camera field of view). The virtual rendering
camera (fov = 50° in our case) applied perspective projection and
was aligned with its look-at vector parallel to the ground surface
normal (i.e., pointing downwards). Procedural tree parameters,
such as tree height (20–25 m), trunk length (4–8 m), trunk radius
(20–50 cm), and leaf size (5–20 cm) were used to generate a
representative mixture of broadleaf tree species. Finally, a seeded
random generator was applied to generate a variety of trees at
defined densities and degrees of similarity. Environmental prop-
erties, such as tree species, foliage and time of year, were assumed
to be constant, as we were interested mainly in effects caused by
changing sampling parameters. Forest density was considered
sparse with 300 trees/ha, medium with 400 trees/ha, and dense
with 500 trees/ha.

Simulated integral images are compared with integral images
captured over real forest in Supplementary Note 1.

With our centralized implementation running on a consumer
PC (i5-4570 CPU, 3.20 GHz, 24 GB RAM), we achieved an
average (not performance-optimized) processing time for each
PSO iteration of 96 ms for all of the n latest (i.e., parallelly
captured) samples, and 30 ms for each of the n ⋅ τ samples
captured during the τ previous (i.e., sequential) time steps. For
n= 10 and by limiting τ to 3, for example, one PSO iteration
requires 960+ 900 ms= 1.86 s and processes a total of 40 images.
With a partially decentralized implementation, image capturing
and transmission as well as anomaly detection can be carried out
in parallel on each drone. Faster GPU implementations of the
anomaly detector lead to an additional speed-up. While
distributing the image and telemetry data collection process
using one or more drones is technically feasible, a centralized
approach is deemed more practical and achievable for drone
swarms in our case. Recent 5G ground stations and cloud APIs
can provide the required bandwidth and enable easier access to
data, making the centralized approach more viable.

Discussion and conclusion
In all our experiments, the target was found at the correct posi-
tion if it was detected. The chances for a detection, however, were
generally much lower in the case of blind uniform sampling
(parallel or sequential) than for adaptive sampling of a swarm
(e.g., 3.8× /1.4× for blind parallel/sequential sampling, cf. Figs. 2
and 3). Swarm sampling reached a particular target visibility
significantly faster than blind brute force sequential sampling
(e.g., 12× to reach an MTV of at least 50%, cf. Figs. 2 and 3), while
blind parallel sampling was fast but never achieved adequate
target visibility.

The reason why swarms significantly outperform blind sampling
strategies in terms of performance and detection rate is that sam-
pling can be adapted autonomously to locally sparser forest regions
and to larger target view obliqueness. In all our experiments, swarms
preferred to converge at certain distances from the target (rather
than directly above it) to maximize target view obliqueness. In open
fields, this would be the only possibility to improve visibility, as it
increases the projected footprint of the target. In occluding forests,
however, sampling through locally sparse regions is another factor
to be considered. Our PSO and objective function optimize for both
(sparseness and obliqueness) while also combining sequentially and
parallelly recorded samples whenever possible.

The wider SA and denser sampling of larger swarms will
always lead to better visibility, larger coverage, and consequently
to a higher detection probability, as shown in Fig. 4a–c, f.
Stronger occlusion will generally reduce visibility, as illustrated by
Fig. 4c–e, g.

For static targets, visibility increases with the number (N) of
images being integrated. Under the assumption of uniformity
(size and distribution of occluders), the following statistical
behavior describes the visibility (V) of a target in an image where
occlusion appears with density (D)54:

V ¼ 1� D2 � Dð1� DÞ
N

� �
: ð11Þ

Visibility improvement has upper and lower limits that depend
on D. In the worst case, with a single image (N= 1): Vmin= 1
−D. In the best case, with an infinite number of images being
integrated (N=∞): Vmax= 1−D2. Note that in the case of non-
uniform occlusion volumes that are uniformly sampled, the same
principle applies under the assumption that D is the average
density over the N samples. This can be observed for the blind
brute force sequential sampling shown in Fig. 2d, where N was
sufficiently large. It reveals the same geometric distribution
behavior as for uniform occlusion volumes54. For non-uniform
occlusion volumes which are adaptively sampled, as in the case of
our drone swarms and PSO, the density of each sample cannot be
considered statistically equal, as it is minimized individually. For
this reason, V increases much quicker and settles at a much
higher value than in blind sampling, as shown in Fig. 3e.

For moving targets, integrating images captured at previous
time steps does not improve visibility if the projection of the
target does not overlap with its projection in the most recent
recordings. In this case, they are not integrated (see line 6 of
algorithm 1), and only the most recent samples that are captured
parallelly at the current time step can contribute to occlusion
removal. Consequently, target visibility drops during motion, and
increases again when the target stops, as illustrated in Fig. 5i.
Although moving targets were detected and tracked reliably in
our experiments, they can be lost if they remain in excessively
dense regions for too long or if they move too fast (i.e., faster than
the swarm can follow). However, the movement pattern of the
target has no impact on the effectiveness of our approach. Blind
sampling is the only feasible method in cases where no potential
target signal is detected. Here, a fixed linear sampling pattern is
followed to increase the possibility of detection. This is employed
when a target signal has never been detected before or is lost
during movement. In the latter case, the swarm returns to blind
sampling in the direction of the last known target location. It
should also be noted that a linear configuration orthogonal to the
exploration direction gives the highest chance to (re-)detect the
target. Nevertheless, if a target is never discovered due to an initial
flight in the wrong direction or significant occlusion, it will
inevitably be missed. Supplementary Note 7 extends the statistical
visibility model for uniform occlusion volumes and static targets
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(Eq. (11)54) to include parallel-sequential sampling in the pre-
sence of moving targets (Eq. (S15)). It also considers the con-
tribution to visibility improvement of overlapping target
projections in sequential samples, depending on target and drone
speeds. As for static targets, this model is also outperformed in
adaptive sampling of moving targets in non-uniform occlusion
volumes due to the individual view optimization of the PSO.

Our simulation differs from the real world: acceleration and
deceleration of drones, data transmission times (e.g., images and
waypoints), and errors of sensors (e.g., GPS imprecision,
mechanical camera stabilization and camera noise) are not con-
sidered. We encompass a flat topography without any hills. Sup-
porting uneven topologies will be considered in future. Compared
to a real forest, our procedural forest is simplified. Although this
influences performance and quality, it does not affect our finding
that swarms significantly outperform blind sampling in perfor-
mance and detection rate under the same conditions. Improving
the simulation in rendering quality or by using physics-based
methods will not change this as occlusion is the primary factor.
Instead, we plan to conduct experiments with physical drone
swarms (capable of flying at speeds greater than 10m/s) in real
environments. Initial experiments have revealed that commercial
routers or mobile 5G ground stations, as well as modern graphics
processors, are fast enough for parallel RTSP streaming and GPU-
accelerated decoding of ffmpeg-encoded video transmissions. This
is essential for our centralized approach.

The threshold T that is needed by our PSO (see line 1 of
algorithm 1) for outlier removal was always set to be slightly
higher than the largest false-positive blob detected when the
target is not in view. To determine it, several representative
sample sets without target were considered. Automatic and
adaptive determination of this threshold will be part of future
work. While our results show that PSO was a suitable initial
choice for addressing our problem, we plan to investigate varia-
tions of PSO and other bird swarm-inspired techniques in the
future. We have demonstrated that adaptive swarms are more
effective than blind sampling even with simple approaches such
as PSO; however, we anticipate that employing more sophisti-
cated swarm approaches would lead to even superior outcomes.

Our collision avoidance strategy is simple but effective for
AOS. It requires neither a computational nor a communication
effort. Alternatives that have the potential to reduce the minimal
sampling distance c4 further need to be investigated. A smaller c4
leads to shorter flight distances of individual drones during each
PSO iteration and, consequently, to faster reaction times of the
whole swarm. Wider SAs and denser sampling can always be
achieved with larger swarms.

Finally, we believe that ongoing and rapid technological
development will make large drone swarms feasible, affordable,
and effective in the near future—not only for military but, in
particular, also for civil applications, such as search and rescue.
For other SA imaging applications that go beyond occlusion
removal, drone swarms have the potential to become an ideal tool
for realizing dynamic sampling of adaptive wide-aperture lens
optics in remote sensing scenarios.

Data availability
All experimental data presented in this article are available at https://doi.org/10.5281/
zenodo.7936352. Supplementary Data 1 is also included to provide additional supporting
information.

Code availability
The simulation code used to compute all results presented in this article is available at
https://github.com/JKU-ICG/AOS (AOS for Drone Swarms).
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