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Opportunities and challenges for sweat-based
monitoring of metabolic syndrome via wearable
technologies
Lynnette Lyzwinski1,3, Mohamed Elgendi 2,3✉, Alexander V. Shokurov2,

Tyler J. Cuthbert2, Chakaveh Ahmadizadeh 2 & Carlo Menon 1,2✉

Metabolic syndrome is a prevalent condition in adults over the age of 65 and is a risk factor

for developing cardiovascular disease and type II diabetes. Thus, methods to track the

condition, prevent complications and assess symptoms and risk factors are needed. Here we

discuss sweat-based wearable technologies as a potential monitoring tool for patients with

metabolic syndrome. We describe several key symptoms that can be evaluated that could

employ sweat patches to assess inflammatory markers, glucose, sodium, and cortisol. We

then discuss the challenges with material property, sensor integration, and sensor placement

and provide feasible solutions to optimize them. Together with a list of recommendations, we

propose a pathway toward successfully developing and implementing reliable sweat-based

technologies to monitor metabolic syndrome.

In recent years, metabolic syndrome has been increasingly recognized as a public health
problem1. It is a condition that predisposes individuals to an increased risk of developing
type II diabetes2, cancer3, lung function impairment4, and cardiovascular disease5. The

reported prevalence of metabolic syndrome is high, approximately 30–40% of adults over the age
of 65 suffer from it6. A recent systematic review found that 23.7% of adults worldwide living with
type I diabetes mellitus have metabolic syndrome7. Similarly, high estimates were found among
obese adults in Europe, with 24–65% of obese women having metabolic syndrome and 43–78%
of obese men8. There has been a steady rise in the global prevalence of the syndrome over the last
decades9, and the trends have shown a higher prevalence in older age groups (e.g., over age
70 years)10. These estimates are also contingent upon the definition of metabolic syndrome and
there are varying definitions summarized in Table 1. Typically, patients present with a classic
triad of signs: obesity, hypertension, and high fasting glucose levels11. Other signs include high
levels of low-density lipoprotein (LDL), low levels of high-density lipoprotein (HDL), and wide
waist circumference, though only three of the above clinical parameters are needed for a
diagnosis11. According to the current guidelines of the National Heart, Lung, and Blood Insti-
tute, patients with fasting blood glucose levels of 100 mg/dL and above, HDL levels below 50 mg/
dL (40 mg/dL for men), triglycerides of 150 mg/dL and over, blood pressure greater than 130/
85 mmHg, and a waist circumference of over 35 inches (40 inches for men) have a substantially
increased risk of cardio-metabolic complications12.

Individuals with metabolic syndrome who also have a high risk of complications have an
approximately 20% greater chance of developing a myocardial infarction over 10 years12. Fur-
thermore, a longitudinal study found that glucose [insulin intolerance incidence rate ratio
(IRR)= 1.81], overall body weight, and blood lipid levels are predictors of type II diabetes
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development over a 4-year period, with a 37–52% higher inci-
dence risk than their counterparts13. The risk of diabetes for
patients with metabolic syndrome is reduced by lifestyle mod-
ification, which involves dietary changes14. High sugar intake and
sugar-sweetened beverages have been linked to an increased risk
of metabolic syndrome and associated complications. Individuals
who consume high amounts of sugar are 32% more likely to
develop metabolic syndrome than their counterparts15.

Moreover, research indicates that patients with metabolic
syndrome are more likely to have sodium sensitivity, whereby
their bodies may have a greater response to sodium. Subse-
quently, they may have significantly elevated blood pressure after
sodium intake when compared to individuals without metabolic
syndrome16. Further research has found that sodium intake
(levels excreted via urine) has a positive association with several
key elements of metabolic syndrome besides hypertension, which
includes increased body fat, increased weight, insulin resistance,
and inverse relationships with protective HDL17. Specifically,
individuals who consumed the highest amounts of sodium were
1.92 times likelier to report having metabolic syndrome when
compared to their counterparts who consumed lower levels of
sodium (95% CI: 1.6–2.2; p < 0.01)17.

A proinflammatory state, recognized clinically by elevations of
C-reactive protein (CRP), is commonly present in persons with
metabolic syndrome18,19. Research in men has found that con-
centrations above 3 mg/dl significantly increase the risk of
Metabolic syndrome by 3 fold relative to men with less than
1 mg/ dl of CRP19. Specifically, CRP has been linked to the
development of hypertension in individuals who previously had
normal blood pressure, and concentrations above 3 mg/ dl
increase the risk of cardiovascular disease (CVD)20–23. High CRP
levels have also been found to be associated with an increased risk
of developing insulin resistance and type II diabetes19,24. Addi-
tionally, patients with existing metabolic syndrome are at a much
higher risk of developing cardiovascular disease when high sen-
sitive C-reactive protein levels are elevated >3.0 mg/l19.

Thus, there is a need to develop effective and scalable inter-
ventions for metabolic syndrome6,11. In recent years, mobile health
(mHealth) technology has emerged as a medium for promoting
behavior changes and reducing lifestyle-related risk factors asso-
ciated with chronic conditions, such as obesity25. mHealth tech-
nology also has the potential to assess metabolic syndrome and its
associated risk factors and clinically relevant parameters via the use
of emerging wearable smart clothing—textiles, wristbands, rings26

(e.g., Oura ring)27, and smartwatches—that collect biomedical
data from subjects with different health conditions28–30. Textile-
based devices (i.e., clothing) have the potential to decrease the
barrier of access to biosignal monitoring since they are familiar to
essentially all populations, sit on/close to the body, and can be
employed on all parts of the body, which may increase acceptance,
enable capture of different signal types, and expand accessible areas
of the body for monitoring, respectively. In addition, textile-based
sensors should ideally possess similar characteristics and usability
to traditional textiles/clothing to allow ease of use and direct
integration into daily lives, such as ensuring biocompatibility to
allow long-term use (and reduce the chance of irritation often
caused by medical devices) and compatibility with common
cleaning/washing machines to ensure devices can be (re)used
daily. By gaining insight into vital health parameters, patients
with metabolic syndrome and their physicians can tailor their
treatment plans accordingly and improve their overall assessment
of patient risk.

One novel method for detecting signs and clinical parameters
associated with the syndrome involves the use of sweat-based
technology. Sweat contains various health-related biomarkers,
including ascorbic acid, uric acid, metabolites, electrolytes, smallT
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proteins, and steroid hormones that may be passively collected
and analyzed31,32. The following clinical indicators of the meta-
bolic syndrome may be assessed via sweat according to the var-
ious definitions of the syndrome summarized in Table 1.

Most state-of-the-art developments regarding wearable real-
time biomarker detection rely on electrochemical techniques that
are robust, have low detection limits, and can be easily minia-
turized and integrated into electronic components33. Although
biomarkers represent different chemical classes and require dif-
ferent analytical techniques, there is potential for a consolidated
sensor. Figure 1 illustrates the full cycle of sweat production and
monitoring in a proposed futuristic technology. The figure starts
by showing how sweat is produced by sweat glands and travels to
the surface of the skin. The proposed technology involves a
wearable patch that combines three different technologies to
detect five metabolic biomarkers in the sweat. These biomarkers
include glucose, lactate, sodium, potassium, and cortisol, which
are continuously monitored and processed on the cloud via
artificial intelligence. The data is then used to provide persona-
lized feedback and recommendations to the user, such as advice

on healthy eating or physical activity. This figure provides a
comprehensive overview of the proposed technology and high-
lights the potential of sweat-based wearable technology for
monitoring metabolic health in a non-invasive and personalized
way.

Analysis of cationic concentrations (e.g., Na+ and K+) can be
performed using highly sensitive, solid ion-selective electrode
technology34. Glucose-sensing can be performed using enzymatic
or non-enzymatic oxidation, which is then transduced into
electric signals on an electrode35. The presence of small, non-
charged molecules, such as cortisol, can be sensed with electrodes
composed of molecularly imprinted polymers36. Specific anti-
bodies and metabolic aptamers can be used to reliably recognize
both small molecules (such as cortisol) and biomarker proteins
(such as cytokines)35,37. Combining these sensing technologies
into a single wearable device that has the potential to accurately
identify and monitor metabolic syndrome could have a huge
impact on public health. By providing a clear clinical profile of
patients and their behavioral risk factors, complications asso-
ciated with metabolic syndrome would decrease and, thus, health

Fig. 1 Wearable sensor patch integrating multiple technologies for sweat biomarker analysis. The figure highlights the full cycle, starting with sweat
production and ending with personalized feedback for the user. (1) Solid-contact ion-selective electrodes for Na+, which can be based on an ion-selective
membrane that utilizes ionophores—molecules capable of encapsulating a specific ion within a membrane—and a transduction layer responsible for the
generation of analytical signals in the form of electrochemical potential. (2) Enzyme-based electrochemical sensors with immobilized enzymes that can
selectively oxidize glucose or uric acid (creating glucose oxidase and uricase, respectively). Combined with the proper materials, these enzymes can be
transduced into an electric current, which can be translated into precise biomarker concentrations. (3) Specific binding agent biosensors with immobilized
aptamers or antibodies for the detection of cortisol and cytokines. Both aptamers and antibodies allow for the specific recognition of small molecules and
proteins; the act of biomarker binding changes the electrochemical properties of the electrode surface, which can be treated as an analytic signal. This
conceptual patch also contains reference and counter electrodes, usually fabricated using inexpensive inorganic materials, which are required for the
realization of the electrochemical measurements used in (1)–(3).
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outcomes would be improved. In the following sections, we
review the state of the art in sweat-based wearable sensing devices
and discuss the challenges towards achieving our vision of an
integrated device for clinical diagnosis.

Targets for sweat-based metabolic syndrome assessment
A future integrated sensor for metabolic syndrome should ideally
measure as many parameters as possible to obtain a compre-
hensive assessment of an individual’s metabolic health. However,
for the purpose of this study, we focused on five specific analytes
(glucose, sodium, CRP, uric acid, and cortisol) that have been
identified as relevant for the diagnosis and management of
metabolic syndrome according to the 2022 NIH definition pro-
vided in Table 1. It is worth noting that the optimal sensor for
metabolic syndrome may vary depending on the specific diag-
nostic criteria and patient population being studied. These five
targets satisfy the most updated definition (as well as past defi-
nitions) of metabolic syndrome assessment published by the
National Institutes of Health (NIH) in 2022:

1. Glucose, the primary metabolite for energy production in
the body38, is elevated in patients with metabolic
syndrome39. Sweat glucose will be used to monitor glucose
levels in the body in this perspective.

2. Sodium, an electrolyte40, is associated with elevated blood
pressure41.

3. Cytokines (CRP) indicate inflammation in the body and are
elevated in metabolic syndrome patients with risk factors
for cardiovascular disease42.

4. Uric acid levels are a risk factor for insulin resistance43 and
indicate hypertriglyceridemia (when serum triglycerides
elevate in the presence of hyperuricemia and rise with
increasing uric acid levels)44. They are also linked with
obesity45 and are risk factors for abdominal obesity46.

5. Cortisol levels are linked to and are risk factors for
abdominal obesity47.

The applicability of the sweat-based wearables in monitoring
these biomarkers ranges from moderate to high (see Table 1). For
example, the 2022 NIH definition is ranked with the highest
applicability to wearables, as it requires the presence of any three
out of four indicators (obesity, hyperglycemia, dyslipidemia, and
hypertension), while the 2003 American Association of Clinical
Endocrinologists definition is raked moderate in terms of wear-
ables applicability due to the requirement of collecting specific
targets in addition to accessing the patient’s clinical history.

Measuring glucose levels with sweat-based wearables. We found
that glucose was commonly measured in sweat via wearables48–59.
These included wearables with sweat patches or absorbent wrist
bands. For example, He et al. developed a textile-based sensor
(fabric with strong electrical conductivity made of silk) that col-
lected data on glucose levels excreted via sweat that could be
easily worn as a patch50. The Wearable Awareness Through
Continuous Hidrosis sensor for sweat-based glucose monitoring
was validated; it had a high correlation with standard glucose
measuring methods, and the Bland-Altman plot demonstrated
good comparability54. Researchers recently developed a compre-
hensive epidermal sweat patch with ultrasound transducers and
found that glucose levels measured by sweat correlated with
eating and exercising in participants55. Lee et al. developed a
wearable enzyme-based, glucose-sensing patch (or disposable
strip) that also adjusted glucose levels in patients transdermally
via nanoparticles by using hyaluronic acid as a base (this patch
utilized a micro-needling technique)60. Most of the studies we
included were performed on a small number of healthy subjects,

and many studies did not validate their findings (i.e., by com-
paring their sweat sensors to standard capillary blood glucose
measurements).

It should be noted that glucose levels in sweat correlate to
blood glucose concentration61, which is considered a diagnostic
value for diabetes and metabolic syndrome. Despite that,
measuring glucose in sweat remains a highly challenging task.
While blood glucose levels do indeed correlate with sweat glucose,
this correlation can differ in patients62, which makes constant
calibration necessary. And while some very recent advances63

enable self-calibrating sensors to be produced; they are yet to be
validated in clinical trials. Real-time analysis of glucose in sweat is
also troubled by factors inherent to the very medium being
analyzed and its natural environment. Sensor readings can
be severely affected by contamination of the skin where sweat
is being collected and analyzed, and the change of contact
between skin and the sensitive elements because of epidermis
flaking64.

A recent study65 looked into the composition and mechanisms
of contaminants in sweat, which can accumulate on the surface of
sweat-based sensors and interfere with their accuracy in
measuring mineral levels. These contaminants can include
proteins and lipids, which can result in inaccurate measurements
and reduce the reliability of the sensor. This buildup of
contaminants on the sensor’s surface is referred to as
“biofouling,”66 and it can occur over time due to various factors,
such as the composition of the sweat, the design of the sensor,
and the duration of use. Although cleaning the skin before
measuring can help in a clinical setting, it is not practical to do so
regularly during mobile sensor use. To address this issue,
researchers67 are exploring alternative methods such as selective
membranes, anti-fouling layers, and enzyme stabilizers, which
can prevent contaminants from sticking to the sensor surface and
improve the sensor’s accuracy and reliability.

The sensing modalities commonly used in wearable devices
that can be miniaturized rely on enzymatic reactions, which offer
high selectivity and efficient analytical performance. However,
enzyme-based sensors are known to have limited shelf-life, as
demonstrated by several studies68,69, which highlights the need
for further research in this area, particularly for wearable glucose
sensors. To address this issue, current research is focused on
exploring non-enzymatic pathways for glucose detection, which
offer the promise of extended shelf-lives70.

The stability and reusability of materials used in sweat glucose
sensing in non-enzymatic variety require substantial improve-
ments before widespread use71. As such, sweat biofouling of
sensors that require intimate contact with skin remains an
unanswered challenge65. At the same time, some studies
considered in the present perspective have demonstrated state-
of-the-art materials capable of lasting for weeks or months.
Addressing chemical-analysis-related challenges, such as the
structure of matter in time and space needs fast, automated,
stable, accurate, sensitive, selective, and even in situ analytical
methods and protocols, would require multidisciplinary effort to
provide a reliable wearable solution tested and evaluated in
clinical studies with a large number of participants.

Measuring sodium with sweat-based wearables. We identified
several studies that measured sodium levels in sweat, mostly
conducted on small samples of healthy athletes49,50,72–77. Gao
et al. developed a new plastic biosensor with silicon circuits that
allowed for optimal electrical conductance and continuous 24-h
monitoring and analyzation of multiple sweat components,
including sodium77. Therse-Thakoor et al. developed a textile-
based fabric patch that was ion and pH sensitive; when on the
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skin’s surface, it continuously monitored sweat excretion, the data
of which was transferred wirelessly to a smartphone76.

Most of the studies demonstrated good stability during
exercise, as the various sensors continuously monitored the
composition of sweat during changing physiological
conditions49,72–76. Indirect validation was performed by a few
studies that examined changes in sweat under altered physiolo-
gical conditions (e.g., changes in electrolyte balance) during
exercise49,72,73,75,76. A study investigating sodium levels in
patients with clinical metabolic syndrome using wearable
biosensors has not been undertaken to date. While recent studies
show that sweat sodium concentration is almost certainly
independent of its blood concentration78, this value for sweat is
now considered a good diagnostic value by itself, along with sweat
chloride levels79. Thus, adding sodium sensors to textile-based
clothing as part of an integrated approach to digital metabolic
syndrome monitoring and wellness (which includes glucose
tracking in real time, along with other parameters) may be
valuable in future research and development.

Measuring inflammatory biomarkers with sweat-based wear-
ables. Emerging wearable technology research suggests that CRP
levels, along with other inflammatory markers (interleukins), may
be measured using sweat-sensing wearable patches80. A proof-of-
concept study was performed on a clinical population of patients
with inflammatory bowel disease (IBD). The researchers found
that the patches could accurately detect CRP levels in the parti-
cipants’ sweat. When they compared their measurement method
against a reference enzyme-linked immunosorbent assay (ELISA),
they found high levels of agreement and correlation80. Several
studies on relationships between levels of inflammatory proteins
in sweat and blood have shown correlations81, further supporting
the feasibility of measurement of these biomarkers in sweat for
diagnostic applications.

Measuring uric acid levels with sweat-based wearables. We
identified a few studies that measured uric acid levels in
sweat50,82–84. He et al. made a comprehensive silk textile-based
carbon sweat patch which not only measures glucose and sodium,
but also uric acid levels. They found that the patch had good
stability for monitoring uric acid levels in real time50. Xu et al.
used an electrochemical flexible sensor with hydrogel to measure
uric acid levels excreted via sweat, also finding that it had good
stability for continuous monitoring under different physiological
conditions84. Another study measured uric acid levels with a
sensor that contained nickel and zinc hydroxide and found good
re-test repeat reliability82. More research is needed to compare
uric acid levels in sweat with blood and urine levels to validate
these findings.

Measuring cortisol with sweat-based wearables. A future
wearable for monitoring metabolic syndrome could also collect
data on cortisol levels to mitigate the risk in patients. Researchers
have found that patients with metabolic syndrome have higher
amounts of an enzyme (11B-HSD1) that converts the inactive
stress hormone cortisone to cortisol in the liver85,86, and high
cortisol levels are associated with an increased risk of premature
mortality from CVD. It has been previously theorized that signs
associated with metabolic syndrome—including adiposity, high
blood pressure, and insulin resistance—could be reduced if cor-
tisol levels are controlled87. Research indicates that patients with
high cortisol levels (measured via urinary excretion) were five
times more likely to die from CVD over a 6-year period88 than
their counterparts with lower cortisol levels.

We also identified one study that measured both glucose and
cortisol as metabolic indicators54. Each participant wore a watch
that passively collected sweat (labeled as a natural sample). The
study was validated by both a high correlation (r= 0.86), and a
mean absolute relative difference (MARD) of only 5%, between
the cortisol measured by the watch and the gold standard of
cortisol measurement54. The use of sweat for cortisol measure-
ment was similarly validated in a study (employing wearable
wristband sensors) that used chronoamperometry via a polariza-
tion technique on a circuit through which a current traveled71. It
is important to underline that sweat cortisol levels were
previously found to be correlated to serum levels89, making
non-invasive measurements by wearable devices a promising tool
for diagnosing metabolic syndrome.

Analysis. We aimed to discuss the different types of sweat-based
technologies that have been employed to assess one or more
relevant clinical parameters to Metabolic syndrome. We identified
proof-of-concept studies that have been undertaken to monitor
glucose, sodium, and CRP levels in this review. However, there is
a need for actual clinical trials in larger populations, instead of
sampling the technology on a small number of healthy partici-
pants. We did not find any studies that evaluated smart wearables
or biosensors for dyslipidemia, including those that collected
blood and measured cholesterol (HDL and LDL) and other
lipoprotein levels. Nor did we identify any wearable technology
that identified biomarkers relevant to a prothrombotic state,
including data on fibrin and fibrinogen levels. Finally, although
abdominal obesity is a clinical indicator of metabolic syndrome,
we did not identify any smart wearable devices that assess it.

Most of the studies demonstrated good repeatability making
the sensors reliable for providing benchmarked results90.
However, validity tests (i.e., checking for the accuracy of the
measures against the gold standard traditional measures) were
less frequently performed. Additionally, MARD, Clark Error
Grids, and Bland-Altman plots were reported in only a handful of
studies54,55,57,80,91–94, and most researchers conducted correla-
tion analyses by comparing their sensor readings against the
results of the gold standard methods of measurement. Most of the
studies were undertaken in healthy adults and tested for proof of
concept with a small group of individuals, highlighting the gap in
research concerning validation in large clinical studies.

Other biomarkers. Biosensors that collect data on fibrinogen and
cholesterol would complete a comprehensive mobile wearable
that will provide the best clinical diagnostics. Fibrinogen is a
marker of inflammation in the body and a risk factor for blood
clots95,96. Patients with elevated fibrinogen levels are at risk of a
cardiovascular event, including premature mortality from a
myocardial infarction97, and also elevated in Metabolic syndrome
patients98–100. Some medications can lower fibrinogen levels in
the blood98. By contrast, a healthy diet rich in fruit and vege-
tables, such as the Mediterranean diet, is linked with lower
fibrinogen101. Data on cholesterol is also essential because it is
elevated in patients with Metabolic syndrome102 and puts them at
risk for a cardiovascular event. Again, it may be modified with
diet and medication103,104.

While detection and quantification of these biomarkers in
sweat would be of increasing use to real-time diagnostics using
wearable devices, there is still much to be known about them.
Evidence on correlations between sweat and blood cholesterol
levels and fibrinogen is lacking. With the lack of this knowledge,
developing wearable sensors for these analytes remains in its
infancy. The effort from clinical scientists to elucidate possible
relationships and materials researchers to figure out possible
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sensing modalities are needed. Materials science will follow if
diagnostic correlations for concentrations of these molecules in
sweat can be found for metabolic syndrome or other conditions.
It is known that modern advances in antibody-based assays and
molecularly imprinted polymer technology can produce sensitive
elements for an ever-increasing list of analytes105.

Device design
Sensing materials. Because metabolic syndrome has multiple
clinical parameters, it is doubtful that a single sensor can diagnose
and monitor its risk factors. When developing a sensor for each
parameter, certain factors must be considered from an engi-
neering design standpoint, such as the optimal sensing material
for monitoring metabolites, the optimal anatomical site for
monitoring these metabolites, and the stability of the sensors and
their robustness.

A previous review weighed the pros and cons of various
materials for biosensors106. They considered the use of nanopor-
ous gold-plated materials, given their flexibility. However they
argue that the costs of using gold make using this material less
feasible and practical106. Additionally, graphene was considered a
good material for biosensors, including multiplexed ones, given
its thermal and electrical conductivity properties. Still, limitations
include its ability to operate in a range of external environmental
conditions106. They also consider carbon nanotubes, as they have
sufficient thermal capacity, conductance, durability, and
stability106. However, their drawbacks include toxicity; even
when coated with chitosan, adding metallic nanotubes is toxic
and costly106. Mesoporous carbon has all of the previously
mentioned benefits above but has the additional benefit of
flexibility and porous structure, but drawbacks include the high
costs of associated regents and toxicity106. The use of nanopar-
ticles has also been previously recommended to increase the
sensitivity of glucose detection, particularly during unstable
conditions such as food packaging in the case of food glucose
sensors107. This, however, may be considered when enhancing
the sensitivity of human sweat glucose detection under less stable
lab-controlled conditions (e.g., changes in sweat excretion rate
under different physiological conditions and contamination via
water during showering, for example).

The most common sensors used in the studies we analyzed
were patches48,50,55,72–74,76,80,84,108–110, bands/wristbands51,59,73,
and watches49,54,58. In terms of optimal sensing material, a
variety of different materials was used in the literature. The
studies that validated their findings against the gold standard
measures used flexible carbon-based materials50,83,111, zinc oxide
electrodes with nanopores58,91,92, and electrochemical nanocom-
posite materials55,57,83,92. Many studies (42.8%) explicitly
described the flexible or stretchable fabric used for the
sensors50,55,57–59,72,74,76,77,83,84,91,92,110,112,113. In several studies,
thread-based fibers were used48,59,76,114, specifically, carbon-
based fibers50,83,111 and those with nanocomposites or
nanoparticles55,57,83,92. Some of the materials (14%) had an ion
selective membrane that allowed for electrolyte detection via
potentiometric sensor-based fabric72–76. A few studies (8.5%)
used zinc oxide58,91,92. Other studies used polymeric materials,
such as polyethylene77,115 and sodium polyacrylate109, or gel-
based materials (14%)84,108–110, including siloxane-based
components52,53, for the sensors. A few studies used 3D
printing48,75,113,114. Microfluidic materials were also used in a
few studies (25%)48,49,59,72,73,75,84,108,116.

Several studies used enzymatic reactions72,76,84,91,92 to
measure the biomarkers’ percentage levels, but most used
electrode-based sensors involving electrochemical reactions
(48.5%)49–51,55,57,58,72,82–84,91,92,108–110,112,115. Some studies’

sensors were disposable (14%)51,82,109,110,115. A few studies
(11%) used smartphones that paired with the sensors to assist
with the readings of the measured biomarkers48,59,76,109.

Also, sensors capable of powering themselves via (electro-)
chemical reactions are promising advancements for wearable
sensors to eliminate the dependence on batteries117. However,
there are still plenty of challenges in advancing these concepts
into practical devices. A key component of these devices that may
require consideration is the biocompatibility of the novel
components and materials with the skin since they are often
unknown during the early stages of development. Materials118,119

that combine a high degree of selectiveness and specificity,
necessary for ion-sensing, glucose, uric acid, as well as cortisol/
cytokine sensing, with anti-fouling and self-cleaning properties,
in a user-friendly form such as textiles, would greatly enhance
widespread sensing. This advancement could contribute to
improving our understanding of the health status of a larger
segment of the general population. However, much research is
still required to achieve such materials.

Sensor stability. Many studies explicitly indicated that the sensors
demonstrated good stability under different physiological condi-
tions over long periods of time57–59,72–75,80,82,91,110,113–115, and as
most of the tests were done during periods of exercise with varying
body positions, the sensors also proved robust. The ideal sensor
must be stable and durable to withstand continuous wear and
changing environmental conditions such as exposure to water.
Ageing, or degradation over time in storage or use, of biological
products such as enzymes and antibodies used in biosensors can
lead to decreased sensitivity and low reliability120. Although bio-
sensor ageing is a well-studied issue, stabilizing biological compo-
nents in sensors remains a significant challenge for successful
implementation in devices121. Not only biological, but also poly-
meric and inorganic components of sensors can degrade over time
in storage and/or use120. Therefore, the ageing of materials must be
considered, especially for textile wearable sensors that are subject to
more mechanical stress during usage and washing122. Signals can
no longer be transmitted efficiently when materials degrade, which
can impact the reliability of the sensor123.

Patients should be aware of the shelf life of the sensor and have
replacement sensors after a certain period of use (e.g., washing,
heat, wear and tear). For instance, durability via reduced
permeability in polymer-based sensors that block water is a
desirable feature of sweat-based sensors124. Some sensors may
also be sensitive to changes in heat and PH125,126. Thus, in non-
perfectly controlled conditions in the lab, extreme changes in heat
and PH during exercise may influence readings if a sensor cannot
withstand these conditions.

Integrated wearable sensor. The proposed technologies for use in
a future multiplexed sensor are becoming well-established, cap-
able of detecting specific biomarkers in sweat with robustness.
However, further research is necessary to translate these foun-
dational technologies into a comprehensive multiplexed sensing
device. One challenge is the rapid biofouling that occurs in sweat,
particularly in techniques that depend on molecular analyte-
receptor interactions at the interface, such as molecularly
imprinted polymers and aptasensors127. Additionally, con-
tamination from sweat and skin can have a significant impact on
sensor performance, as discussed in the section on enzymatic
sensors. Advanced materials are being developed to address these
challenges by incorporating anti-fouling properties and self-
cleaning capabilities128. This ongoing research aims to improve
the robustness and reliability of future multiplexed sensors.
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Recent reviews of multisensory systems have found that they
enhance the overall predictive ability to detect relevant health
events, acting in unison, with greater reliability in their
readings129,130. However, the integration of multiple sensing
modalities may result in electronics crosstalk, which can be
resolved with appropriate data acquisition electronics. However,
chemical crosstalk can still be a potential issue when multiplexing
biosensors on the same chip, particularly in the case of enzymatic
sensors that generate hydrogen peroxide upon interaction with the
analyte. Recent studies131,132 have proposed microfluidic systems
as a solution to this problem, where sweat flow can be split into
separate channels corresponding to each individual sensor to
prevent any chemical crosstalk and mixing of samples. This
approach allows different sensors to analyze the same sweat sample
simultaneously and in real-time. Such a strategy can be used to
multiplex a wide range of sensors on a single microfluidic device133.

Comfort also needs to be considered as not all patients may be
comfortable with wearing multiple sensors that collect different
measures129. The future of wearable sensors should involve the
development of an integrated wearable piece of smart clothing
that can collect data on multiple relevant clinical parameters and
risk factors. Ideally, smart clothing with integrated sensors should
be made of comfortable fabric that can be easily worn and allow
for data from the Metabolic syndrome patient to be passively
collected.

A future wearable should also measure abdominal obesity via
waist circumference as these indicators are highly relevant to the
syndrome, highlighted in Table 1. In addition, a future sensor for
Metabolic syndrome could also measure physical activity.
Specifically, low levels of physical activity may result in obesity
and being overweight134, high blood pressure135, and insulin
intolerance136, all of which are associated with metabolic
syndrome. The risk of Metabolic syndrome is reduced with
increasing levels of physical activity and reduced sedentary
behavior137,138.

The syndrome could be monitored, and its behavioral risk
factors could be mitigated when paired with a smartphone
application that alerts when unhealthy behaviors are detected.
Physicians could access their patients’ data on demand and/or
offer rapid care (via telehealth)139 to remote patients without the
need to invasively collect blood samples to test glucose and
inflammatory marker levels. Patients could also be prioritized in
terms of appointments with cardiology or endocrinology
specialists. Metabolic risk profiles could be created for patients,
and tailored advice would be provided to assist them with
adjusting modifiable risk factors. Data from the sensors could be
integrated into smartphone applications. Modeling risk over time,
according to metabolic syndrome patient risk profiles, would be
possible through continuous data collection. Machine learning
has been previously used to compute the risk of cardiac events in
patients based on their risk factors, including the likelihood of
having a future myocardial infarction140,141. Thus, depending on
a patient’s risk for developing diabetes or cardiovascular disease,
more intensive treatment and personally tailored advice could be
given by using a machine learning algorithm.

Sweat collection methods for monitoring metabolic syndrome
Optimal anatomical site. With regard to the anatomical site for
monitoring biomarkers, most studies used the wrist51,54,58,77,93 or
arm49,50,53,55,73,76,80,83,84,116 as the main sites for biomarker
collection. However, a few studies demonstrated that sweat-based
sodium may be collected on the forehead or leg. Two studies
explicitly mentioned using the lower back51,72. Other body parts
involved in data collection included the chest, leg, abdomen108,
and forehead51.

A complex question that remains unanswered is where the
optimal anatomical location for sweat analysis is. The variability
and rate of sweat distribution over the surface of the human body
can cause problems for the inter-participant accuracy of wearable
sweat-analyzing devices142. For example, eccrine glands are
present from birth and release secretions in the form of aqueous
fluid that contains relatively more waterborne biomarkers, such
as K+ and Na+7. Apocrine and apoeccrine glands, however, not
only secrete more viscous fluid that contains more organic
compounds, but also develop only after puberty and are localized
around hair143,144.

Studies145,146 have shown that sweat rates vary significantly
across the body, as evidenced by thermal mapping and sweat
collection from specific areas of the body, as shown in Fig. 2a, b. A
high sweat rate could potentially lead to dilution effects, which
could negatively impact the accuracy of metabolite analysis for low-
concentration metabolites. However, some low-concentration
metabolites may not be present enough in the sweat to be
accurately detected and quantified, particularly if the sweat rate is
too low35. In these cases, a higher sweat rate can help to increase
the concentration of these metabolites in the sweat, making them
easier to detect and quantify. None of the five metabolites (glucose,
sodium, CRP, uric acid, and cortisol) are consistently found in high
concentrations in sweat35. Additionally, the relationship between
sweat rate and the concentration of these metabolites in sweat is
not well-established32. In general, however, it is essential to
consider the impact of sweat rate on metabolite analysis carefully
and to optimize experimental conditions accordingly.

Lower sweat rates may require longer collection times, which can
affect the stability of some metabolites147. Additionally, sweat gland
density, or the number of sweat glands per unit area of skin, can
also affect metabolite analysis142. Different anatomical sites of the
body have varying sweat gland densities, as shown in Fig. 2c, d, and
some sites may produce sweat with higher concentrations of certain
metabolites than others. Thus, it is recommended to optimize the
anatomical site for sweat collection based on both sweat rate and
sweat gland density to achieve more accurate metabolite analysis.
Further research in this area is needed to improve the accuracy and
reliability of sweat-based metabolite analysis.

While choosing an anatomical site that shows highest sweat
rate in exercise or everyday setting may seem optimal for a
wearable device, it is important to know that sweat rate
significantly influences sodium levels148,149, while there is no
effect on glucose levels at physiologically normal sweat rates61. In
addition to choosing an anatomical site that allows for non-
invasive and continuous collection of a sufficient sweat sample, it
is important to consider patient comfort and practicality when
selecting the site.

Hot versus cold. The placement of wearables and sensing textiles
for cold environments versus hot environments is of utmost
importance in ensuring their efficacy and accuracy in collecting
data. For instance, in cold environments, sweat production may
decrease, and the sweat-based sensors may not work as
effectively150. In these situations, it may be necessary to place the
sensors in areas where the skin is warmer and more likely to
produce sweat, such as the palms of the hands, as shown in Fig. 2.
Placing the sensors in these areas can help ensure that there is
enough sweat for the sensors to analyze.

In hot environments, excessive sweating can cause issues with
sweat-based sensors150. In these conditions, it is essential to place
the sensors in areas that are less prone to sweating, such as the
soles of the feet as shown in Fig. 2, where they are less likely to be
affected by excessive moisture. Heat can cause electronic sensors to
malfunction or even stop working altogether for several reasons:
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● High temperatures can cause the electrical components
inside the sensor to expand, leading to the deformation or
breakage of internal structures151,152.

● Heat can cause thermal noise, interfering with the sensor’s
signal152,153.

● Excessive heat can cause the material used in the sensor’s
construction to degrade152.

Therefore, placing the sensors in a well-ventilated area is
essential to prevent heat buildup, which can cause them to
malfunction.

Note that these sensors typically work by analyzing the sweat
droplets that accumulate on the skin surface or are collected by

the sensor. However, when the body overheats, sweat production
can increase significantly, and this can cause issues for sweat-
based sensors. Excessive sweating can create a barrier between
the sensor and the metabolite being measured, leading to
inaccurate readings. A high flow rate of the metabolite can help
to increase the chances of the analyte molecules reaching the
sensor surface and interacting with it, resulting in a more accurate
measurement, especially for low concentration metabolite. There-
fore, it is recommended that wearables and textiles be placed in
areas where they are less likely to be exposed to external factors,
temperature, humidity, and physical contact, which can affect
their accuracy and reliability.

Fig. 2 Ideal sensor placement on the skin for varying environmental conditions and sweat characteristics. a Sweat rate ranked from highest to lowest on
the front of the body, with 1 being the highest and 3 being the lowest. b Sweat rate ranked from highest to lowest on the back of the body, with 1 being the
highest and 6 being the lowest. c Sweat gland density ranked from highest to lowest on the front of the body, with 1 being the highest and 5 being the
lowest. d Sweat gland density ranked from highest to lowest on the back of the body, with 1 being the highest and 3 being the lowest. The sensor placement
ranking was inspired by recently published sweat rate results163 while the average sweat gland density illustration (glands/cm2) on different areas of the
body was based on these results164,165. The top body part is a good location for wearable placement in a cold environment, while the bottom legs are
suitable for wearable placement in a hot environment166.
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In both hot and cold environments, the design and materials
used in the sweat-based sensors can also play a crucial role in
their effectiveness. For example, in cold environments, it may be
necessary to provide additional insulation around the sensors to
prevent any temperature changes that could affect their accuracy.
Sensors in contact with human skin are not likely to freeze in cold
environments154. However, extreme cold can still affect the
sensor’s performance by decreasing sensitivity or causing other
malfunctions154. In addition, if the sensor is located in an
anatomical site exposed to cold air, such as fingers or toes, it may
be more susceptible to cooling and require insulation to maintain
its temperature and performance. Overall, while the risk of
freezing may be low, it is still essential to consider the effects of
cold temperatures on sensor performance and take appropriate
measures to ensure accurate measurements. In hot environments,
sensors may need to be made with materials that are resistant to
moisture and heat, such as breathable fabrics that allow for better
air flow and cooling155.

Passive versus active. Several studies measured sweat
passively54,59,74,75,80,114, but the majority measured it actively,
which involved exercise or physical activity. Two studies did not
specify whether sweat collection was active or passive50,57. Most
of the sweat samples analyzed were natural, although a few were
artificial. Active sweating via physical activity may pose a chal-
lenge for less active Metabolic syndrome patients125 who may
find passive sweat collection more practical.

Furthermore, sweat collection methods (passive or active) may
also determine the choice of wearable device placement. Active
sweat collection can be used at any anatomical site, while passive
sweat collection depends on a person’s natural sweat rate (an
uncontrollable variable)32. However, despite recent studies
demonstrating that the composition of naturally produced and
heat- or pharmaceutically-induced sweat is almost identical156,
sweat induction via iontophoretic or local heating methods may
still be uncomfortable for many device wearers157 who would
prefer passive collection, if possible.

Although passive sweat collection may seem more user-
friendly as it doesn’t cause any discomfort, there are also some
drawbacks to this method. Longer periods of sweat collection are
required to obtain the same or smaller amounts of sweat
compared to active induction methods142. This may not be an
issue for stable aqueous analytes, but for metabolites that degrade
quickly after excretion, prolonged collection time may lead to
measurement inaccuracies. However, as sensors become increas-
ingly miniaturized, smaller amounts of sweat are required for
efficient analysis, potentially mitigating the problem of low sweat
collection rates in passive mode158.

At the same time, other methods of biofluid extraction, like
reverse iontophoresis, can lead to generation of fluids that differ
greatly in composition from sweat, e.g., interstitial fluid is
extracted159. Heat- and exercise-induced sweat were also shown
to differ in composition160, which should be taken into account
when designing possible context of the wearable device exploita-
tion and how its reading are used in diagnosis.

In other words, passive sweat sensors rely on the natural flow
of sweat from the skin, and environmental factors such as heat
and humidity can affect the amount and flow of sweat produced,
which can impact the accuracy of the sensor readings161,162. On
the other hand, active sweat sensors, which use chemicals to
stimulate the production of sweat, may not be as affected by
weather conditions161. These types of sensors rely on a chemical
reaction to trigger sweat production, and the resulting sweat is
often more consistent in volume and flow rate, regardless of
external environmental factors. However, it is important to note

that the placement of any type of sensor should still be carefully
considered to ensure optimal accuracy and reliable measure-
ments. Factors such as the proximity to sweat glands, skin
temperature, and skin type can all affect the performance of the
sensor, and proper placement can help to minimize these
potential sources of error.

Conclusions and future directions. Sweat-based wearable tech-
nologies have immense potential to gather crucial data on bio-
markers related to metabolic syndrome and its associated
diseases. These wearable devices can measure glucose, CRP,
cortisol, and sodium levels, making them invaluable for patients
at risk of developing diabetes and cardiovascular diseases. While
the development of an integrated wearable textile capable of
measuring all these biomarkers is feasible, more studies are
necessary to validate the reliability and efficacy of sweat-based
wearable devices. It is essential to establish the accuracy and
effectiveness of these devices before they can be widely used in
clinical settings to improve patient outcomes. Researchers
developing new technologies able to monitor risk factors asso-
ciated with metabolic syndrome must validate their findings by
comparing them to gold standard measures. Validation should
include comparisons to natural samples of the analyte in ques-
tion. For instance, MARD is the current gold standard for mea-
suring glucose in an individual’s blood. For other biomarkers, a
similar approach can be used in addition to artificial calibration
curves (for instance, serial dilutions of Na+ in laboratory
environments).

Further research is urgently needed to better understand the
composition of sweat in relation to active and passive modes, as
well as other influential factors, in order to develop more effective
and reliable wearable devices. Further research is also needed to
determine the optimal and most convenient anatomical sites for
assessing metabolites associated with metabolic syndrome, taking
into account factors such as sweat rate and sweat gland density.
Comparative studies should be conducted to evaluate the
accuracy and efficacy of different sensor placements and inform
the development of future wearable devices for metabolic
syndrome monitoring.

Finally, there is a need for technological development focusing
on identifying and improving the effectiveness of monitoring
clinically identified risk factors associated with metabolic
syndrome. Researchers focusing on fundamental technology
development to validate monitoring technologies in a diversified
population of participants should establish relationships with
applied research groups that develop and complete larger clinical
studies. These collaborations would inevitably improve such
technologies by identifying any weaknesses while enhancing
potential translation to and value for the general population.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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