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Lab2Field transfer of a robotic raspberry harvester
enabled by a soft sensorized physical twin
Kai Junge 1✉, Catarina Pires1,2 & Josie Hughes1

Robotic fruit harvesting requires dexterity to handle delicate crops and development relying

upon field testing possible only during the harvesting season. Here we focus on raspberry crops,

and explore how the research methodology of harvesting robots can be accelerated through soft

robotic technologies. We propose and demonstrate a physical twin of the harvesting environ-

ment: a sensorized physical simulator of a raspberry plant with tunable properties, used to train

a robotic harvester in the laboratory regardless of season. The sensors on the twin allow for

direct comparison with human demonstrations, used to tune the robot controllers. In early field

demonstrations, an 80% harvesting success rate was achieved without any modifications on the

lab trained robot.
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Developing robots to contribute to agriculture and food
production is of critical importance, and can contribute to
many of the UN’s Sustainability Development Goals1,2.

However, agriculture, and in particular harvesting, is a challen-
ging domain for robots. Whilst advanced machinery has enabled
the harvesting of many crops from barley to beetroot, many crops
have thus far escaped automation3. This includes those that are
delicate, fragile or have highly complex surrounding environ-
ments such as berries, leafy vegetables, or grapes4, and also those
which do not ripen homogeneously. In the last decade, harvesting
robots have seen notable developments driven by improvements
in the underlying enabling technologies. For instance, reports of
commercialized harvesting robots have increased from very few
to none5 to approximately 20 or so cases6,7. In particular straw-
berry picking have seen multiple commercialization success
through the use of suction, compressed air blowing, and stem
cutting methods7. However, more generally, despite over 30 years
of research, harvesting robots have shown limited performance
improvement8. Compared to humans their speed is low, the cost
of each device is high, and the enabling technologies are not yet
mature6,8. It is also a domain where the rate of development of
robotic solutions is vastly out-stripped by demand. Through the
growing world population9, alongside the challenges in sustaining
the agricultural work force10(made increasingly apparent through
events such as the COVID-19 pandemic11 and Brexit12), there is a
real need to develop new methods for harvesting research, to
accelerate the development of robotic solutions. Improvements in
robotic harvesters could have multi-faceted impact on
agriculture13,14, including a reduction in waste, improvement of
produce quality, more stable food security and a reduced envir-
onmental impact5,8,15.

The challenges in developing agricultural robots can be divided
in two levels. Firstly the implementation of different robotic
technologies poses a practical challenge. Integration of grippers,
tactile sensors, navigation, visual localization and classification,
and more, which must operate robustly requires time and
expertise to achieve16. Secondly, the environmental conditions
linked to agricultural settings poses large challenges. Outdoor
environments can be variable, uncertain, and harsh. This is
coupled with every crop, breed and specific instance also being
subject to variability17. One aspect of the agricultural setting
which magnifies the aforementioned challenges is the need for
field tests for development and evaluation. This is extremely
limiting. Crops are only ripe and ready for harvest for a very short
period of time and each harvesting experiment is impossible to
re-run or repeat as the specific plant and conditions are con-
stantly changing. To accelerate the design, development and
evaluation of harvesting robots, we need to remove the reliance
on inefficient and costly field trials and leverage alternative
methodologies to meet the escalating food needs of our growing
population.

Whilst there have been notable examples of robotic harvesting
technologies for crops including strawberries18,19, sweet
peppers20 and apples21, examples remain limited22,23. Within
these, repeated periods of field trials for early stage evaluation or
training are commonly reported. For example, in developing
robots for lettuce harvesting24, varying mechanical solutions were
evaluated in the field before extensive and repeated field trials
were performed to develop the visual and mechanical compo-
nents of the robotic solution. Similarly, a strawberry harvesting
robot19 has been developed that exploits passive and active ele-
ments in a custom gripper showing exciting advances in the
mechanical technologies, yet success field deployment relied on
field tuning, testing, and evaluation25. This reliance on field trials
is a bottleneck which limits the development of new technologies
and approaches. Given the adept nature of human harvesters,

leveraging their expertise could provide a means of accelerating
harvesting robots.

Simulation provides one means of reducing the need for real
world experiments and has been successfully applied to a number
of robotics domains26 including locomotion27, swimming28 and
also manipulation29. The application of simulation to agricultural
robotics has been shown to aid in the path planning and picking
of apples30, however simulating contact with delicate fruit is more
challenging. Using a data-driven approach to generate a virtual
environment, a harvesting robot for sweet-peppers has also been
used to optimize the planning and fruit detection, however,
physical contact with the fruit was also not considered31. Simu-
lation has been utilized to aid the design of the force feedback
control of a soft gripper32, however, this was limited to pick and
place with the gripper. Another challenge in simulation is how to
use rich examples of human task performance to assist in
developing a manipulation solution. Although this can be
achieved with real2sim2real transfer, it introduces further mod-
eling challenges and is hard to achieve at the level of physical
interactions. Thus, although simulation has a clear role to play in
planning and design optimization, currently sim2real for the
physical harvesting interactions is challenging to achieve33.

We propose a methodology to accelerate harvesting research by
fundamentally changing the means by which harvesting robots
are designed, optimized and evaluated. We will specifically focus
on raspberry harvesting, a delicate crop to harvesting, and one
where over 50% of the costs are attributed to harvesting. Our
approach leverages soft robotic technologies to develop a sen-
sorized physical twin. This soft robotic device is designed and
tuned to mimic the physical interactions and properties of a
raspberry and the plant when harvested34. By integrating soft
sensors into the physical twin we are able to measure the forces
applied to the fruit when harvesting. Fig. 1 illustrates the concept
(shown in Fig. 1a–c) and the specific implementation for rasp-
berry harvesting (shown in Fig. 1d–f).

From human demonstration of successful harvest on the sen-
sorized physical twin, we can obtain a target performance for the
robot and insights into designing a controller. Using this physical
twin, we can then perform lab based trials where we seek to
imitate the human across a range of different ripeness settings.
Through the embedded sensors on the physical twin, a quanti-
tative metric can be designed to tune control parameters through
gradient based cost functions. We propose that by closing the
reality gap between the physical twin and the field based plants in
the tactile and visual domain, the controller and vision systems
from a harvesting robot can be fully trained in the lab, such that
they can be translated to the field with minimal or no additional
tuning required.

To demonstrate this approach, our physical raspberry twin was
used to develop the harvesting and the visual servoing controller
for a raspberry harvesting robot. When deployed to the field
following only lab based training we record an 80% successful
harvesting rate for raspberries with none or minimal damage
observed. The vision system also successfully transfers to allow
the robot to identify the raspberry and locate within 6.5 mm from
the center point of the fruit. To the authors knowledge, we believe
this to be first robotic system that has been entirely trained in lab
conditions and enabled immediate and successful operation in the
field.

Results
In this section we outline the results obtained from the metho-
dology of using a physical twin to develop a raspberry harvesting
robot. The core and novel hardware introduced in this method,
the physical twin, is a real world simulation of the field
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environment (i.e. the raspberry plant) which is used to train the
robot. For the lab-trained robot to function well in the field
environment, the difference between the physical twin and its
natural counter part (i.e.: the Lab2Field gap on this physical
simulation), must be minimized. A key functionality of the
physical twin is to provide sensory feedback of forces the rasp-
berry experiences.

The harvesting robot comprises of a force-controlled parallel-
jaw gripper with silicone fingers to increase the contact friction.
The raspberry harvesting process uses two controllers: the har-
vesting controller, which modulates the gripping force while
pulling the fruit off the plant; and the visual servoing controller,
which uses on board cameras to approach and align the fingers to
the raspberry. Although we consider the Lab2Field transfer in the
tactile and visual domain, the development of the harvesting
controller is the main focus of this work.

The development of the harvesting controller begins by
obtaining the human reference response when a human harvests
the physical twin. Based on the characteristics of this response,
the controller can be designed and its parameters can be tuned
through lab trials. Certain parameters of the controller are tuned
automatically by comparing the robot and human response on a
harvest. The visual servoing controller is also developed in the lab
only using the physical twin setup. Once both controllers are
developed, the robot is deployed in the field. The quality of the
harvesting controller and the visual servoing controller is eval-
uated separately.

Finally, the successes and failures in the field environment are
analyzed by comparing the robot performance between the lab
and field setup by observing where the similarities and differences
are between the physical twin and the real crop.

Raspberry physical twin. The goal of the physical twin is to
mirror reality whilst providing force feedback. There are a large
number of environmental variables which affect the harvesting

process. While it is impossible (or at least costly) to accurately
model the environment to the full extent, the key properties that
must be matched are those that determine success in performing
and evaluating harvesting. Through observation of the fruit and
human harvesting, the dominant dynamics were selected and
are reflected in Fig. 2b. To represent the interaction between the
harvester and the fruit, the compression force Fc and pulling
force Fp must be considered. For the characteristic dynamics of
the crop, the stiffness of the fruit on and off the plant, kon and koff,
the maximum pulling force required to harvest the fruit from the
plant Fp;max, and the stiffness and damping of the stem, kplant,
dplant, are considered.

Components of the physical twin. The physical twin of the rasp-
berry comprises of the fruit and the plant. The fruit was developed
to specifically match the mechanical properties of the real rasp-
berry (Fig. 2b) and sense key interaction forces shown in ref. 34. A
colored version of the sensorized fruit introduced in ref. 34 was
used in this work. Among the variations given in ref. 34, the thin
variant of raspberry type B was selected. The plant is a new
addition to the physical twin and comprises of the receptacle (the
section which directly attaches to the fruit), the stem, and the
background crop. The two combine to make the physical twin
setup in Fig. 2a. This simulates a single raspberry on a plant,
which can be harvested and replaced repetitively by a robot
without human intervention (Movie S1).

Fig. 2c shows details of the fruit of the physical twin. The fruit
of the physical twin comprises of a silicone structure with silicone
tubes wrapped within it to form a soft fluidic sensor. A magnet is
placed both on the receptacle and the fruit, of which the
separation distance can be tuned via a screw, to vary the
maximum pulling force Fp;max. The stem of the plant is fabricated
from a curved 3D printed TPU flexure reproducing the
compliance of the stem kplant, dplant. The visual appearance of
the setup is designed to show resemblance of a real raspberry

Fig. 1 The concept and implementation of using a sensorized physical twin for the development and Lab2Field transfer of a raspberry harvesting robot.
a–c Describes the concept while d–f describe the specific implementation of developing a raspberry harvesting robot using a physical twin. a The human
performs the action we wish the robot to perform on the physical twin to obtain a reference signal and enough insight to design a controller. b Using the
designed controller, the robot is tested against the physical twin. The human reference is used to tune the controller parameters. c The tuned controller is
used to deploy the robot into the field to perform the desired action on the real crop. d Realization of (a) using the physical twin of the raspberry. The
human harvests the fruit. e Realization of (b), the harvesting robot is developed and tuned using the physical twin. f Realization of (c), the harvesting robot
is deployed in the field to harvest real raspberries.
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crop, including the color of the fruit/plant, and the form and
color of the additional foliage behind the fruit.

Closing the reality gap. To close the Lab2Field reality gap, the key
characteristics, kon, koff, and Fp;max are tuned to match the real
fruit. In comparison with 14 exemplar real raspberries, the fruit
was designed such that the key characteristics lie within the
bounds observed in the real raspberries. The compression force vs
compression distance plots shown in Fig. S1a show the response
from the physical twin lies within real raspberries (hence matching
kon and koff). Fig. S1b shows the pulling force not only lies within
real raspberries, but can be tuned accurately within this bound.
Supplementary note 1 explain in detail regarding Fig. S1.

Sensor feedback from the physical twin. The sensor response of the
twin should relate directly to the interactions from the harvester
to allow for optimization and evaluation of the harvesting pro-
cess. To achieve this, the physical twin must sense the two
dominant interaction forces Fp and Fc. Fc is measured through a
pressure sensor embedded in the fruit, and Fp is measured
through a load cell above the physical twin (see Fig. 2a). The
compression force is relevant to know the moderation of force
needed at the various stages of the harvest, and the pulling force is
relevant to identify the moment of the fruit coming off of the
plan. If the physical twin is able to sense the dominant forces, the
response from the sensor can be used as a metric to directly
compare the quality of harvest among different controllers,
robots, and/or humans. This allows for a quantitative metric to be
used to improve and tune the controller.

Design and tuning of the harvesting controller. The realization
and training of the harvesting controller is made possible through
the physical twin (Fig. 1). By first acquiring a representative
sample of human demonstrations, the form of the controller can
be realized. Then, parameters of the harvesting controller are
tuned using the physical twin. We demonstrate the robot can
automatically tune parameters by repetitively harvesting the
physical twin and updating the parameters iteratively.

Human harvesting reference. The first step of designing the
controller is acquiring the human reference signal. This process,
outlined in Fig. 1d, is achieved by a human harvesting the phy-
sical twin ten times by hand, and recording the measured forces
Fc,T and Fp,T. A representative signal was chosen manually out of
the 10 signals (some are shown in Fig. 3b).

To handle the variety in ripeness of raspberries in the field
environment, three different physical twin settings were
considered by varying Fp;max. Three values of Fp;max: 1.4N, 2N,
2.8N, are used and will be referred as the Low, Medium, and
High pulling force settings. Fig. 3b shows a representative
sensor response of the physical twin for a human harvester for
each of these pulling force settings. From these demonstrations,
key features that describe a successful harvest are identified. For
example, Fp gives a clear indication of the fruit being harvested
from the plant as the force drops to zero at moment of
detachment. Post-harvesting, the compression force greatly
reduces to prevent squashing of the fruit. The characteristics are
similar across all three settings, while the magnitude of the
forces varies.

Form of the harvesting controller. Based on the human demon-
strations, the form of the controller and the sensing on the robot
gripper can be designed. The harvesting robot is equipped with a
gripper that can grasp the fruit with a parallel jaw mechanism.
Fig. 3a shows the diagram for the gripper-fruit system annotated
by the true and measured forces by the robot and the physical
twin. The robot gripper has two load cells (one on each finger),
targeted to directly measure the same quantities as the physical
twin, denoted as Fc,R and Fc,R.

The harvesting controller is designed to have three phases: A,
B, and C as labeled in gray on Fig. 3c. In phase A, the gripper
applies a compression force of F1

c . This force is desired to be the
minimum sufficient force to harvest the fruit. Once F1

c is reached
(gray dotted line on figure), phase B starts where the robot arm
moves downwards at 10 mms−1. Phase B ends when the harvest
is detected (red dotted line), by detecting a negative change in Fp,R
of some threshold Fp,harvest. In phase C, the vertical motion is
stopped, and a new compression force setpoint F2

c is set. This

a)
Rigid plant

Silicone tube

Adjustable 
magnet height

Fp

Fc
Fp

Fc

kplant
dplant

b) c)

Pressure 
sensor

Physical twin
(plant)

Load cell

Physical twin 
(fruit)

koff < konkon
Fp,max

Fp,max

Fig. 2 The raspberry physical twin setup and its schematic. a The physical twin setup, comprised of the fruit and the plant. The fruit is hung from a load
cell connected by a curved piece of 3D printed TPU, which represents the plant. b Dominant forces and characteristic dynamics which affect the harvesting
of the fruit. The compression and pulling forces (Fc and Fp) are identified as dominant forces. Fp;max, kon, koff, kplant, and dplant are identified as key dynamics.
c Detailed schematic, rendering, and image of the physical twin.
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force allows to hold the raspberry gently, similar to how a human
(see Fig. 3b).

Automatic controller turning. The control parameters are can be
tuned through iterative automatic harvesting experiments with
the physical twin. The block diagram of this optimization process
is illustrated in Fig. 1b. Using the un-tuned controller, the robot
performs the harvesting task on the physical twin. The sensor
response from the physical twin is compared against the human
reference and the controller parameters are updated accordingly.
Of the three parameters of the harvesting controller, F1

c is tuned
automatically. The other two variables are tuned manually using
the physical twin. F2

c is tuned to be the lowest force setting cap-
able to holding the physical twin without dropping it. Fp,harvest
was a threshold chosen to detect most pulls tested in the lab
environment.

Since the physical twin can be repeatedly harvested, the robot is
able to continuously perform this robot testing and parameter
updating process by harvesting and re-attaching the fruit on the
plant after each trial (Movies S1 and S2). To tune F1

c , we wish to
minimize the error between the maximum compression force read
by the physical twin when harvested by a human and a robot.
Fig. 3d shows this quantity as Δc. This error can be used to update
the force setpoint at iteration i, F1

c;i, to generate the force setpoint at
step i+ 1, F1

c;iþ1, through a gradient based method detailed in
section “Automatic controller tuning implementation”.

The result of this tuning with the Low pulling force setting is
shown in Fig. 4 (the corresponding results for the Medium and
High pulling force settings are shown in Fig. S2 and explained in
Supplementary note 2). Although F1

c is a single force setpoint to
be tuned, through real world experiments it is able to capture the
apparent variability in the robot-physical twin interaction.

Especially in the context of soft body interaction, such as this
task, subtleties of the system can dictate the overall behavior.

Lab development of the visual servoing controller. The physical
twin can also be used to design and develop the full robotic
pipeline which incorporates the visual detection and motion
planning to move the gripper fingers around to fruit, so it can be
harvested.

This pipeline is shown in the top flowchart in Fig. 5. After
detecting a target raspberry (approx. 20-40 cm away from the
fruit), the gripper first moves itself horizontally and vertically so
the target fruit is centered in the image frame. Then the gripper
moves forwards in the direction out of the image plane to
approach closer to the fruit (approx. 10 cm from the fruit).
Finally, the gripper is moved slowly towards the fruit to precisely
align the fruit within the gripper.

The accuracy of the visual servoing controller in the lab is
shown in Fig. 6b. For both the Δx and Δy directions (defined in
Fig. 6b), the gripper center is consistently within ± 10 mm with a
mean of 2.9 mm and 3.1 mm, and a standard deviation of 2.2 mm
and 2.5 mm respectively. Although the z (vertical) variation is not
measured, its accuracy is similar to that of x as it uses the
same visual servoing procedure for alignment. This result is
obtained by running the detection sequence 27 times. In all
attempts the alignment succeeded without any catastrophic
failures.

Field test results. The raspberry harvesting pipeline developed in
the lab is directly transferred to the field environment. Snapshots
of the full harvesting pipeline in the lab and field environment is
shown in Fig. 5 (see movies S2 and S3 for the full pipeline
demonstrated in the lab and field respectively). For a single

Fig. 3 Schematic and sensor response of the robot and physical twin during the harvesting motion. a Representation of the interactions and
measurements between the physical twin and the robot gripper. Subscript c and p distinguishes the compression and pulling forces. Subscript T and R
distinguishes measurements by the twin or robot. b Sensor response from the physical twin when harvested by a human with salient features highlighted.
The physical twin is tuned to three settings corresponding to a High, Medium, and Low maximum pulling force. c Time series response of the robot’s force
sensors to describe the form of the harvesting controller divided into phases A, B, and C. d A comparison between the human and robot harvesting
performance through the compression force measured by the physical twin. The error Δc is to be minimized automatically by the robot adjusting it’s control
parameters.
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Fig. 4 Automatic controller tuning for the low pulling force setting on the physical twin. a The change in F1c over the 15 iterations. b How Δc (the error to
be minimized) varies over the 15 iterations with indication of a failed harvest. c The compression force experienced by the physical twin before and after
controller tuning. Before, a large Δc is visible between FRobotc;T and FHuman

c;T , which is minimized after the tuning.

Lab

Field

Detect 
raspberry

Align raspberry left-right 
and top-bottom in frame

Move towards 
raspberry

Align 
ngers

Move to 
harvesting pose

Move up gripper

Harvest 
raspberry

Frame center
Frame centerFrame center

Fig. 5 Images sequence of the full robotic pipeline of raspberry harvesting both in the lab and the field. The top row of images correspond to the full
robotic pipeline in the lab. The bottom row of images correspond to the full robotic pipeline in the field.

Fig. 6 Performance of the harvesting and visual servoing controller. a Performance of the harvesting controller over 25 harvesting attempts and images
of raspberries corresponding with four result categories. b Performance of the visual servoing controller by measuring the offset of the fruit from the center
of the gripper fingers for both lab and field conditions.
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raspberry visible in the frame without occlusion, firstly the robot
approaches to the harvesting position (visual servoing controller).
Secondly the robot harvests the fruit (harvesting controller).

Performance of the harvesting controller. The harvesting controller
with no further tuning or adjustments was tested on case-study of
25 raspberries visually determined to be ready for harvest, but
with a range of size and ripeness. The raspberries are of the Rubus
idaneus species and were grown in an open-air green house
environment. The result of each harvest was categorized into four
outcomes: No harvest, Damage, Minor Damage, and No Damage;
summarized in Table S1 with corresponding explanations in
Supplementary note 4. In addition to these harvesting tests, more
extensive testing was performed on a larger number of plants and
raspberries.

Fig. 6a summarizes the 25 exemplar harvesting experiments,
recording 60% no damage and 20% minor damage harvest. Our
discussions with local raspberry growers revealed that they
estimated that humans had a 90% harvesting success rate with
minor damage. The cause of no harvest raspberries are either due
to the fruit being less ripe than anticipated, or a large damage
caused to the outer surface of the fruit being scraped before
being pulled off. Harvests labeled with damage were caused by a
failure in the controller to detect the moment of harvest. Harvests
labeled with minor damage are resultant of the deformation
caused to the fruit during the transition from on the plant to off
the plant.

Performance of the visual servoing controller. The performance of
the visual servoing controller evaluated in the field is summarized
in Fig. 6b. 11 approaches to three different raspberries (three
approaches per fruit, starting from different initial configurations)
were tested.

The offset error Δy is larger than that of Δx with a mean value
of 1.5 mm compared to 6.1 mm. This is expected, as the forward
approach to the raspberry (causing Δy) is dependent on the size

of the fruit which is variable. Whereas, the side-to-side approach
(causing Δx) being theoretically invariant to the size of the fruit, is
comparable in magnitude (in fact performed better) to the
performance in the lab.

Performance of the full pipeline. Combining the harvesting and
visual servoing controllers, the full robotic pipeline was tested on
four untested raspberries summarized in Table 1. For each
raspberry, the pipeline was tested until successfully harvested. In
aggregate the pipeline was successful 4 out of 7 attempts. Three
representative successful harvests are shown in Movie S3. The
failure cases are further elaborated in section “Failure cases of the
robotic system”.

Successes and limitation on the lab-to-field transfer. To explore
the extent to which the physical twin is essential to enabling the
successful harvest, we can compare the behavior of the harvesting
robot in response to the lab and field experiments. Secondly, we
can explore the limitation of both. Under the concept of the
physical twin, if the key characteristics are matched, we would
expect successes and failures in the lab to be reflected in the field.

Robot sensor response in the lab vs field. The sensor measurement
from the robot’s fingers (Fc,R and Fp,R) can be used to compare the
performance of the robot between the lab and field. Fig. 7 show
the time series data in the lab and field for the three different
physical twin setting (Low, Medium, and High pulling force
setting corresponds to Fig. 7a–c).

In all cases, the general shape of the sensor response in the field
matches that of the lab. For the compression forces, for both lab
and field, a characteristic “bump” is seen in the transition from F1

c
to F2

c . This is likely caused by the fruit detaching from the plant
but still some area is in contact. For the pulling force, the sensor
response gradually increases as the plant is pulled down, until a
sudden drop when the fruit is harvested. Such similarities
highlight the close matching of the physical twin and the real
fruit, which explains the 80% minor-to-no damage harvest rate
directly from the lab to the field transfer.

However, there are also differences in the sensor response. One
difference is the variability in the pulling force increase until the
moment of harvest. Unlike the physical twin, the real plant shows
more variable and complex behavior when pulled. Another
difference is that the maximum pulling force of the real fruit is
lower than anticipated. For raspberries which required a medium
or high force setting to harvest, a lower maximum pulling force
compared to physical twin was recorded. This suggests that for
such raspberries, either the surface friction coefficient (which was
not tuned on the twin) was lower, or the geometry of that fruit

Table 1 Result of the full pipeline testing

Tested fruit Attempt 1 Attempt 2 Attempt 3

Raspberry 1 Success - -
Raspberry 2 Fail Fail Success

Detected fruit behind
leaf

Gripper cannot
reach fruit

Raspberry 3 Success - -
Raspberry 4 Fail Success -

Fruit beyond range of
arm

Fig. 7 Comparison of the robot’s force measurements on three pulling force settings in the lab and field. Time series plots comparing the robot’s force
sensor measurement, Fc,R and Fp,R, both in the lab and in the field. a–c Corresponds to the pulling force settings Low, Medium, and High respectively.
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meant only a small contact area was achieved compared to other
raspberries.

Failure cases of the robotic system. By considering the failure cases
in the field, the validly of the form of this controller, and the
limitations of the physical twin can be discussed.

Fig. 8a and b show the sensor response for measuring the
compression force Fc,R. In Fig. 8a, the force setpoint F1

c is
deliberately lowered to be 0.8N, which is lower than the low
pulling force setting. Here the robot is unable to exert the
necessary force on to the raspberry, and therefore the fruit slips
off the fingers. This shows the range of forces tuned through the
physical twin is correct; and if the difference between the physical
twin and the real fruit was further apart, the force setpoint may be
too low, and would result in an unsuccessful lab-to-field transfer.

In Fig. 8b, the detection of harvest is deliberately ignored. Here
the robot starts with the low force setting and continues to apply
that force even after the fruit is off the plant. When the fruit
detaches from the plant, the compression reaction force
momentarily drops as there is a step change in stiffness on and
off the plant. However, the gripper continues to “squish” the fruit
until the setpoint is re-reached. The resultant fruit is completely
damaged as in the photograph. This failure case validates the
form of this controller designed by considering the physical twin.

Finally, in Fig. 8c, two conditions of the raspberries in the field
where the robot fails to harvest are shown. In one case, the
raspberry is out of reach of the range of the robot arm. In another
case, the raspberry is cluttered by other raspberries which are un-
ripe. Both of the two example cases are not captured by the
physical twin, as the physical twin was a single raspberry hanging
vertically in an uncluttered space in range of the arm. When these
conditions are met in the field environment, the harvest is
successful, but otherwise the robot fails. These two failure cases
are apparent in the full pipeline test with results shown in Table 1.
The two failed attempts with Raspberry 2 can be attributed to the
cluttered case. The one failed attempt with Raspberry 4 is due to
the arm too short to reach the fruit.

Discussion
The concept of digital twins enabled a paradigm shift for many
industries including agriculture35,36. We extend this concept to
the physical domain with the creation of physical twins. In pre-
vious work, similar concepts have been explored for evaluating

robot performance in domains including medical robotics with
the development of sensorized phantoms37,38, or in assistive
robotics with the development of sensorized tools39. Although
our work builds upon such ideas, we extend the concept to
include the idea of teaching the task via human demonstration,
with the physical twin providing a common currency or means of
measuring and recording the physical interactions. In addition,
we experimentally validate the transfer from Lab2Field, and seek
to demonstrate that the success arises from the use of the
physical twin.

We demonstrate that physical twin provides sufficient simi-
larity to the real world system to allow transfer of the controller
with a high success rate. It importantly shows the same failures
occur in the field, demonstrating the specificity of the physical
twin. The capabilities of the robot could be further extended and
improved by extending the physical twin concept to mirror the
larger complexities of the plant. This could include modelling
bunches of raspberries, better matching the surface properties and
structural properties of the raspberry, and wider variety in the
range of visual situations that are represented. Furthermore,
extending the simulation to include variable environmental
conditions such as lighting, temperature, and humidity could
further close the Lab2Field reality gap. Introducing greater variety
into the physical twin beyond the pulling force stiffness could
help to better represent the range of over 130 varieties of rasp-
berries that are present around the world40, which includes some
varieties that are white so show consideration visual variation41.

This approach of leveraging a physical twin is particularly
suited for harvesting due to the costs of in-field experimentation
and also the short harvesting period for crops which limits the
testing and evaluation period. Within the domain of harvesting,
this method has potential for crops which require delicate tactile
interactions, and where there is uncertainty or variability within
the crop. This could include other berries, funghi, and leafy
vegetables.

By developing robotic solutions for harvesting crops such as
raspberries we provide means of reducing costs, reducing the
reliance on increasingly hard to find labour sources, and improve
working conditions16. There is also the potential to explore other
benefits that arise from robotic harvesting. For example, crops
could be harvested early in the day, or at night, when water
content of the fruit is higher, maximizing sugar content42,43. We
could also move to precision harvesting throughout the day,

Fig. 8 Failure cases of the developed harvesting robot. a Failure due to the first compression force setting F1c being too low, and the fruit slips off the
gripper fingers. b Failure due to the controller not detecting the moment of harvest. The fruit is crushed after it is removed off the plant. c Failure due to the
fruit being located where the gripper cannot reach.
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optimizing the harvest of every berry and leveraging machine
learning methods to perform the necessary localization and
classification at the individual fruit level44. This would require an
extension of the current demonstrated technologies to a fully
autonomous and increasingly robust system that is fully deploy-
able in the field. In this work we focused on the final harvesting
motion of the robotic system using the physical twin. In order to
reach a fully functioning harvesting robot, outdoor navigation,
error recovery, and improved manipulator planning must be
implemented. Furthermore, to reduce the production cost of the
robotic system, alternative hardware designed specifically for this
task can be used. For example, a Cartesian gantry can be used
instead of a 6-axis robotic arm, which is common in existing
harvesting robots45–47 including implementation of autonomous
navigation within the crops, error detection and recovery, and
decision marking regarding which fruit to harvest.

Extending the physical twin for more general manipulation
could also be beneficial in a number of scenarios. Firstly, it allows
for human training or a human reference point, however, further
work is required to automate the extraction of the parameterzed
controller and associated update policy. Secondly, it can be used
for tasks that are challenging or computationally expensive to
simulate yet easy to model in the real world. There is also scope
here for the physical twin to be used to evaluate why the sim2real
gap exists for certain manipulation tasks. This could be per-
formed by comparing the interactions with a robot in a simula-
tion and a physical twin, and also, purposefully altering aspects of
the physical twin to simulate error in sim2real transfer and
understanding the resulting impact on robot performance.

Methods
Harvesting robot. The Raspberry harvesting robot is shown in Fig. 9 with the full
robot shown in Fig. 9a alongside the detailed image of the gripper on the right
(Fig. 9b). The full robot is a mobile manipulator combining a 4WD mobile base
(Husarion Panther) and a 6 degree of freedom robotic arm (Universal Robotics
UR5 Arm). The control computer is mounted on the rear of the mobile base where
a human can operate the robot. Fig. S3 and Supplementary note 3 shows and
explains the system integration diagram.

The gripper is a custom made parallel jaw gripper which is achieved through a rack
and pinion mechanism actuated using a Dynamixel XM430-W210-R motor. The
finger tips of the gripper is a combination of 3D printed PLA with the surface that
touches the raspberry covered with casted silicone (SmoothOn DragonSkin-10). The
fingertips are connected to the gripper via a uniaxial 500 g load cell on both fingers
mounted in such a way that one finger read the vertical force Fp,R and the other reads
the horizontal force Fc,R. In between the fingers, a Raspberry Pi Camera is located

alongside a time-of-flight sensor to help align the raspberry. Above the fingers, a
stereo-vision camera (Oak-D Camera) is mounted, also used to align the raspberry.
Behind the fingers, a Jetson Nano board is placed to process the Raspberry Pi camera
data. Within the gripper, a microcontroller (Arduino Nano Every) and a U2D2
module (to communicate with the Dynamixel motor) is mounted.

Harvesting controller implementation. The harvesting controller takes the form
of standard PID controller. The input to the PID controller is the force setpoint F1

c
or F2

c . The motor is controlled through a velocity control input, where a PID
controller located inside the servo motor regulates its velocity based on the target
velocity.

For the two setpoints of the force controller, two different sets of PID gains are
tuned (kp,1= 0.05, ki,1= 8 × 10−6, kd,1= 0 for F1

c , and kp,2= 0.3, ki,2= 10−4,
kd,2= 0 for F2

c ), and the Ziegler-Nichols method was used to tune both gains. The
transition between controllers does not cause any instability issues as the switching
condition is irreversible.

Visual servoing controller implementation
Raspberry detection. At the core of the alignment pipeline is the raspberry detector.
The detector uses classical computer vision techniques to localize and estimate the
size of the raspberries through approximating them as circles.

The raw image is first thresholded in the HSV space. The value is used to
threshold the brightness of the environment, and the hue is thresohlded to identify
the pink color of the fruit to produce a binary mask to segment pixels which
contain the fruit from all other pixels. After applying a Gaussian smoothing to this
mask, the Circular Hough Transform (CHT) is applied, which outputs the center
location and radius of potential raspberries. By knowing the approximate size of
the fruit in the frame, the localization is successful.

Cartesian alignment. The alignment procedure aims to align the gripper center to
the fruit by moving itself in Cartesian directions (see Fig. 5a). The first step is to
align a target raspberry to the center of the image frame. In this process the image
from the Oak-D camera (mounted above the gripper fingers) is used. Before any
movement of the gripper, the target raspberry is selected by detecting all rasp-
berries within the frame, and choosing the one which is closest to the frame center.
Once the target fruit is chosen, the UR5 arm is commanded to move first in the
horizontal direction, and then in the vertical direction to align the center of the
detected fruit to the center of the camera.

This alignment in the image frame is necessary for the second step, which is to
move in the direction towards the fruit. With the fruit at the center of the image
frame, the location of the fruit on the frame is unaffected by perspective effects. The
approach to the fruit is performed in two motions. The first motion is to move
close until the detected raspberry in the image frame exceeds a certain radius (40
pixels was chosen heuristically based on experiments). The second motion is to
position the fruit at the center of the two gripper fingers. The fruit is assumed to be
positioned correctly when either the Raspberry Pi camera or the time-of-
flight(ToF) sensor, both mounted level with the fingers, detect the fruit through
thresholding. While the ToF sensor directly measures the distance, the Raspberry
Pi camera does this by counting the number of pixels which belong a raspberry in
its frame. The segmentation is performed identically to the raspberry detection
algorithm (section “Raspberry detection”) before applying the CHT.

4WD Remote 
Controlled 

Rover

UR5 Arm

Gripper

Control 
computer

Silicone 
ngers

Load cell ( )Fp,R

Load cell ( )Fc,R

Oak-D 
Camera

Raspberry Pi 
Camera

Jetson 
Nano

a)

b)

Fig. 9 The setup of the robotic system used to harvest the raspberry. a The full robotic setup with the mobile base, robot arm, and the gripper. b Detailed
figure of the gripper and its functional components.
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Measuring the performance of the visual servoing. The performance of this visual
servoing is determined by measuring the offset of the fruit from the gripper center
just before the moment of harvest. In the lab, the alignment sequence was run from
27 unique starting locations (where the target raspberry is in frame). The 27 unique
locations are given by ±8 cm deviations in the three Cartesian directions from a
point 30 cm directly away from the target physical twin.

After running the alignment sequence, a photo is taken form the bottom of the
gripper to measure the relative location of the fruit from the gripper center. In the
photo, the edges of the gripper fingers and the center of the fruit is identified
manually (a human clicking on the features of a photo displayed on a screen). For
every photo, this manual process is performed five times to minimize human error.

Automatic controller tuning implementation. The controller parameter F1
c is

tuned automatically by the robot system (see section “Automatic controller turn-
ing”), and is fully described in Algorithm 1.

Algorithm 1. Automatic tuning of F1
c

1: Start iteration i ← 1
2: Set initial guess of F1

c : F
1
c;i

3: while i <= 15 do
4: for j ← 1 to 5 do ⊳ Repeat the fruit harvesting 5 consecutive times
5: harvestðF1

c;iÞ
6: if Harvest is successful then
7: Pi;j  maxðFc;T Þ
8: end if
9: end for
10: if All 5 harvests are successful then
11: Pi  meanðPi;1:5Þ
12: Δc  Pi � P

H ⊳ P
H
is the maximum Fc,T recorded by a human

13: if Δc > 0 then
14: F1

c;iþ1  F1
c;i � γΔc ⊳ In this experiment γ ← 10

15: else
16: F1

c;iþ1  F1
c;i � Frand ⊳ Frand is a random value between 1 and 10

17: end if
18: else

19: F1
c;iþ1  F1

c;i þ F1
c;success � F1

c;i

� �
nfail
5 ⊳ nfail is the number of failed

attempts
20: end if
21: end while
22: return F1

c ¼ F1
c;15

Algorithm 1 takes 15 iterations (denoted by subscript i) to tune F1
c . During this

iteration, the value of F2
c and Fp,harvest was kept constant both at 0.196N (20 gf). At

every iteration, the robot will harvest the physical twin five consecutive times
(denoted by subscript j). The repeated harvests for a single force setpoint F1

c , aims
to minimize the effect of stochasticity in the system. The precise contact location of
the gripper on the physical twin can change the interaction dynamics.
Furthermore, the sensor measurement of the soft sensor (due to the deformation of
the material) can induce some drift and noise.

For every attempts within the five trials, if the harvest is successful (the fruit is
off the plant and is held by the gripper with F2

c after the harvest), the maximum
compression force recorded by the physical twin, maxðFc;T Þ, is recorded as Pi,j.

Once the five harvests are performed for F1
c;i , F

1
c;iþ1 is generated through an

update rule described in lines 10-19 in Algorithm 1. The update rule has three cases.

(i) All five harvests are successful and the robot is worse than the human
(Δc > 0)

(ii) All five harvests are successful and the robot is better than the human
(Δc ≤ 0)

(iii) Not all harvests are successful

In case 1, the update rule is described in line 14 of Algorithm 1, and is derived
from a simple gradient decent based rule shown in equation (1), which aims to
tune F1

c to minimize the squared error Δ2
c .

Wewish to tune F1
c byminimizing the errorΔ2

c : F1
c;iþ1 ¼ F1

c;i � γ dΔ2
c

dF1
c;i

dΔ2
c

dF1
c;i
¼ 2Δc

d
dF1

c;i
Pi � P

H
� �

¼ 2Δc
d

dF1
c;i
Pi

Assuming the gripper can accurately exert its demand force such that Fc � F1
c;i

and the physical measurement is proportional to the true force Fc;T ¼ αFc;

d
dF1

c;i
Pi ¼ d

dF1
c;i
meanðmaxðFc;T ÞÞ � α

Hence; dΔ2
c

dF1
c;i
� 2αΔc and thus; F

1
c;iþ1 ¼ F1

c;i � γΔc

ð1Þ
In case 2, the robot is “better”, than the human recording a negative error. In

this case, rather than penalizing the robot to match the human, the force setpoint is
decreased by a small random amount Frand to push the capabilities of the robot

even more (line 16 of Algorithm 1). In practice this case did not occur, which
highlights the incredible performance of a human to interact with soft objects
intuitively.

In case 3, the force setpoint is too low, and must be increased to a value which it
can reliably harvest the physical twin. As shown in line 19 of Algorithm 1, F1

c;iþ1 is
set to a value in between the current setpoint F1

c;i and a most recent setpoint which
led to all five harvests successful, F1

c;success. How much the setpoint is reverted to
F1
c;success is regulated by a ratio of failed attempts, nfail5 .

Field test procedure
Testing the visual servoing controller. The visual servoing controller was tested a
total of 11 times on three different un-harvested raspberries. The HSV values used
for the raspberry detection was adjusted to the field conditions before the
experiment. Every alignment attempt, the gripper was moved to a different starting
position. The measurement procedure is identical to that in the lab, where a photo
is taken from underneath the gripper fingers and relative location of the fruit is
identified manually.

Testing the harvesting controller. The harvesting controller is tested on 25 rasp-
berries which were isolated from other fruits, leaves, and plant segments. In this
experiment, the gripper center was moved to the harvesting position by hand
using the teach-pad of the UR5 robot arm. For every attempt, the Low force F1

c
setting is first used to harvest the fruit. If this force is too low for the harvest, and
the fruit is not apparently damaged, the harvest procedure is tested again with
the Medium force F1

c setting (if this fails, the High force F1
c setting).

Testing the full pipeline. The full pipeline (combining the visual servoing controller
and the harvesting controller) was tested on four untested raspberries. For each
raspberry the robot started from a position unreachable by the robot arm. Then the
mobile base was driven manually until the arm was approximately in reach of the
fruit. Finally, the visual servoing controller was run, followed by the harvesting
controller without human intervention (see Movie S3). For every raspberry, if a
failure was detected (either automatically or manually), the robot was reset and the
procedure was restarted.

Data availability
Raw data in the form of sensor measurements are freely available through this link
https://gitlab.epfl.ch/create-lab/agricultural-robotics/raspberry/raspberry-grasping. All
other raw data (e.g.: images and videos) and processed data is available upon contact to
the corresponding author.

Code availability
All code used in this project is freely available through this link https://gitlab.epfl.ch/
create-lab/agricultural-robotics/raspberry/raspberry-grasping. Please contact the
corresponding author to request further information about the code.
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