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A generative force model for surgical skill
quantification using sensorised instruments
Artūras Straižys 1, Michael Burke 1,2, Paul M. Brennan1 & Subramanian Ramamoorthy 1,3✉

Surgical skill requires the manipulation of soft viscoelastic media. Its measurement through

generative models is essential both for accurate quantification of surgical ability and for

eventual automation in robotic platforms. Here we describe a sensorised scalpel, along with a

generative model to assess surgical skill in elliptical excision, a representative manipulation

task. Our approach allows us to capture temporal features via data collection and down-

stream analysis. We demonstrate that incision forces carry information that is relevant for

skill interpretation, but inaccessible via conventional descriptive statistics. We tested our

approach on 12 medical students and two practicing surgeons using a tissue phantom

mimicking the properties of human skin. We demonstrate that our approach can bring deeper

insight into performance analysis than traditional time and motion studies, and help to explain

subjective assessor skill ratings. Our technique could be useful in applications spanning

forensics, pathology as well as surgical skill quantification.
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T ime and motion studies are frequently used to model,
analyse and understand complex human manipulation
tasks. This remains the case in the context of deformable

tissue handling or manipulation, despite broad acknowledgement
of the importance and role of forces in these tasks. For the most
part, this reliance on kinematic sensing is due to a limited ability
to measure forces at the tool-tissue interface. The ability to cap-
ture high fidelity information at this interface is key to down-
stream applications and analysis across a broad range of research
areas, including pathology, forensics and surgical skill under-
standing. In this work, we introduce a low cost, easy-to-replicate
tool and accompanying models that enable this.

As an example, this work considers the surgical procedure of
elliptical excision, in which skin incisions are made along a
parabolic curve. As is the case for many important and practical
manipulation tasks, the outcome and the quality of task execution
directly depends on both the overall amplitude and the temporal
characteristics of the applied forces. Throughout an incision, the
non-dominant hand applies continuous tension to the tissues
surrounding the cutting contour, while the dominant hand con-
trols the scalpel’s movement1. Successful tissue dissection implies
the application of appropriate force levels2—sufficient for delib-
erate and controlled tissue separation, but not too excessive to
avoid iatrogenic tissue damage3. In addition, cutting forces are
continuously modulated by active tissue tensioning and the
scalpel’s nonholonomic-like movement through viscoelastic
tissues.

Despite the central role that forces play in surgery4–6, the
analysis of these remains a novel area of research2, as the majority
of developed methods for analysing these skills are vision-based
and mainly focus on instrument motion7–10. However, there is
some evidence that force-based performance metrics can be
superior to metrics that are based on movement alone11. In
addition, recent studies indicate that tool-tissue interaction forces
can uniquely reflect a surgeon’s competence12. Interestingly,
studies show lack of correlation between tool-tissue forces and
motion parameters13. Moreover, unlike motion parameters14,15,
force parameters show no correlation with the execution time of
surgical tasks16,17. The above body of evidence indicates that the
force modality may offer distinct information that is largely
ignored by time and motion studies.

When force sensing is employed, the descriptive statistics
applied by most studies disregard the temporal structure of force
measurements under stationarity assumptions. This assumption
is highly unrealistic for tasks like elliptical excision, where vis-
coelastic properties of tissues and a set of distinct phases of task
execution cause the forces to exhibit strong time-dependent
behaviour (Fig. 1a, b). Here, we propose and use a generative
model of elliptical excision forces to encode the behavioural
characteristics of the task execution. In our method, we extend
the switching dynamics of a Markov model18,19 with a latent
continuous dynamical system that captures the viscoelastic
properties of scalpel-tissue interaction20,21. Our proposed ellip-
tical excision force model captures the following components of
the observed behaviour: 1) the step-like force profile with distinct
transient and steady-state phases, 2) the amplitude and envelope
of the force profile, characterised by the upper and the lower force
boundaries, 3) the variation of the force magnitude in both
transient and steady-state phases, and 4) the smoothness of task
execution flow, characterised by the frequency of interruptions
due to discrete events of tissue re-tensioning or finger re-
positioning.

This paper shows that a) these components can compactly
describe the execution of elliptical excisions, b) our generative
model offers greater insight into analysis of skill when compared
to descriptive statistics, and c) the model can quantify the

subjective evaluation of excision skills and enable the comparison
of expert assessors with differing implicit assessment criteria. In
order to apply this model to investigate scalpel cutting skills22–24

in an elliptical excision task, we first developed a low-cost sen-
sorised scalpel and an easy-to-replicate multilayered skin-
mimicking phantom (Fig. 1c, d). We then collected a dataset of
12 incision force profiles from 12 medical students (Fig. 2), with
video recordings of these incisions evaluated by surgical experts
(Supplementary Movie), followed by performance analysis using
traditional force-based descriptive statistics. Finally, we con-
trasted this approach with our generative model and found our
model superior to descriptive statistics in terms of its ability to
analyze the surgical skill and the implicit criteria employed by
experts during evaluation.

To summarize, our core findings in this study are as follows:

● Force sensing at the tool-tissue interface enables detailed
analysis of manipulation tasks and surgical skill quantifica-
tion that can be aligned with expert evaluation criteria.

● Commonly considered descriptive statistics that fail to
account for non-stationarity are severely limited here, and
force-based analysis of manipulation tasks requires a model
that explicitly decomposes observations into amplitude and
temporal components.

Results
Figure 2 shows the distribution of force profiles (mean and
standard deviation) for each of the 12 medical students (blue),
compared with force profiles of two practising surgeons - con-
sultant neurosurgeon (dark yellow) and plastic surgeon (green),
each with 5 years of experience. There is a considerable difference
in the mean, variability (standard deviation) and overall shape
(envelope) of the incision force profiles across the subjects. For
example, force profiles of subjects H and J resemble an over-
damped step-like response with a smooth and even force level in
the steady-state phase of the excision, whereas force profiles of
surgeon A (dark yellow) show noticeable force modulation (e.g.
dip in the force at t= 3 s). The narrow envelope of the profile
distribution (i.e. force profile variability) in the surgeon’s trials
indicate that such modulation is consistent, and hence, is likely to
be a part of the cutting behaviour.

Subjective evaluation of the incision skills. Four surgical experts
(two plastic surgeons and two neurosurgeons) subjectively eval-
uated all 15 trials (12 original trials plus 3 repeated, see Methods
section for details) independently, based on trial videos (Sup-
plementary Movie). The experts were asked to group the trials
according to their perceived proficiency (i.e. experts were free to
evaluate the performance according to the criteria of their own
choice) and provide comments to support their judgement
(Supplementary Tables 1–4). Supplementary Fig. 1 shows the
boxplots of the grouped subjects based on proficiency rating from
0 to 3 (where 0 is the poorest performance).

The assessment showed poor inter-rated agreement25 among
the experts (Supplementary Fig. 2), with intraclass correlation
coefficient (two-way random, single measures) of 0.45.

Despite agreeing in their assessments of the poorest perfor-
mances (both subject F and the second trial of subject C were
rated the worst by each of the experts), experts showed a
noticeable difference in rating the average and top performers.
For example, Expert A rated subject G with the highest score of 3,
while both experts B and C rated it as the second poorest
performer (score 1). In addition, subjects E and H were rated with
the highest score by experts C and D, but only with a second-
lowest score by expert A. Finally, experts A and C rated the first
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trial of subject A with the highest score, but it was rated as the
second poorest by experts B and D.

The discrepancies in subjective assessment of the overall
proficiency perceived by the experts highlight the challenges in
teaching and assessing skills that are typically mastered through
apprenticeship. These differences in assessment might reflect the
different specialities, schools or experience levels of the experts. In
this study, we treat each expert assessment as an equally valid
evaluation.

Below, we investigate the characteristics of elliptical excision
performance that drive each expert’s perception of skill.
Specifically, we study the relationships between the measured
incision forces and the subjective assessments of skill based on
motion alone. In the following sections, we perform the analysis
using the conventional force-based metrics and introduce a
generative model for elliptical excision forces that decomposes

force measurements into a set of independent components that
uniquely describe the manner of the excision. Finally, we provide
an analysis of how these components can explain the subjective
criteria employed by each expert.

Traditional performance analysis. In this section, we analyzed
the relationships between the subjective evaluations by experts
and the following objective force-based metrics: mean force, force
variability (standard deviation), peak force, scaled force (mean
force divided by the peak force value, an indication of force
overshoot), derivative of force with respect to time11 (indication
of the aggressiveness) and force integral (indication of cutting
energy). Supplementary Fig. 3 shows the relationships.

Levene’s test showed that the variance of incision force samples
has a statistically significant difference across the subjects
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Fig. 1 Overview of the proposed elliptical excision force model, sensorised scalpel and the experiment. a Maxwell model of the cutting process, where x
denotes blade’s displacement, d is depth of excision, θ is angle of blade insertion, v is blade’s velocity, E and η are spring and damping coefficients,
respectively. (Pink and ivory colours denote the outer and inner layers of tissue phantom, respectively. The shaded area corresponds to the phantom region
separated by the blade.) b Generated incision force and blade displacement profiles versus the actual incision force measurement (blue). (E= 1 N cm−1,
η= 0.5 N s cm−1, v∈ [0, 8] mm s−1 with standard deviation of 0.35mm s−1). c Concept design of the sensorised scalpel (here LDC is Inductance-to-
Digital converter, MCU is Micro-controller Unit and USB is Universal Serial Bus). d The experiment: 12 medical students and two professional surgeons
were asked to perform a series of 12 elliptical excisions on a tissue phantom.

Fig. 2 Subject-specific distributions of the excision force profiles. Mean and standard deviation (N= 12) of normalized force profiles for each of the
medical students (blue) and practicing surgeons (dark yellow and green). Subjects A, C and D have repeated the trials after two months (orange).
Supplementary Fig. 4a shows individual force profiles for each subject.
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(p-value < 0.05). Therefore, the omnibus Welch’s ANOVA
(analysis of variance) and Games-Howell post-hoc tests with a
family-wise error rate of 0.05 were used. Subjective evaluation by
expert A showed no monotonic relationship with any of the
described above force-based metrics (Supplementary Fig. 3, blue
lines). On the other hand, expert B ratings showed positive
monotonic relationship with the mean force, peak force, scaled
force and force integral metrics (Supplementary Fig. 3, orange
lines). Expert C ratings showed a positive monotonic relationship
with the mean force, scaled force and force integral metrics
(Supplementary Fig. 3, green lines). In the peak force metric, the
middle rated groups (with scores 1 and 2) by expert B showed no
significant difference. For expert C, no significant difference is
registered between groups with scores 1, 2 and 3 in the mean
force and force integral metrics, and groups 2 and 3 in the scaled
force metric. In addition, ratings from experts B and C show
negative monotonic relationship with the time derivative of force
(groups rated with scores 0, 1 by expert B, as well as groups rated
with scores 2 and 3 by expert C show no significant difference).
Expert D shows a positive monotonic relationship with scaled
force, with groups scored 1 and 2 showing no significant
difference. No monotonic relationship between the subjective
assessment of experts and force variability is registered.

The analysis above suggests that experts B and C reward the
incisions that are executed with smooth (i.e. uninterrupted) force
profiles of larger amplitude and low overshoot. This observation
is in agreement with an intuitive interpretation of the force-based
metrics - higher force integral (larger incision forces with longer
duration) along with lower force derivative corresponds to
“confident” incisions with consistent application of forces
throughout the task execution. In the case of expert D, there is
an indication that the expert penalizes the excisions with an
overshoot in the force profile.

However, the above analysis fails at explaining the implicit
criteria of expert A. Figure 3 compares the high scorers from the
experts’ evaluations. The top scorers from expert A evaluation
executed the incisions with distinct frequency of tissue re-
tensioning. In contrast, the top scorers from evaluation by experts
B and C show noticeable passivity of the non-dominant hand -
the surrounded tissues held in constant tension with occasional

finger re-positioning in the later stages of task execution. The
inspection of the commentary from expert A (Supplementary
Table 2) further suggests that active re-positioning of fingers (or
tissue re-tensioning) might be one of the dominant performance
criteria employed by the expert. Nevertheless, the traditional
force-based metrics fail to identify this rating dimension. In the
following section, we show how this problem can be addressed by
exploring the parameter space of our probabilistic generative
model.

Elliptical excision force model parameters and behaviour
analysis. The proposed elliptical excision force model (see
Methods section for details) encodes the observed cutting beha-
viour using the following set of parameters with meaningful and
intuitive interpretation:

● vL and vU, which determine the lower and upper excision
force levels and characterise the overall amplitude and the
spread of the force profile distribution.

● σ2L and σ2U , which capture the uncertainty of the upper and
lower excision force levels and reflect sample-to-sample
variability within the force profile.

● transition probability matrix Q ¼ q11 q12
q21 q22

� �
, which

determines the temporal characteristics of the incision
force profile, i.e. the modulation of forces observed in the
experiment. Here, q12 is the probability of switching from
the lower to the upper force level, q21 is the probability of
switching from the upper to the lower force level, q11 and
q22 are probabilities of remaining in the lower and upper
force levels, respectively.

Figure 4 illustrates the effect of the above parameters on the
learned behaviour for subjects H and D. Note that actual incision
forces exerted by the subjects have similar mean amplitude
(approx. 0.4), but differ in the force envelope - subject H shows a
tighter distribution in force profiles compared to subject D, which
is reflected in the corresponding vL and vU parameters. In
addition, the subjects differ in temporal characteristics of the

Note: Late finger repositioning 
(in the middle of parabola), 
constant tissue tensioning.

Note: No finger repositioning, 
constant tissue tensioning. Dip 
in force reflects a sudden turn of
the blade in the middle of parabola.

a b

Fig. 3 Comparison of high scorers from expert evaluations. a High scorers from expert A evaluation (second trials of subjects D and A) performed
incisions with frequent tissue re-tensioning. b High scorers from expert B evaluation (subjects H and E) executed incisions with constant tissue tensioning.
The blue lines are the individual force profiles (depicted on the images), and the grey dotted lines and shaded regions are the mean and standard deviations
of force profiles from high scorers' trials.
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excision forces - subject H shows slow varying modulation
between the upper and the lower force levels, whereas subject D
shows occasional losses in the excision forces followed by rapid
recovery to the upper force level. These characteristics are
captured by the transition probability matrix Q (Fig. 4).

Figure 5a shows the scatter plot of vL versus vU parameters
across the subjects (including the surgeons SA and SB), and the
corresponding distributions of forces for each cluster along the
amplitude axis (higher the vL and vU parameter values correspond
to the higher mean forces). Note that subjects H and D are well
aligned along the amplitude axis, as expected. In addition, it
should be noted that the axis orthogonal to the amplitude axis
describes the width of force envelope, e.g. simultaneous increase
in vL and reduction in vU corresponds to narrower force profiles,
and vice versa (see the effect of vL and vU parameters on the force
envelope in Fig. 4). As expected, subjects H and J, as well as
surgeons SA and SB are located in the bottom right corner of
Fig. 5a plot, reflecting highly consistent force application with a
narrow envelope (Fig. 2).

The proposed model implicitly encodes the descriptive
statistics of the excision forces and provides a compact
representation of a range of heuristic metrics previously
considered in the literature, such as mean forces or force
variability. However, our model extends the analysis by explicitly
capturing the temporal structure of the behaviour, which is
typically lost when descriptive statistics are computed directly.
For instance, a close inspection of incision force profiles from
subjects J and H (Supplementary Fig. 4a) reveals that subject J
executes the incision with a lower amount of modulation of the
force amplitude. However, the standard deviation of normalized
force profiles (the width of the force envelope) for J and H
subjects is identical, 0.056 ± 0.031 vs 0.056 ± 0.036 (N= 12,
excision profiles), respectively. In addition, the force profiles
from subject J trials exhibit a higher force derivative metric
score11 (3.7 ± 0.37 vs 3.2 ± 0.53, N= 1440 force samples), which
might lead to an incorrect conclusion. Our model correctly
captures this temporal characteristic with the transition prob-
ability matrix Q: the smooth and slowly varying force profile
modulation shown by subject H is reflected in the equal and low
transition probabilities q21= q12= 0.037. In contrast, the imbal-
ance in the transition probabilities for subject J (q12= 0.124 and
q21= 0.028) yields a considerably higher long-term probability of
application of a steady excision force (πU= 0.819) compared to
subject H (πU= 0.496). Supplementary Fig. 5 illustrates the

combined effect of transition probabilities and amplitude
parameters on the learned excision characteristics for subjects J,
H, A2 and C1.

The Principal Component Analysis (PCA) of model parameters
allows the extraction of meaningful features that characterise the
performance. Figure 5b shows the PCA projection of model
parameters for each subject on the 2D plot, with highlighted groups
along the diagonal axis. The principal component PC1 reflects a
simultaneous reduction in the lower force level vL (Supplementary
Fig. 6a) and an increase in the probability of a sudden drop of
applied forces q21 (Supplementary Fig. 6b). In other words, the
higher end of the PC1 axis corresponds to a more frequent and
drastic loss of applied force throughout the task execution. The PC2
component reflects the increase in the probability of a sharp rise of
excision forces (Supplementary Fig. 6c), i.e. the higher end of the
PC2 axis corresponds to a more aggressive brush stroke-like
application of excision forces. We call the diagonal axis on PC1 vs
PC2 plot an Abruptness feature, as it reflects a degree of
discontinuity of the task execution.

The third principal component PC3 corresponds to a reduction
of the upper force level vU (Supplementary Fig. 6d). Note that
model parameters whose projection lies on the high ends of PC1
and PC3 would correspond to low overall excision forces (due to
low values for vL and vU parameters) with frequent switching to a
lower force level (due to high probability q21). Conversely, the
model parameters that are projected to the lower regions of the
PC1 and PC3 axes would correspond to high excision forces with
rare loss of the applied forces. We call this diagonal axis of the
PC1 vs PC3 plot an Energy feature (the higher excision forces
applied for a longer duration, the greater the energy of task
execution). Figure 5c shows the PC1 vs PC3 plot and groups of
subjects aligned along the Energy axis.

Finally, the model parameters that are simultaneously
projected on the lower end of the PC1 and on the higher end
of the PC3, correspond to highly uniform (due to low probability
of q21) and highly consistent excision forces with narrow
envelope (due to high values of vL and low values of vU
parameters). We call this diagonal of PC1 vs PC3 plot a
Confidence feature. Note that the Confidence axis is orthogonal
to the Energy feature, i.e. equally confident excisions can be
executed at different energy levels (e.g. subject J and surgeon SB),
and vice versa (e.g. subject I and surgeon SA). Supplementary
Fig. 7 shows the plot of the above features against the expert
scores.

vUvvvUvv

vLvv

vv

Fig. 4 Excision forces and model parameters. Learned model parameters (vL; vU; σ
2
L ; σ

2
U and Q) from (a) subject H and (b) second trial of subject D,

respectively. Thick black lines are synthetic force profiles (generated by the trained model), blue lines are corresponding generated velocity profiles, and
semi-transparent grey lines are the actual force profiles used in model training. Note: The pink and green shading corresponds to the standard deviation of
velocity at the lower and the upper regimes (σL and σU), respectively. The grey shading denotes the envelope of the excision forces, defined by the lower
and the upper regimes (vL and vU).
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Beyond traditional performance analysis. We performed cor-
relation analysis to identify whether the inferred parameters of
the proposed elliptical excision force model reflect the evaluation
score provided by each of the experts. The expert B evaluation
scores showed significant (p-value < 0.05) Spearman rank-order
correlation with vL, σ2L, q11 and q22 model parameters. The per-
formance evaluation by experts C and D showed significant
Spearman’s rank correlation with parameters σ2U and q22. In the
above analysis, the critical value of 0.446 was used for N= 15
observations26.

Figure 6 (top row) shows the scatter plot of vL and vU
parameters with a contour plot of linearly interpolated evaluation
score provided by each of the experts. The plot suggests that
evaluation by expert A is approximately invariant to the overall
amplitude of the force profiles, however, it is well aligned with an
axis that defines the width of the force envelope. In addition, it

can be seen that the top scorers from the evaluation of expert A
cut with higher force envelope width compared to the top scorers
from other experts. Note that the top scorers by expert B cut with
higher mean force (i.e. subjects are located higher along the vL
and vU axes) compared to other experts.

Figure 6 (middle row) shows the PCA projection of model
parameters across the expert evaluations with highlighted
Abruptness feature. It can be seen from the plot, that interpolated
evaluations of experts A, B and C are well aligned with the
Abruptness axis. Note that the top scorers evaluated by expert A
are located further along the axis compared to evaluations from
experts B and C, which indicates that expert A rewards task
executions with highly pronounced modulation of the excision
forces. In contrast, the top scorers from experts B and C are
located on the lowest side of the Abruptness feature, suggesting
that the experts penalise discontinuous application of excision

Fig. 5 Performance analysis using model parameters. a Parameters vL and vU encode the amplitude information of the excision forces (the mean, the
standard deviation and the individual force profiles for each highlighted group are shown as solid lines, shaded region and semi-transparent lines,
respectively). b, d The Principal Component Analysis representation of parameter space encodes meaningful features that can characterise the task
execution. b The diagonal axis on the Principal Component 1 (PC1) vs Principal Component 2 (PC2) plot captures the excision abruptness, characterised by
increased probabilities of sudden rises and falls in the applied forces. c The PC1 vs Principal Component 3 (PC3) plot captures the Energy feature,
characterised by the amplitude and steadiness of the excision forces (the integrals of the mean force profiles for each of the groups is shown here).
d Orthogonal to the Energy axis is the Confidence feature reflecting the consistent and steady force application (the mean, the standard deviation and the
individual force profiles of the highlighted groups are shown as solid lines, shaded region and semi-transparent lines, respectively). Note: Letters A to L
correspond to medical students (where numeral indicates the trial), “SA” and “SB” correspond to surgeon A and B, respectively.
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forces. Finally, expert D showed no distinctive alignment with the
defined axis, which suggests that the Abruptness feature does not
reflect the expert’s evaluation criteria.

Figure 6 (bottom row) shows the PC1 vs PC3 plot, with
corresponding Energy and Confidence features. It can be seen
from the PCA plots that expert A rewarded the performers that
scored highly along the axis of the Energy feature, as well as
moderately along the Confidence axis. This agrees with previous
conclusions that expert A values a certain degree of force
modulation. In addition, it can be noted that expert B rewarded
the performers that executed the task with high energy and high
confidence (with an exception of subject K). Finally, the
evaluation of expert D appears invariant to the Energy axis,
however, it is well aligned with the Confidence axis (the top
scorers are clustered in the region of the highest confidence
score).

The above analysis suggests that, in contrast to other experts,
expert A rewards the incisions that are executed with a wider
force envelope and an increased amount of switching between the
distinct force levels. In the elliptical excision task, such behaviour
corresponds to an explicit force modulation due to well-
pronounced tissue re-tensioning or finger re-positioning events
(Fig. 3). This conclusion agrees with both the additional
commentary from the expert (Supplementary Table 2), as well
as with the qualitative assessment of force profiles from the
distribution of high scorers (Supplementary Fig. 4a).

In summary, the analysis indicates that expert B rewards
confident incisions executed with higher energy. Expert C
rewards excisions with consistent force application (i.e. narrow

envelope of the force profiles). Both experts B and C penalise
interrupted incisions. Finally, according to the analysis, expert D
rewards the Confidence feature, but is invariant to the Energy
feature, which suggests that overall force amplitude is not part of
the expert’s evaluation criteria. Importantly, the above analysis is
in agreement with conclusions derived from the traditional force-
based metrics, yet it offers an additional insight by introducing
temporal features into the analysis.

Discussion
The contributions of this work are threefold. Firstly, we have
developed a low-cost easy-to-replicate cutting instrument with an
integrated force sensor. Secondly, our experiments using this
instrument revealed that the time series of incision forces consists
of subject-specific signatures that can reflect the subjective expert
evaluation, and can be used for downstream performance analysis
and objective surgeon comparisons. Thirdly, we compare the
traditional force-based analysis techniques with the proposed
superior method of analyzing incision forces.

The collected dataset of elliptical incisions shows a distinct
pattern of a step-like response in the cutting force, with noticeable
amplitude modulation in the steady-state phase. We found that
incision force profiles encode the characteristics relevant to the
perceived quality of task execution, and therefore can map the
subjective criteria of an expert. The proposed model extends
traditional descriptive statistics through a rigorous treatment of
the temporal dependency of force measurements and con-
veniently decomposes the cutting behaviour into amplitude and
temporal components. Analysis showed that this decomposition

Fig. 6 Analysis of experts’ evaluation criteria with model parameters. a–d Scatter plot of parameters vL and vU with linearly interpolated expert evaluation
score (with the brighter region corresponding to the higher score). e–h and i–l PCA plots of model parameters with linearly interpolated expert evaluation
score. Note the subjects G and I were excluded as outliers from the analysis of experts A and C. Note: Letters A to L correspond to medical students (where
numeral indicates the trial), “SA” and “SB” correspond to surgeon A and B, respectively.
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offers greater flexibility and brings deeper insight into the com-
plex behaviours of surgeons, which are characterized by strong
temporal structure.

We intentionally limited the scope of this study to the analysis
of incision forces alone. We acknowledge the importance of
motion analysis, and regard the role of force measurements as
complementary. Nevertheless, it is critical to highlight the prac-
tical implications of force-based skill quantification. As accurate
motion capture remains prohibitively expensive and difficult to
deploy in realistic settings27,28, the tools and analysis approach
described in this work offer an opportunity to explore the com-
position of surgical skills at a considerably larger scale.

This paper opens up a number of opportunities for future
work. Firstly, a comprehensive analysis of the utility of objective
performance characterisation using a greater number of partici-
pants would be valuable, alongside work investigating skill
requirements for different tasks and procedures. Future studies
would also benefit from a comprehensive analysis of the learning
curve, with a series of repeated trials across the entire cohort. The
mapping between these objective measurements and downstream
patient outcomes would also be particularly interesting. More-
over, an analysis of the variations in criteria underpinning sub-
jective evaluations of surgeons would be valuable, and it would be
interesting to determine if there are specialisation-specific
nuances or preferences present using the techniques introduced
here. Finally, with minor modifications to sensing hardware, the
described method can be applied to studying other complex
manipulation skills, such as tissue characterization through pal-
pation, or gentle grasping, where the force modality and its
temporal components are also likely to play a dominant role.
Finally, the proposed model is particularly promising for the
analysis of highly procedural surgical tasks with multiple distinct
execution phases, such as suturing. Although we found that two
regimes are sufficient for modeling the force measurements in the
elliptical excision task, the number of states can be increased for
modeling more complex data. Being a hybrid system, our model
enables modeling complex nonlinear behaviours with multiple
linear dynamical systems. In practice, however, the inference of
large number of parameters for switching linear dynamical sys-
tem can be challenging given limited and noisy measurements.

Methods
Experiment. Twelve right-handed medical students (four female and eight male)
and two professional surgeons (both male) were recruited for this study. We
labelled medical students with letters A to L, and surgeons with"SA” and “SB” labels
(referring to surgeon A and B, respectively). Only three subjects (A, C and D)
repeated the trials (two months after the first trial). Subjects that repeated the trials
have a numeral in the label indicating the trial order (e.g. “A2” means the second
trial of subject A). None of the student participants had any prior experience in
surgical cutting tasks. The study was approved by the University of Edinburgh,
School of Informatics, Informatics Ethics panel. All participants provided written
informed consent to participate in this study.

The participants were asked to perform a series of 6 elliptical excisions on the
phantom using the sensorised cutting tool (Fig. 1d). Before each trial, a new blade
(Swann-Morton No. 10) was mounted to the cutting tool. After receiving the task
instructions, participants were familiarized with the experimental setup, cutting
tool ergonomics, phantom mechanical properties, etc. Next, each subject was asked
to rehearse the described task using a dedicated sacrificial phantom. During the
trials, the cutting forces that act on the blade in the direction of cutting were
recorded at a fixed frequency of 30 Hz. Finally, at the end of the trials, each
participant was asked to complete a post-study questionnaire.

Data measurement. Each participant performed six elliptical excisions as a part of
the task, yielding 12 force profiles per trial (each excision consists of upper and
lower cuts). The recorded profiles were time-aligned and cropped to a fixed
duration of 120 samples or 4 seconds (at a sampling rate of 30 Hz). Finally, the
samples were normalized to the maximum force value in the entire dataset.

Given the normalized force profiles f(t) (Supplementary Fig. 4a), the virtual
displacement profiles x(t) (Supplementary Fig. 4b) were obtained by solving the

differential equation for the Maxwell model, equation (1), as follows:

xðtÞ ¼ f ðtÞ
E

þ 1
η

Z T

0
f ðtÞ dt ð1Þ

where f(t) is the corresponding force profile, T is the duration of the force profile,
η= 0.5 N s cm−1 and E= 1 N cm−1 are Maxwell model’s damping and spring
coefficients, respectively.

The corresponding virtual velocity profiles _xðtÞ (Supplementary Fig. 4c) were
obtained by approximating the time derivative of x(t) using the finite difference
method with a step size dt= 0.033.

Elliptical excision force model. The collected incision force profiles show tem-
poral features that can characterize the cutting behaviour. For example, the char-
acteristic dip in an incision force profile (Fig. 1b) might reflect a dynamic change in
the configuration of the blade, tissue tensioning applied by the non-dominant
hand, or both. Here, we propose a generative model that captures these subject-
specific temporal features in the force profiles and enables the disentanglement of
skill from incision force analysis.

Figure 1 a shows the approximate model of the task of cutting a viscoelastic
phantom as a continuous blade’s movement through a Maxwell body. In the
context of this approximation, the Maxwell model29 relates the actual incision force
f(t) to a “virtual” velocity of the blade _xðtÞ, as follows:

η _xðtÞ ¼ f ðtÞ þ η

E
_f ðtÞ ð2Þ

where _f ðtÞ is the time derivative of the force, and η and E are the Maxwell model’s
damping and spring coefficients, respectively.

By taking the Laplace transform of equation (2) and rearranging the terms, we
obtain the transfer function G(s), which relates a virtual blade’s displacement X(s)
and the actual force F(s), as follows:

GðsÞ ¼ FðsÞ
XðsÞ ¼

ηs
η
E sþ 1

ð3Þ

The above transfer function indicates that the model exhibits high-pass
characteristics in the force response to the displacement input. This predicts an
exponential decay of force with a time constant η

E, as a response to a unit step
displacement. Importantly, this also predicts a step-like response in the force to a
ramp-like displacement input, and therefore, the observed cutting force profiles can
be described as a response to a continuous virtual scalpel displacement x(t) at a
constant velocity. As such, this model represents an elliptical excision process as a
virtual hybrid system with K linear regimes, in which the blade velocity _xðtÞ ¼ vk is
feedback-regulated by means of switching between the discrete regimes v1,...,vK. In
this work, we show that such formulation can bring a greater insight into the
analysis of surgical skill when compared to the descriptive statistics approach more
commonly applied in this area. In the next section, we focus on the problem of
inferring the parameters of our model from force measurements.

Excision as a switching linear dynamical system. The switching linear dyna-
mical system30–35 is an example of a broader class of hybrid system, in which
globally nonlinear dynamics are approximated by a series of linear systems. In
the generative model of a switching linear dynamical system, the switching
between each of its K linear regimes is described by a discrete hidden state
variable st ∈ {1,...,K}. The evolution of st is characterized by K×K transition
matrix Q that captures the probabilities of state transitions, i.e. P(st∣st−1). The
continuous hidden state vector zt 2 RD evolves according to a D × D dynamics
matrix A, and the observation vector yt 2 RL is generated according to an L × D
observation matrix C, as follows:

zt ¼ AðkÞzt�1 þ wðkÞ
t ; ð4Þ

yt ¼ CðkÞzt þ vðkÞt : ð5Þ

where A(k) and C(k) are associated with a regime st= k, and wðkÞ
t and vðkÞt are the

disturbance and observation noise, respectively.
In this work, we model the elliptical excision process with two discrete linear

regimes, k∈ {L,U}. Each regime corresponds to a constant virtual velocity of the
blade, and satisfies vL < vU (we call L — a lower regime, and U — an upper regime).
For each of these linear regimes, we model the uncertainty in the constant velocity
as ~vk � N vk; σ

2
k

� �
, where σ2k is the variance of the velocity noise in the regime k.

The continuous hidden state vector zt ¼
gt
xt
1

2
4

3
5, comprises gt and xt, the latent

cutting force and virtual displacement of the blade at time step t, respectively. Since
we only measure the cutting force, the observable yt is a scalar that represents the
force measurement at time step t. The continuous dynamics in the linear regime k

is AðkÞ ¼
α β 0
0 0 ~vk
0 0 0

2
4

3
5, where constants α and β define the displacement-to-force

relationship of the Maxwell model, and are found by transforming the transfer
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function, equation (3), into the equivalent state space form. The observation matrix
in the linear regime k is CðkÞ ¼ γ δ 0

� �
, where γ and δ are the observation

constants from the state space representation of the Maxwell model’s transfer
function. In this work, we set the spring constant E= 1 N cm−1 and the damping
coefficient η= 0.5 N s cm−1, which yield α=− 2, β= 1, γ=− 2 and δ= 1
constant values. The parameters were chosen such that estimated displacements
approximately match the actual distance travelled by the scalpel. Finally, given the
uncertainty captured in the velocity ~vk , we can further assume the disturbance-free
dynamics (wðkÞ

t is zero vector) and noise-free observations (vðkÞt ¼ 0).
A graphical representation of this generative model is shown in Fig. 7a. There

are several ways to infer the parameters of this class of models from observations.
For example, the variational approach to learning in switching linear dynamical
systems34 approximates the posterior probabilities of the hidden states by
optimizing evidence lower bound. In this study, we bypass the inference of discrete
hidden states st by assuming that velocities _xðtÞ are fully observable under the
assumption of the Maxwell model (Fig. 7b). This turns the switching linear
dynamical system inference into a problem of learning an HMM36, fully
characterized by transition probability matrix Q (Fig. 7c) and the emission
probabilities defined by vk and σ2k , for each of the linear regimes k. Given the virtual
velocity profiles _xðtÞ, this model can be easily fit using the Expectation-
Maximization algorithm37.

Figure 7d provides an overview of the model fitting process. First, the virtual
displacement profiles are derived from the force measurements using the inverse of
the transfer function, specified by Maxwell model parameters, equation (3). Then,
the obtained displacement profiles are numerically differentiated for estimation of
the virtual velocities _xðtÞ. Finally, the obtained virtual velocity profiles are used to
fit an HMM with the Expectation-Maximization algorithm. (Examples of incision
forces generated by the model when fit to each of the medical students are shown in
Supplementary Fig. 8).

Sensorized cutting instrument. We constructed a uniaxial force sensor based on
Texas Instrument’s LDC1612 inductance-to-digital converter (LDC) and a 3D
printed flexible element. The LDC provides reliable position measurements at
submicron resolution38, which in combination with a flexible element with a
known stress-strain characteristic, enables the construction of displacement-based
force sensors. The LDC measures the distance between a conductive target and an
inductive coil using the resonant sensing principle. The inductive coil in parallel
with the capacitor forms a resonant circuit in which the alternating current flowing
through the inductor generates an alternating magnetic field. As a result of Fara-
day’s law, the alternating magnetic field induces eddy currents on the surface of the
conductive target as a function of the target displacement. As per Lenz’s law, these
eddy currents create an opposing magnetic field that reduces the nominal induc-
tance of the resonant circuit, and hence, increases the resonant frequency. The LDC
measures this frequency shift and thus provides information about the target’s
displacement with respect to the inductor. By fixing the target to the free end of the
flexure with a known stress-strain characteristic, a displacement measurement can
be transformed into a force measurement.

The designed cutting tool consists of two key components, 1) a printed circuit
board with an inductive coil, and 2) a flexure with a conductive target. The
schematic for the uniaxial force sensor is shown in Supplementary Fig. 9b. The
inductor is implemented as a circular planar coil of 8 mm diameter as shown in
Supplementary Fig. 9a. In the rest configuration of the flexure, the effective 8.6 μH
inductor (in parallel with 330 pF capacitor) focuses the alternating magnetic of
2.985 MHz frequency into the conductive target located 3.4 mm below. In our
design, we used 10 mm square aluminium film of 0.2 mm thickness. The
displacement range of the target is restricted to 1.6 mm, with a minimum distance
to the inductor of 1.8 mm. When the flexure is at its maximum displacement
configuration, the resonant frequency shifts from 2.985MHz to 3.025 MHz
(40 kHz shift, 1.3% of the nominal resonance at zero displacement). According to
ref. 39, the maximum effective resolution achievable with the given frequency
variation is 14-15 bits. The dimensions of the printed circuit board are 100
mm x 13.5 mm. The 4-layer board incorporates differential sensor coils, the
LDC1612 inductance-to-digital converter, an MSP430F5528 microcontroller,
power supply circuitry and a USB connector. The microcontroller configures the
LDC via the I2C interface, implements USB Communication Device Class,
processes and streams sensor data to a host computer.

The displacement is established by a one-piece 3D printed flexure, in which the
free end displaces the conductive target under the presence of external force. As
with any displacement-based force sensor, one of the main challenges is to
maximize the stiffness of the flexure, while achieving the desired sensitivity. 3D
printing provides a relatively easy way of experimenting with various design
parameters, such as stiffness, strength, and geometry, as well as printing process
parameters, such as material, printing orientation, etc. In this study, we use a blade
flexure with design parameters shown in Supplementary Fig. 9b. The flexure was
3D printed with an Ultimaker 3 Extended printer using PLA thermoplastic, 0.2
mm layer height, 20% infill (triangle pattern) and 0.4 mm nozzle diameter. The
extruder temperature was set to 205 °C, the travel speed was set to 70 mm per
second and the perimeter layers were set to 3. The printing was done at room
temperature controlled in a range between 19 and 21 °C. With these settings, the
printed element was approximately 50 microns wider in XY direction.

Supplementary Fig. 9c shows the results of the incremental load test. During the
test, a fully assembled device was incrementally loaded by ten 100 g calibrated weights
(i.e. from 0.98 N to 9.8 N). The load was applied at themidpoint of the blade interface.
The hysteresis (defined as the maximum difference between loading and unloading
samples relative to the full-scale output) is 3.9%. The dotted line on the graph
represents the linear least squares fit to the loading curve. The maximum deviation
from the linear fit (non-linearity) is 1.4% of the full-scale output and the sensitivity of
the sensor is 3752 counts per newton. Finally, the measured accuracy (maximum
standard deviation of sensor output at the maximum measured load and relative to
the maximum measured load, i.e. to 9.8 N) is 0.58%.

Tissue phantom. Supplementary Fig. 9d illustrates the design and material com-
position of the multilayered phantom used in this study. The design consists of a
gelatin base that simulates the recoil of subcutaneous tissues, and a stack of three
silicone layers that mimic the mechanical properties of human skin. The outer
silicon layer is reinforced by pre-tensioned power mesh fabric that increases the

Fig. 7 The elliptical excision force model. a A graphical model representation of the generative model, where s is a discrete state, _x is blade’s velocity, x is
blade’s displacement, g is excision force, y is force measurement and t is a time step. Shaded nodes represent the observed variables. b Hidden Markov
Model (HMM) with a hidden discrete state st (the cutting regime at time step t), and an observable virtual velocity _xt . c Markov chain with two cutting
regimes defined by the transition matrix Q. d Model fitting (1, 2 and 3) and data generation processes (4, 5 and 6). (1) Actual measurements of forces
collected during the trials. (2) The virtual displacement derived from the force measurements using the Maxwell model. (3) The virtual velocity profiles
(finite differences of the displacement profiles) are used to train the HMM. (4) The velocity sampled from the trained HMM (blue line). (5) and (6) The
synthetic displacement and force (blue lines), generated by the model.
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tear strength of a sample. The gelatin base and silicon layers are coupled through a
thin layer of an ultrasound gel. The fully assembled phantom has dimensions of
160 mm x 160 mm x 30 mm.

The fabrication of each phantom comprised of the following procedure. 64 g of
gelatin powder (240 Bloom) was spread across 640ml of cold water and left unstirred
for 20min, then simmered and stirred until fully dissolved. The liquid was poured
into a 3D printed mould (160mm x 160mm x 25mm volume container) wrapped in
cellophane film and was left to solidify overnight in a refrigerator.

Next, a square piece of power mesh fabric (180 mm x 180 mm) was secured to
the working surface under a slight amount of tension. 20 ml of two-part silicone
rubber (Smooth-On EcoflexTM 00-30, shore hardness 30) was thoroughly mixed in
a 1:1 ratio for 2 min and poured onto the center of stretched fabric in the series of
three pours. The silicone-saturated mesh was then left for 45 min to cure. When
cured, the next layer of 20 ml silicone (Smooth-On EcoflexTM GEL with shore
hardness 000-35) was mixed and poured over. Finally, the second batch of 25 ml
Smooth-On EcoflexTM 00-30 was poured over the pre-cured silicone layers. The
silicone sample was left to cure for 4 h.

The cured silicone sample was placed on the full set gelatin base with a power
mesh-reinforced layer presenting the skin surface. The remaining edges of the
power mesh are trimmed to match the surface area of the phantom. The fully
assembled phantom is stored in a refrigerator prior to each experiment.

The design of the phantom was selected after extensive validation with a single
experienced surgeon, and selected for its realistic viscoelastic properties. A total of
seven phantom designs were evaluated according to the perceived realism of
pressing, stretching, pinching and cutting the phantom surface. All evaluated
designs consisted of a gelatin base with 100 g per litre concentration and varying
combinations of silicone layers. We have chosen Smooth-On EcoflexTM Gel,
Smooth-On EcoflexTM 00-30 and Smooth-On Dragon SkinTM (shore hardness
10A) silicone rubbers to represent very soft, soft and hard phantom layers,
respectively. Supplementary Table 5 shows the phantom design ranking (from least
to most realistic). A few summary points:

● Softer silicone rubbers (shore hardness < 30) appear more realistic.
● The combination of silicone layers with varying hardness increases realism.

Single-layer designs were scored lowest, while three-layer designs were
rated as most realistic.

● The hardness gradient (with a harder outer layer) plays a role in the realism
of shear loads (e.g. stretching the skin).

● The hardness of the bottom layer plays role in pressing load and can mimic
the age of the skin.

Statistics and reproducibility. The statistical analysis was performed using open-
source Python libraries SciPy (https://scipy.org/) and Pingouin (https://pingouin-
stats.org/build/html/index.html). The elliptical excision force model was trained
using open-source Python package hhmlearn (https://hmmlearn.readthedocs.io/
en/stable/). For reproducibility, all data processing, analysis, modeling and figure
generation routines were written using Jupyter Notebook.

Data availability
CAD files required to replicate the instrument, measurement data from the sensorised
instrument and code generating the figures (Jupyter Notebook) are made available
publicly via https://github.com/straizys/elliptical-excision-force-model.

Code availability
The analysis routines are made publicly available via on https://github.com/straizys/
elliptical-excision-force-model.
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