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Long term 5G network traffic forecasting via
modeling non-stationarity with deep learning
Yuguang Yang1,5, Shupeng Geng 1,5, Baochang Zhang 1,2✉, Juan Zhang 1,2✉, Zheng Wang3,

Yong Zhang3 & David Doermann4

5G cellular networks have recently fostered a wide range of emerging applications, but their

popularity has led to traffic growth that far outpaces network expansion. This mismatch may

decrease network quality and cause severe performance problems. To reduce the risk,

operators need long term traffic prediction to perform network expansion schemes months

ahead. However, long term prediction horizon exposes the non-stationarity of series data,

which deteriorates the performance of existing approaches. We deal with this problem by

developing a deep learning model, Diviner, that incorporates stationary processes into a well-

designed hierarchical structure and models non-stationary time series with multi-scale stable

features. We demonstrate substantial performance improvement of Diviner over the current

state of the art in 5G network traffic forecasting with detailed months-level forecasting for

massive ports with complex flow patterns. Extensive experiments further present its

applicability to various predictive scenarios without any modification, showing potential to

address broader engineering problems.
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5G technology has recently gained popularity world-
wide for its faster transfer speed, broader band-
width, reliability, and security. 5G technology can

achieve a 20× faster theoretical peak speed over 4G with lower
latency, promoting applications like online gaming, HD stream-
ing services, and video conferences1–3. The development of 5G is
changing the world at an incredible pace and fostering emerging
industries such as telemedicine, autonomous driving, and exten-
ded reality4–6. These and other industries are estimated to bring a
1000-fold boost in network traffic, requiring the additional
capacity to accommodate these growing services and
applications7. Nevertheless, 5G infrastructure, such as board
cards and routers, must be deployed and managed with strict cost
considerations8,9. Therefore, operators often adopt a distributed
architecture to avoid massive back-to-back devices and links
among fragmented networks10–13. As shown in Fig. 1a, the
emerging metropolitan router is the hub to link urban access
routers, where services can be accessed and integrated effectively.
However, the construction cycle of 5G devices requires about
three months to schedule, procure, and deploy. Planning new
infrastructures requires accurate network traffic forecasts months
ahead to anticipate the moment that capacity utilization surpasses
the preset threshold, where the overloaded capacity utilization
might ultimately lead to performance problems. Another issue
concerns the resource excess caused by building coarse-grained
5G infrastructures. To mitigate these hazards, operators for-
mulate network expansion schemes months ahead with long-term
network traffic prediction, which can facilitate long-period

planning for upgrading and scaling the network infrastructure
and prepare it for the next planning period14–17.

In industry, a common practice is calculating network traffic’s
potential growth rate by analyzing the historical traffic data18.
However, this approach cannot scale to predict the demand for
new services and is less than satisfactory for long-term forecast-
ing. And predictions-based methods have been introduced to
solve this dilemma by exploring the potential dependencies
involved in historical network traffic, which provides both a
constraint and a source for assessing future traffic volume. Net-
work planners can harness the dependencies to extrapolate long-
enough traffic forecasts to develop sustainable expansion schemes
and mitigation strategies. The key issue to this task is to obtain an
accurate long-term network traffic prediction. However, directly
extending the prediction horizon of existing methods is ineffec-
tive for long-term forecasting since these methods suffer a severe
performance degeneration, where the long-term prediction hor-
izon exposes the non-stationarity of time series. This inherent
non-stationarity of real-world time series data is caused by multi-
scale temporal variations, random perturbations, and outliers,
which present various challenges. These are summarized as fol-
lows. (a) Multi-scale temporal variations. Multi-scale (daily/
weekly/monthly/yearly) variations throughout long-term time
series indicate multi-scale non-stationary latent patterns within
the time series, which should be taken into account compre-
hensively in the model design. The seasonal component, for
example, merely presents variations at particular scales. (b)
Random factors. Random perturbations and outliers interfere

a Network topology of
 5G distributed architecture
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Fig. 1 Schematic illustration for the workflow of Diviner. a We collect the data from MAR–MER links. The orange cylinder depicts the metropolitan
emerging routers (MER), and the pale blue cylinder depicts metropolitan accessing routers (MAR). b The illustration of the introduced 2D→ 3D
transformation process. Specifically, given a time series of network traffic data spanning K days, we construct a time series matrix eX ¼ ½~x1 ~x2 ¼ ~xK �,
where each ~xi represents the traffic data for a single day of length T. The resulting 3D plot displays time steps across each day, daily time steps, and inbits
traffic along the x, y, and z axes, respectively, with the inbits traffic standardized. The blue line in the 2D plot and the side near the origin of the pale red
plane in the 3D plot represent historical network traffic, while the yellowish line in the 2D plot and the side far from the origin of the pale red plane in the 3D
plot represent the future network traffic to predict. c The overall working flow of the proposed Diviner. The blue solid line indicates the data stream
direction. Both the encoder and decoder blocks of Diviner contain a smoothing filter attention mechanism (yellowish block), a difference attention module
(pale purple block), a residual structure (pale green block), and a feed-forward layer (gray block). Finally, a one-step convolution generator (magenta
block) is employed to convert the dynamic decoding into a sequence-generating procedure.
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with the discovery of stable regularities, which entails higher
robustness in prediction models. (c) Data distribution shift. Non-
stationarity of the time series inevitably results in a dataset shift
problem with the input data distribution varying over time.
Figure 1b illustrates these challenges.

Next, we review the shortcomings of existing methods con-
cerning addressing non-stationarity issues. Existing time series
prediction methods generally fall into two categories, conven-
tional models and deep learning models. Most conventional
models, such as ARIMA19,20 and HoltWinters21–25, are built with
some insight into the time series but implemented linearly,
causing problems for modeling non-stationary time series. Fur-
thermore, these models rely on manually tuned parameters to fit
the time series, which impedes their application in large-scale
prediction scenarios. Although Prophet26 uses a nonlinear mod-
ular and interpretive parameter to address these problems, its
hand-crafted nonlinear modules need help to easily model non-
stationary time series, whose complex patterns make it inefficient
to embed diverse factors in hand-crafted functions. This dilemma
boosts the development of deep learning methods. Deep learning
models can utilize multiple layers to represent latent features at a
higher and more abstract level27, enabling us to recognize deep
latent patterns in non-stationary time series. Recurrent neural
networks (RNNs) and Transformer networks are two main deep
learning forecasting frameworks. RNN-based models28–34 feature
a feedback loop that allows models to memorize historical data
and process variable-length sequences as inputs and outputs,
which calculates the cumulative dependency between time steps.
Nevertheless, such indirect modeling of temporal dependencies
can not disentangle information from different scales within
historical data and thus fails to capture multi-scale variations
within non-stationary time series. Transformer-based
models35–37 solve this problem using a global self-attention
mechanism rather than feedback loops. Doing so enhances the
network’s ability to capture longer dependencies and interactions
within series data and thus brings exciting progress in various
time series applications38. For more efficient long-term time
series processing, some studies39–41 turn the self-attention
mechanism into a sparse version. However, despite their pro-
mising long-term forecasting results, time series’ specialization is
not taken into account during their modeling process, where
varying distributions of non-stationary time series deteriorate
their predictive performances. Recent research attempts to
incorporate time series decomposition into deep learning
models42–47. Although their results are encouraging and bring
more interpretive and reasonable predictions, their limited
decomposition, e.g., trend-seasonal decomposition, reverses the
correlation between components and merely presents the varia-
tion of time series at particular scales.

In this work, we incorporate deep stationary processes into
neural networks to achieve precise long-term 5G network traffic
forecasts, where stochastic process theories can guarantee the
prediction of stationary events48–50. Specifically, as shown in
Fig. 1c, we develop a deep learning model, Diviner, that incor-
porates stationary processes into a well-designed hierarchical
structure and models non-stationary time series with multi-scale
stable features. To validate the effectiveness, we collect an
extensive network port traffic dataset (NPT) from the intelligent
metropolitan network delivering 5G services of China Unicom
and compare the proposed model with numerous current arts
over multiple applications. We make two distinct research con-
tributions to time series forecasting: (1) We explore an avenue to
solve the challenges presented in long-term time series prediction
by modeling non-stationarity in the deep learning paradigm. This
line is much more universal and effective than the previous works
incorporating temporal decomposition for their limited

decomposition that merely presents the temporal variation at
particular scales. (2) We develop a deep learning framework with
a well-designed hierarchical structure to model the multi-scale
stable regularities within non-stationary time series. In contrast to
previous methods employing various modules in the same layer,
we perform a dynamical scale transformation between different
layers and model stable temporal dependencies in the corre-
sponding layer. This hierarchical deep stationary process syn-
chronizes with the cascading feature embedding of deep neural
networks, which enables us to capture complex regularities con-
tained in the long-term histories and achieve precise long-term
network traffic forecasting. Our experiment demonstrates that the
robustness and predictive accuracy significantly improve as we
consider more factors concerning non-stationarity, which pro-
vides an avenue to improve the long-term forecast ability of deep
learning methods. Besides, we also show that the modeling of
non-stationarity can help discover nonlinear latent regularities
within network traffic and achieve a quality long-term 5G net-
work traffic forecast for up to three months. Furthermore, we
expand our solution to climate, control, electricity, economic,
energy, and transportation fields, which shows the applicability of
this solution to multiple predictive scenarios, showing valuable
potential to solve broader engineering problems.

Results
Diviner with deep stationary processes. In this Section, we
introduce our proposed deep learning model, Diviner, that tackles
the non-stationarity of long-term time series prediction with deep
stationary processes, which captures multi-scale stable features
and models multi-scale stable regularities to achieve long-term
time series prediction.

Smoothing filter attention mechanism as a scale converter. As
shown in Fig. 2a, the smoothing filter attention mechanism
adjusts the feature scale and enables Diviner to model time series
from different scales and access the multi-scale variation features
within non-stationary time series. We build this component
based on Nadaraya-Watson regression51,52, a classical algorithm
for non-parametric regression. Given the sample space
Ω ¼ fðxi; yiÞj1≤ i≤ n; xi 2 R; yi 2 Rg, window size h, and kernel
function K( ⋅ ), the Nadaraya–Watson regression has the follow-
ing expression:

ŷ ¼ ∑
n

i¼1
K

x � xi
h

� �
yi= ∑

n

j¼1
K

x � xj
h

� �
; ð1Þ

where the kernel function K( ⋅ ) is subject to
R1
�1 KðxÞdx ¼ 1 and

n, x, y denote sample size, independent variable, and dependent
variable, respectively.

The Nadaraya–Watson regression estimates the regression
value ŷ using a local weighted average method, where the weight
of a sample (xi, yi), Kðx�xi

h Þ=∑n
j¼1 Kð

x�xj
h Þ, decays with the distance

of xi from x. Consequently, the primary sample (xi, yi) is closer to
samples in its vicinity. This process implies the basic notion of
scale transformation, where adjacent samples get closer on a more
significant visual scale. Inspired by this thought, we can
reformulate the Nadaraya–Watson regression from the perspec-
tive of scale transformation. We incorporate it into the attention
structure to design a learnable scale adjustment unit. Concretely,
we introduce the smoothing filter attention mechanism with a
learnable kernel function and self-masked operation, where the
former shrinks (or magnifies) variations for adaptive feature-scale
adjustment, and the letter eliminates outliers. To ease under-
standing, we consider the 1D time series case here, and the high-
dimensional case can be easily extrapolated (shown mathemati-
cally in Section “Methods”). Given the time step ti, we estimate its
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regression value ŷi with an adaptive-weighted average of values
{yt∣t ≠ ti}, ŷi ¼ ∑j≠iαjyj, where the adaptive weights α are obtained
by a learnable kernel function f. The punctured window {tj∣tj ≠ ti}
of size n− 1 denotes our self-masked operation, and
f ðyi; yÞwi

¼ expðwiðyi � yÞ2Þ, αi ¼ f ðyi; yÞwi
=∑j≠if ðyj; yÞwi

. Our

adaptive weights vary with the inner variation fðyi � yÞ2jti≠tg
(decreased or increased), which adjusts (shrinking or magnifying)
the distance of points across each time step and achieves an
adaptive feature-scale transformation. Specifically, the minor
variation gets further shrunk at a large feature scale, magnified at
a small feature scale, and vice versa. Concerning random
components, global attention can serve as an average smoothing
method to help filter small perturbations. As for outliers, their
large margin against regular items leads to minor weights, which
eliminates the interference of outliers. Especially when the sample
(ti, yi) comes to be an outlier, this structure brushes itself aside.
Thus, the smoothing filter attention mechanism filters out
random components and dynamically adjusts feature scales. This
way, we can dynamically transform non-stationary time series
according to different scales, which accesses time series under
comprehensive sights.

Difference attention module to discover stable regularities. The
difference attention module calculates the internal connections
among stable shifted features to discover stable regularities within
the non-stationary time series and thereby overcomes the inter-
ference of uneven distributions. Concretely, as shown in Fig. 2b,
this module includes the difference and CumSum operations at
both ends of the self-attention mechanism35, which interconnects
the shift across each time step to capture internal connections
within non-stationary time series. The difference operation
separates the shifts from the long-term trends, where the shift
refers to the minor difference in the trends between adjacent time
steps. Considering trends lead the data distribution to change
over time, the difference operation makes the time series stable

and varies around a fixed mean level with minor distribution
shifts. Subsequently, we use a self-attention mechanism to
interconnect shifts, which captures the temporal dependencies
within the time series variation. Last, we employ a CumSum
operation to accumulate shifted features and generate a non-
stationary time series conforming to the discovered regularities.

Modeling and generating non-stationary time series in Diviner
framework. The smoothing filter attention mechanism filters out
random components and dynamically adjusts the feature scale.
Subsequently, the difference attention module calculates internal
connections and captures the stable regularity within the time
series at the corresponding scale. Cascading these two modules,
one Diviner block can discover stable regularities within non-
stationary time series at one scale. Then, we stack Diviner blocks
in a multilayer structure to achieve multi-scale transformation
layers and capture multi-scale stable features from non-stationary
time series. Such a multilayer structure is organized in an
encoder-decoder architecture with asymmetric input lengths for
efficient data utilization. The encoder takes a long historical series
to embed trends, and the decoder receives a relatively short time
series. With the cross-attention between the encoder and decoder,
we can pair the latest time series with pertinent variation patterns
from long historical series and make inferences about future
trends, improving calculation efficiency and reducing redundant
historical information. The point is that the latest time series is
more conducive to anticipating the immediate future than the
remote-past time series, where the correlation across time steps
generally degrades with the length of the interval53–57. Addi-
tionally, we design a generator to obtain prediction results in one
step to avoid dynamic cumulative error problems39. The gen-
erator is built with CovNet sharing parameters throughout each
time step based on the linear projection generator39,58,59, which
saves hardware resources. These techniques enable deep learning
methods to model non-stationary time series with multi-scale
stable features and produce forecasting results in a generative
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Fig. 2 Illustration of the structure of smoothing filter attention mechanism and difference attention module. a This panel displays the smoothing filter
attention mechanism, which involves computing adaptive weights K(ξi, ξj) (orange block) and employing a self-masked structure (gray block with dashed
lines) to filter out the outliers, where ξi denotes the ith embedded time series period (yellow block). The adaptive weights serve to adjust the feature scale
of the input series and obtain the scale-transformed period embedding hi (pink block). b This diagram illustrates the difference attention module. The
Matrix-Difference Transformation (pale blue block) subtracts adjacent columns of a matrix to obtain the shifted query, key, and value items (ΔQ, ΔK, and
ΔV). Then, an autoregressive multi-head self-attention is performed (in the pale blue background) to capture the correlation of time series across different
time steps, resulting in eVðiÞ

s for the ith attention head. Here, QðiÞ
s , K

ðiÞ
s , V

ðiÞ
s , and eVðiÞ

s represent the query, key, value, and result in items, respectively. the
SoftMax is applied to the scaled dot-product between the query and key vectors to obtain attention weights (the pale yellow block). The formula for the
SoftMax function is SoftMaxðkiÞ ¼ eki=∑n

j¼1 e
kj , where ki is the ith element of the input vector, and n is the length of the input vector. Lastly, the Matrix-

CumSum operation (light orange block) accumulates the shifted features using the ConCat operation, and Ws denotes the learnable aggregation
parameters.
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paradigm, which is an attempt to tackle long-term time series
prediction problems.

Performance of the 5G network traffic forecasting. To validate
the effectiveness of the proposed techniques, we collect extensive
NPTs from China Unicom. The NPT datasets include data recorded
every 15 minutes for the whole 2021 year from three groups of real-
world metropolitan network traffic ports {NPT-1, NPT-2, NPT-3},
where each sub-dataset contains {18, 5, 5} ports, respectively. We
split them chronologically with a 9:1 proportion for training and
testing. In addition, we prepare 16 network ports for parameter-
searching. The main difficulties lie in the explicit shift of the dis-
tribution and numerous outliers. And this Section elaborates on the
comprehensive comparison of our model with prediction-based and
growth-rate-basedmodels in applying 5G network traffic forecasting.

Experiment 1: We first compare Diviner to other time series
prediction-based methods, we note these baseline models as
Baselines-T for clarity. Baselines-T include traditional models
ARIMA19,20 and Prophet26; classic machine learning model
LSTMa60; deep learning-based models Transformer35,
Informer39, Autoformer42, and NBeats61. These models are
required to predict the entire network traffic series {1, 3, 7, 14, 30}
days, aligned with {96, 288, 672, 1344, 2880} prediction spans
ahead in Table 1, and inbits is the target feature. In terms of the
evaluation, although the MAE, MSE, and MASE predictive
accuracy generally decrease with prediction intervals, the degra-
dation rate varies between models. Therefore, we introduce an
exponential velocity indicator to measure the rate of accuracy
degradation. Specifically, given time spans [t1, t2] and the corre-
sponding MSE, MAE, and MASE errors, we have the following:

dMSEt2
t1
¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSEt2

=MSEt1
t2�t1

q
� 1Þ ´ 100%; ð2Þ

dMAEt2t1 ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MAEt2=MAEt1

t2�t1

q
� 1Þ ´ 100%; ð3Þ

dMASEt2
t1
¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MASEt2=MASEt1

t2�t1

q
� 1Þ ´ 100%; ð4Þ

where dMSEt2t1 ; dMAEt2t1 ; dMASE t2
t1
2 R. Concerning the close

experimental results between {NPT-1, NPT-2, and NPT-3}, we
focus mainly on the result of the NPT-1 dataset, and the

experimental results are summarized in Table 1. Although there
exist quantities of outliers and frequent oscillations in the NPT
dataset, Diviner achieves a 38.58% average MSE reduction
(0.451→ 0.277) and a 20.86% average MAE reduction
(0.465→ 0.368) based on the prior art. In terms of the scalability to
different prediction spans, Diviner has a much lower dMSE 30

1

(4.014%→ 0.750%) and dMAE 30
1 (2.343%→ 0.474%) than the

prior art, which exhibits a slight performance degradation with a
substantial improvement in predictive robustness when the pre-
diction horizon becomes longer. The degradation rates and pre-
dictive performance of all baseline approaches have been provided
in Supplementary Table S1 regarding to the space limitation.

The experiments on NPT-2 and NPT-3 shown in Supplemen-
tary Data 1 reproduce the above results, where Diviner can support
accurate long-term network traffic prediction and exceed current
art involving accuracy and robustness by a large margin. In
addition, we have the following results by sorting the comprehen-
sive performances (obtained by the average MASE errors) of the
baselines established with the Transformer framework: Diviner >
Autoformer > Transformer > Informer. This order aligns with the
non-stationary factors considered in these models and verifies our
proposal that incorporating non-stationarity promotes neural
networks’ adaptive abilities to model time series, and the modeling
multi-scale non-stationarity other breaks through the ceiling of
prediction abilities for deep learning models.

Experiment 2: The second experiment compares Diviner with two
other industrial methods, which aim to predict the capacity uti-
lization of inbits and outbits with historical growth rates. The
experiment shares the same network port traffic data as in
Experiment 1, while the split ratio is changed to 3:1 chron-
ologically for a longer prediction horizon. Furthermore, we use a
long construction cycle of {30, 60, 90} days (aligned with {2880,
5760, 8640} time steps) to ensure the validity of such growth-rate-
based methods for the law of large numbers. Here we first define
capacity utilization mathematically:

Given a fixed bandwidth B 2 R and the traffic flow of the kth
construction cycles eXðkÞ ¼ ~xkCþ1 ~xkCþ2 ::: ~xðkþ1ÞC

� �
,eXðkÞ 2 RT ´C , where ~xi 2 RT is a column vector of length T

representing the time series per day and C denotes the number of
days in one construction cycle. Then the capacity utilization (CU)

Table 1 Time-series forecasting results on the 5G traffic network dataset.

Models Diviner Autoformer Informer Transformer NBeats

Metric MSE MAE MASE MSE MAE MASE MSE MAE MASE MSE MAE MASE MSE MAE MASE

NPT-1 96 0.256 0.340 1.391 0.456 0.511 2.090 0.264 0.349 1.427 0.259 0.333 1.362 0.491 0.509 2.082
288 0.277 0.379 1.598 0.431 0.499 2.104 0.611 0.590 2.488 0.376 0.445 1.876 0.624 0.694 2.927
672 0.263 0.367 1.601 0.446 0.522 2.278 1.680 0.885 3.862 0.365 0.437 1.907 0.680 0.615 2.684
1344 0.275 0.367 1.585 0.400 0.467 2.017 1.307 0.923 3.987 0.448 0.462 1.996 0.883 0.692 2.989
2880 0.318 0.390 1.613 0.674 0.629 2.601 1.590 1.050 4.343 0.811 0.652 2.697 1.257 0.844 3.491

NPT-2 96 0.370 0.405 1.800 0.605 0.603 2.681 0.760 0.646 2.870 0.458 0.470 2.088 0.539 0.476 2.116
288 0.394 0.431 1.977 0.579 0.607 2.786 1.131 0.826 3.788 0.415 0.454 2.082 0.589 0.541 2.481
672 0.484 0.462 2.074 0.541 0.525 2.357 1.149 0.861 3.864 0.548 0.546 2.453 0.734 0.598 2.685
1344 0.314 0.372 1.814 0.437 0.472 2.301 1.129 0.858 4.181 0.705 0.593 2.889 0.583 0.532 2.593
2880 0.378 0.390 1.861 0.750 0.644 3.072 1.342 0.935 4.457 0.458 0.470 2.240 0.934 0.725 3.459

NPT-3 96 0.177 0.323 1.672 0.272 0.401 2.076 0.664 0.656 3.397 0.300 0.415 2.150 0.227 0.347 1.797
288 0.193 0.301 1.558 0.579 0.607 3.144 0.880 0.721 3.736 0.458 0.478 2.478 0.486 0.498 2.579
672 0.187 0.305 1.599 0.541 0.525 2.753 0.931 0.771 4.044 0.327 0.409 2.147 0.455 0.488 2.558
1344 0.204 0.335 1.822 0.437 0.472 2.569 1.023 0.831 4.520 0.362 0.434 2.363 0.622 0.575 3.128
2880 0.240 0.350 1.756 0.750 0.644 3.228 1.196 0.922 4.622 0.362 0.434 2.177 0.816 0.673 3.374

The traffic forecast accuracy is assessed by MSE, MAE, and MASE. MSE ¼ 1
n∑

n
i¼1 ðyi � ŷiÞ2, MAE ¼ 1

n∑
n
i¼1 jyi � ŷi j, MASE ¼ 1

n∑
n
i¼1 jyi�ŷi j

1
n�1∑

n
j¼2 jyj�yj�1 j, where ŷ 2 Rn denotes the forecast and y 2 Rn denotes the

ground truth. All datasets were standardized using the mean and standard deviation values of the training set. The best predictive performance over the comparison is shown in bold.
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of the kth construction cycle is defined as follows:

CU ðkÞ ¼ k eXðkÞkm1

BCT
; ð5Þ

where CU ðkÞ 2 R. As shown in the definition, capacity
utilization is directly related to network traffic, so a precise
network traffic prediction leads to a quality prediction of capacity
utilization. We compare the proposed predictive method with two
commonly used moving average growth rate predictive methods
in the industry, the additive and multiplicative moving average
growth rate predictive methods. For clarity, we note the additive
method as Baseline-A and the multiplicative method as Baseline-
M. Baseline-A calculates an additive growth rate with the
difference of adjacent construction cycles. Given the capacity
utilization of the last two construction cycles CU(k− 1),
CU(k− 2), we have the following:cCUAðkÞ ¼ 2CUðk� 1Þ � CU ðk� 2Þ: ð6Þ
Baseline-M calculates a multiplicative growth rate with the

quotient of adjacent construction cycles. Given the capacity
utilization of the last two construction cycles CU(k− 1),
CU(k− 2), we have the following:

cCUMðkÞ ¼
CUðk� 1Þ
CUðk� 2Þ CU ðk� 1Þ: ð7Þ

Different from the above two baselines, we calculate the
capacity utilization of the network with the network traffic
forecast. Given the network traffic of the last K construction
cycles eX ¼ ~xðk�KÞCþ1 ::: ~xðk�Kþ1ÞC ::: ~xðk�1ÞC ::: ~xkC

� �
,

we have the following:eX ðkÞ ¼ DivinerðeX Þ; ð8Þ

cCUDðkÞ ¼
k eX ðkÞkm1

BCT
: ð9Þ

We summarize the experimental results in Table 2. Concerning
the close experimental results between {NPT-1, NPT-2, and NPT-
3} shown in, we focus mainly on the result of the NPT-1 dataset,
which has the most network traffic ports. Diviner achieves a
substantial reduction of 31.67% MAE (0.846→ 0.578) on inbits
and a reduction of 24.25% MAE (0.944→ 0.715) on outbits over
Baseline-A. An intuitive explanation is that the growth-rate-based
methods extract particular historical features but lack adapt-
ability. We notice that Baseline-A has a much better performance
of 0.045× average inbits-MAE and 0.074× average outbits-MAE
over Baseline-M. This result suggests that network traffic tends to
increase linearly rather than exponentially. Nevertheless, there

remain inherent multi-scale variations of network traffic series, so
Diviner still exceeds the Baseline-A, suggesting the necessity of
applying deep learning models such as Diviner to discover
nonlinear latent regularities within network traffic.

When analyzing the results of these two experiments jointly,
we present that Diviner possesses a relatively low degradation rate
for a prediction of 90 days, dMASE 90

1 ¼ 1:034%. In contrast, the
degradation rate of the prior art comes to dMASE 30

1 ¼ 2:343%
for a three-times shorter prediction horizon of 30 days.
Furthermore, considering diverse network traffic patterns in the
provided datasets (about 50 ports), the proposed method can deal
with a wide range of non-stationary time series, validating its
applicability without modification. These experiments witness
Diviner’s success in providing quality long-term network traffic
forecasting and extending the effective prediction spans of deep
learning models for up to three months.

Application on other real-world datasets. We validate our
method on benchmark datasets for the weather (WTH), electricity
transformer temperature (ETT), electricity (ECL), and exchange
(Exchange). We summarize the experimental results in Table 3. We
follow the standard protocol and divide them into training, vali-
dation, and test sets in chronological order with a proportion of
7:1:2 unless otherwise specified. Due to the space limitation, the
complete experimental results are shown in Supplementary Data 2.

Weather temperature prediction. The WTH dataset42 records 21
meteorological indicators for Jena 2020, including air temperature
and humidity, and WetBulbFarenheit is the target. This dataset is
finely quantified to the 10-min level, which means that there are
144 steps for one day and 4320 steps for one month, thereby
challenging the capacity of models to process long sequences.
Among all baselines, NBeats and Informer have the lowest error in
terms of MSE and MAEmetrics, respectively. However, we notice a
contrast between these two models when extending prediction
spans. Informer degrades precipitously when the prediction spans
increase from 2016 to 4032 (MAE:0.417→ 0.853), but on the
contrary, NBeats gains a performance improvement
(MAE:0.635→ 0.434). We attribute this to a trade-off of pursuing
context and texture. Informer has an advantage over the texture in
the short-term case. Still, it needs to capture the context depen-
dency of the series considering the length of input history series
should extend in pace with prediction spans and vice versa. As for
Diviner, it achieves a remarkable 29.30% average MAE reduction
(0.488→ 0.345) and 41.54% average MSE reduction
(0.491→ 0.287) over both Informer and NBeats. Additionally,
Diviner gains a low degradation rate of dMSE 30

1 ¼ 0:439%,

Table 2 Long-term (1–3 months) capacity utilization forecasting results on the NPT dataset.

Models Diviner Baseline-A Baseline-M

MAE, MASE Inbits Outbits Inbits Outbits Inbits Outbits

7D2NPT-1 2880 0.390, 2.388 0.552, 3.420 0.792, 4.851 0.874, 5.415 2.888, 17.690 5.693, 35.274
5760 0.705, 4.351 0.899, 6.494 0.870, 5.371 0.948, 6.848 31.490, 194.431 17.602, 127.16
8640 0.640, 3.425 0.694, 4.172 0.877, 4.693 1.012, 6.084 21.220, 113.567 14.487, 87.096

7D2NPT-2 2880 0.352, 1.992 0.525, 2.574 0.911, 5.159 0.907, 4.442 2.644, 14.959 2.112, 10.341
5760 0.508, 2.817 0.605, 2.905 1.037, 5.751 1.037, 4.980 8.464, 46.936 5.515, 26.470
8640 0.814, 4.363 0.642, 3.113 1.169, 6.265 1.189, 5.766 8.323, 44.602 7.048, 34.165

7D2NPT-3 2880 0.398, 2.232 0.413, 2.987 0.945, 5.291 0.719, 5.192 4.993, 27.947 5.222, 37.698
5760 0.769, 4.713 0.719, 4.911 1.048, 6.425 0.817, 5.580 6.895, 42.245 15.078, 102.973
8640 0.621, 3.611 0.604, 4.062 0.968, 5.622 0.829, 5.567 5.169, 30.023 29.547, 198.393

The long-term capacity utilization forecasting results on the NPT dataset were evaluated using MAE and MASE error metrics. All datasets were standardized using the mean and standard deviation
values of the training set. The best predictive performance over the comparison is shown in bold.

ARTICLE COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-023-00081-4

6 COMMUNICATIONS ENGINEERING |            (2023) 2:33 | https://doi.org/10.1038/s44172-023-00081-4 | www.nature.com/commseng

www.nature.com/commseng


T
ab

le
3
T
im

e-
se
ri
es

fo
re
ca
st
in
g
re
su
lt
s
on

ot
he

r
re
al
-w

or
ld

da
ta
se
ts
.

M
od

el
s

D
iv
in
er

A
ut
of
or
m
er

In
fo
rm

er
T
ra
ns
fo
rm

er
N
B
ea
ts

M
et
ri
c

M
S
E

M
A
E

M
A
S
E

M
S
E

M
A
E

M
A
S
E

M
S
E

M
A
E

M
A
S
E

M
S
E

M
A
E

M
A
S
E

M
S
E

M
A
E

M
A
S
E

W
T
H

14
4

0
.2
8
0

0
.3
4
1

7.
0
72

0
.3
73

0
.4
4
0

9
.1
25

0
.3
59

0
.4
0
1

8
.3
16

0
.4
4
8

0
.4
8
4

10
.0
38

0
.5
0
8

0
.5
9
0

12
.2
36

4
32

0
.3
33

0
.3
9
2

8
.1
35

0
.4
0
2

0
.4
4
5

9
.2
35

0
.3
74

0
.4
31

8
.9
4
4

0
.4
0
7

0
.4
70

9
.7
54

0
.4
27

0
.5
0
1

10
.3
9
7

10
0
8

0
.2
73

0
.3
28

6
.8
0
6

0
.6
6
3

0
.6
13

12
.7
20

0
.3
4
4

0
.3
8
7

8
.0
30

0
.5
35

0
.5
14

10
.6
6
6

0
.4
0
6

0
.4
9
0

10
.1
6
7

20
16

0
.2
33

0
.3
0
6

6
.3
4
8

1.
8
57

1.
0
19

21
.1
4
0

0
.3
6
7

0
.4
17

8
.6
51

0
.3
6
7

0
.4
17

8
.6
51

0
.7
57

0
.6
35

13
.1
73

4
0
32

0
.3
18

0
.3
5
8

5
.8
32

1.
0
16

0
.8
53

13
.8
9
7

1.
25

1
0
.8
0
6

13
.1
31

0
.8
76

0
.6
16

10
.0
35

0
.3
6
1

0
.4
34

7.
0
70

ET
T
h1

24
0
.0
5
8

0
.1
8
3

4
.1
74

0
.0
9
3

0
.2
34

5.
33

8
0
.0
9
8

0
.2
4
7

5.
6
34

0
.4
6
8

0
.5
9
9

13
.6
6
4

0
.1
57

0
.2
6
9

6
.1
36

4
8

0
.0
71

0
.2
0
3

4
.6
29

0
.0
8
9

0
.2
29

5.
22

2
0
.1
58

0
.3
19

7.
27

4
0
.3
6
9

0
.5
24

11
.9
50

0
.1
4
6

0
.2
9
2

6
.6
59

16
8

0
.1
19

0
.2
6
2

5
.9
77

0
.1
4
8

0
.2
8
0

6
.3
8
7

0
.1
8
3

0
.3
4
6

7.
8
9
3

0
.4
78

0
.6
18

14
.0
9
9

0
.4
9
4

0
.5
36

12
.2
28

33
6

0
.1
14

0
.2
6
8

6
.0
31

0
.1
8
3

0
.3
4
4

7.
74

2
0
.2
22

0
.3
8
7

8
.7
10

0
.2
35

0
.4
17

9
.3
8
5

0
.4
11

0
.4
9
4

11
.1
18

72
0

0
.1
5
7

0
.3
22

7.
19
5

0
.2
0
1

0
.3
6
4

8
.1
33

0
.2
6
9

0
.4
35

9
.7
20

0
.2
6
1

0
.4
4
5

9
.9
4
3

1.
25

7
0
.8
4
4

18
.8
59

ET
T
m
1

24
0
.1
5
7

0
.3
22

7.
19
5

0
.2
0
1

0
.3
6
4

8
.1
33

0
.2
6
9

0
.4
35

9
.7
20

0
.2
6
1

0
.4
4
5

9
.9
4
3

1.
25

7
0
.8
4
4

18
.8
59

4
8

0
.0
23

0
.1
19

5
.1
5
9

0
.0
9
2

0
.2
50

10
.8
38

0
.0
6
9

0
.2
30

9
.9
71

0
.2
8
8

0
.4
8
1

20
.8
53

1.
58

4
1.
22

0
52

.8
9
2

9
6

0
.0
4
4

0
.1
6
2

6
.9
5
7

0
.0
6
3

0
.1
9
8

8
.5
0
3

0
.1
9
4

0
.3
72

15
.9
75

0
.2
6
4

0
.4
50

19
.3
25

1.
35

2
1.
10
6

4
7.
4
9
7

28
8

0
.0
78

0
.2
0
9

9
.3
75

0
.0
9
6

0
.2
4
5

10
.9
9
0

0
.4
0
1

0
.5
54

24
.8
50

0
.2
30

0
.4
10

18
.3
9
1

0
.6
28

0
.6
21

27
.8
56

6
72

0
.0
71

0
.2
11

9
.3
23

0
.1
17

0
.2
76

12
.1
9
5

0
.5
12

0
.6
4
4

28
.4
56

0
.3
79

0
.5
4
0

23
.8
6
1

0
.3
6
1

0
.4
8
0

21
.2
10

ET
Th

2
24

0
.0
72

0
.2
0
3

4
.2
8
1

0
.1
31

0
.2
8
1

5.
9
27

0
.0
9
3

0
.2
4
0

5.
0
6
2

0
.6
0
8

0
.6
53

13
.7
73

0
.1
6
7

0
.3
18

6
.7
0
7

4
8

0
.1
0
9

0
.2
5
2

5
.2
0
9

0
.1
4
3

0
.2
8
4

5.
8
71

0
.1
55

0
.3
14

6
.4
9
1

0
.7
58

0
.7
4
0

15
.2
9
8

0
.2
6
4

0
.3
9
2

8
.1
0
4

16
8

0
.2
0
6

0
.3
5
2

6
.0
70

0
.2
54

0
.3
9
9

6
.8
8
1

0
.2
32

0
.3
8
9

6
.7
0
8

0
.4
25

0
.5
28

9
.1
0
5

0
.5
25

0
.5
4
8

9
.4
50

33
6

0
.2
20

0
.3
73

5
.7
9
2

0
.2
6
2

0
.4
0
3

6
.2
58

0
.2
6
3

0
.4
17

6
.4
75

0
.3
24

0
.4
6
1

7.
15
8

0
.7
50

0
.6
55

10
.1
71

72
0

0
.2
0
2

0
.3
6
8

5
.4
35

0
.5
79

0
.6
21

9
.1
72

0
.2
77

0
.4
31

6
.3
6
5

0
.2
70

0
.4
23

6
.2
4
7

0
.8
16

0
.6
8
2

10
.0
73

EC
L

16
8

0
.2
65

0
.3
6
1

2.
31
5

0
.3
8
5

0
.4
58

2.
9
37

0
.4
4
7

0
.5
0
3

3.
22

5
0
.5
8
7

0
.5
6
1

3.
59

7
0
.2
25

0
.3
6
3

2.
32

7
33

6
0
.2
95

0
.3
95

2.
60

2
0
.4
6
2

0
.4
9
6

3.
26

7
0
.4
8
9

0
.5
28

3.
4
78

0
.6
8
3

0
.6
4

4
.2
15

0
.2
37

0
.3
5
9

2.
36

4
72

0
0
.3
0
3

0
.4
0
9

2.
5
4
4

1.
34

9
0
.9
0
7

5.
6
4
3

0
.5
4

0
.5
71

3.
55

2
0
.4
8
2

0
.5
27

3.
27

8
0
.3
6
7

0
.4
8
2

2.
9
9
8

9
6
0

0
.4
27

0
.4
8
9

3.
8
4
9

1.
26

3
0
.9
20

7.
24

2
0
.5
8
2

0
.6
0
8

4
.7
8
6

0
.6
4
4

0
.5
9
7

4
.6
9
9

0
.4
57

0
.5
4
0

4
.2
50

Ex
ch
an
ge

10
0
.1
4
7

0
.2
8
2

2.
8
6
7

0
.1
6
3

0
.3
15

3.
20

3
4
.8
9
6

2.
12
4

21
.6
0
1

6
.9
26

2.
55

3
25

.9
6
4

0
.8
0
4

0
.7
0
1

7.
12
9

20
0
.2
73

0
.4
21

3.
16
0

0
.4
23

0
.5
4
0

4
.0
54

6
.3
18

2.
4
4
3

18
.3
4
1

6
.7
59

2.
52

4
18
.9
4
9

1.
16
6

0
.9
39

7.
0
4
9

30
0
.3
9
9

0
.5
0
6

3.
13
2

0
.8
57

0
.7
9
9

4
.9
4
5

5.
38

8
2.
25

3
13
.9
4
5

7.
30

7
2.
6
35

16
.3
1

1.
52

1
1.
10
5

6
.8
39

6
0

0
.6
19

0
.6
6
9

4
.2
6
5

0
.9
11

0
.7
76

4
.9
4
8

9
.8
8
6

3.
0
6
7

19
.5
57

8
.4
55

2.
8
4
0

18
.1
0
9

3.
29

9
1.
6
70

10
.6
4
8

So
la
r

14
4

0
.3
4
8

0
.3
26

7.
4
6
1

0
.4
31

0
.4
8
5

11
.0
9
1

0
.3
6
5

0
.3
6
2

8
.2
9
0

0
.5
4
6

0
.5
13

11
.7
4
2

0
.3
51

0
.3
71

8
.4
8
7

28
8

0
.3
12

0
.3
31

8
.3
5
5

0
.4
37

0
.4
77

12
.0
35

0
.4
0
5

0
.3
9
7

10
.0
0
7

0
.3
6
8

0
.3
6
8

9
.2
8
9

0
.3
4
5

0
.3
56

8
.9
8
8

72
0

0
.3
15

0
.3
4
2

8
.7
9
3

0
.4
0
0

0
.5
25

13
.4
9
7

0
.5
77

0
.5
37

13
.8
0
3

0
.3
39

0
.4
4
1

11
.3
52

0
.3
50

0
.3
57

9
.1
76

8
6
4

0
.3
10

0
.2
9
7

7.
0
5
3

0
.5
4
6

0
.6
0
7

14
.4
23

0
.9
9
4

0
.8
9
7

21
.2
9
9

0
.8
13

0
.4
78

11
.3
6
7

0
.3
4
9

0
.3
57

8
.4
8
8

T
ra
ffi
c

16
8

0
.1
5
6

0
.2
5
9

0
.8
35

0
.4
31

0
.4
8
5

1.
56

1
1.
8
14

1.
15
9

3.
72

9
0
.7
50

0
.6
4
4

2.
0
71

0
.5
0
9

0
.5
28

1.
70

0
33

6
0
.1
5
8

0
.2
6
1

0
.8
4
7

0
.4
37

0
.4
77

1.
54

8
1.
79

9
1.
15
3

3.
73

8
0
.6
29

0
.5
73

1.
8
57

0
.5
17

0
.5
29

1.
71
4

72
0

0
.3
18

0
.4
37

1.
4
5
7

0
.4
0
0

0
.5
25

1.
75

1
1.
8
17

1.
15
0

3.
8
36

0
.6
71

0
.6
0
4

2.
0
14

0
.5
26

0
.5
33

1.
77

9
9
6
0

0
.2
77

0
.3
9
7

1.
29

9
0
.5
4
6

0
.6
0
7

1.
9
8
6

1.
8
21

1.
16
5

3.
8
0
9

1.
9
50

1.
11
6

3.
6
4
9

0
.5
23

0
.5
32

1.
74

0

T
he

m
od

el
’s
pr
ed

ic
tiv

e
ac
cu
ra
cy

is
as
se
ss
ed

by
M
SE

,M
A
E,

an
d
M
A
SE

.A
ll
da
ta
se
ts

w
er
e
st
an
da
rd
iz
ed

us
in
g
th
e
m
ea
n
an
d
st
an
da
rd

de
vi
at
io
n
va
lu
es

of
th
e
tr
ai
ni
ng

se
t.
T
he

be
st

an
d
su
bo

pt
im

al
pr
ed

ic
tiv

e
pe

rf
or
m
an
ce

ov
er

th
e
co
m
pa
ri
so
n
is
sh
ow

n
in

bo
ld

an
d
ita

lic
s,

re
sp
ec
tiv

el
y.

COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-023-00081-4 ARTICLE

COMMUNICATIONS ENGINEERING |            (2023) 2:33 | https://doi.org/10.1038/s44172-023-00081-4 | www.nature.com/commseng 7

www.nature.com/commseng
www.nature.com/commseng


dMAE 30
1 ¼ 0:167% showing its ability to harness historical

information within time series. The predictive performances and
degradation rates of all baseline approaches have been provided in
Supplementary Table S2. Our model can synthesize context and
texture to balance both short-term and long-term cases, ensuring
its accurate and robust long-term prediction.

Electricity transformer temperature prediction. The ETT dataset
contains two-year data with six power load features from two
counties in China, and oil temperature is our target. Its split ratio of
training/validation/test set is 12/4/4 months39. The ETT data set is
divided into two separate datasets at the 1-h {ETTh1, ETTh2} and
15-minute levels ETTm1. Therefore, we can study the performance
of the models under different granularities, where the prediction
steps {96, 288, 672} of ETTm1 align with the prediction steps {24,
48, 168} of ETTh1. Our experiments show that Diviner achieves the
best performance in both cases. Although in the hour-level case,
Diviner outperforms the baselines with the closest MSE and MAE
to Autoformer (MSE: 0.110→ 0.082, MAE: 0.247→ 0.216). When
the hour-level granularity turns to a minute-level case, Diviner
outperforms Autoformer by a large margin (MSE:0.092→
0.064, MAE:0.239→ 0.194). The predictive performances and
the granularity change when the hour-level granularity turns
into the minute-level granularity of all baseline approaches have
been provided in Supplementary Table S3. These demonstrate
the capacity of the Diviner in processing time series of different
granularity. Furthermore, the granularity is also a manifestation
of scale. These results demonstrate that modeling multi-scale
features is conducive to dealing with time series of different
granularity.

Consumer electricity consumption prediction. The ECL dataset
records the two-year electricity consumption of 321 clients, which is
converted into hour-level consumption owing to the missing data, and
MT-320 is the target feature62. We predict different time horizons of
{7, 14, 30, 40} days, aligned with {168, 336, 720, 960} prediction steps
ahead. Next, we analyze the experimental results according to the
prediction spans (≤360 as short-term prediction, ≥360 as long-term
prediction). NBeats achieves the best forecasting performance for
short-term electricity consumption prediction, while Diviner surpasses
it in the long-term prediction case. The short-term and long-term
performance of all approaches has been provided in Supplementary
Table S4. Statistically, the proposed method outperforms the best
baseline (NBeats) by decreasing 17.43%MSE (0.367→ 0.303), 15.14%
MAE (0.482→ 0.409) at 720 steps ahead, and 6.56% MSE
(0.457→ 0.427) at 9.44% MAE (0.540→ 0.489) at 960 steps ahead.
We attribute this to scalability, where different models converge to
perform similarly in the short-term case, but their differences emerge
when the prediction span becomes longer.

Gold price prediction. The Exchange dataset contains 5-year
closing prices of a troy ounce of gold in the US recorded daily
from 2016 to 2021. Due to the high-frequency fluctuation of the
market price, the predictive goal is to predict its general trend
reasonably (https://www.lbma.org.uk). To this end, we perform a
long-term prediction of {10, 20, 30, 60} days. The experimental
results clearly show apparent performance degrades for most
baseline models. Given a history of 90 days, only Autoformer and
Diviner can predict with MAE and MSE errors lower than 1 when
the prediction span is 60 days. However, Diviner still outperforms
other methods with a 38.94% average MSE reduction
(0.588→ 0.359) and a 22.73% average MSE reduction
(0.607→ 0.469) and achieves the best forecast performance. The
predictive performance of all baseline approaches has been pro-
vided in Supplementary Table S5. These results indicate the
adaptability of Diviner to the rapid evolution of financial markets

and its reasonable extrapolation, considering that it is generally
difficult to predict the financial system.

Solar energy production prediction. The solar dataset contains the
10-minute level 1 year (2006) solar power production data of 137
PV plants in Alabama State, and PV-136 is the target feature
(http://www.nrel.gov). Given that the amount of solar energy
produced daily is generally stable, conducting a super long-term
prediction is unnecessary. Therefore, we set the prediction horizon
to {1, 2, 5, 6} days, aligned with {144, 288, 720, 864} prediction steps
ahead. Furthermore, this characteristic of solar energy means that
its production series tend to be stationary, and thereby the com-
parison of the predictive performances between different models
on this dataset presents their basic series modeling abilities. Con-
cretely, considering the MASE error can be used to assess the
model’s performance on different series, we calculate and sort each
model’s average MASE error under different prediction horizon
settings to measure the time series modeling ability (provided in
Supplementary Table S6). The results are as follows: Diviner >
NBeats > Transformer > Autoformer > Informer > LSTM, where
Diviner surpasses all Transformer-based models in the selected
baselines. Provided that the series data is not that non-stationary,
the advantages of Autoformer’s modeling time series non-
stationarity are not apparent. At the same time, capturing stable
long- and short-term dependencies is still effective.

Road occupancy rate prediction. The Traffic dataset contains
hourly 2-year (2015–2016) road occupancy rate collected from
862 sensors on San Francisco Bay area freeways by the California
Department of Transportation, where sensor-861 is the target
feature (http://pems.dot.ca.gov). The prediction horizon is set to
{7, 14, 30, 40} days, aligned with {168, 336, 720, 960} prediction
steps ahead. Considering the road occupancy rate tends to have a
weekly cycle, we use this dataset to compare different networks’
ability to model the temporal cycle. During the comparison, we
mainly focus on the following two groups of deep learning
models: group-1 takes the non-stationary specialization of time
series into account (Diviner, Autoformer), and group-2 does not
employ any time-series-specific components (Transformer,
Informer, LSTMa). We find that group-1 gains a significant
performance improvement over group-2, which suggests the
necessity of modeling non-stationarity. As for the proposed
Diviner model, it achieves a 27.64% MAE reduction
(0.604→ 0.437) to the Transformer model when forecasting 30-
day road occupancy rates. Subsequently, we conduct an intra-
group comparison for group-1, where Diviner still gains an
average 35.37% MAE reduction (0.523→ 0.338) to Autoformer.
The predictive performance of all approaches has been provided
in Supplementary Table S7. We attribute this to Diviner’s
multiple-scale modeling of non-stationarity, while the trend-
seasonal decomposition of Autoformer merely reflects time series
variation at particular scales. These experimental results
demonstrate that Diviner is competent in predicting time series
data with cycles.

Discussion
We study the long-term 5G network traffic prediction problem by
modeling non-stationarity with deep learning techniques. Although
some literature63–65 in the early stage argues that the probabilistic
traffic forecast under uncertainty is more suitable for the varying
network traffic than a concrete forecast produced by time series
models, the probabilistic traffic forecast and the concrete traffic
forecast share the same historical information in essence. Moreover,
the development of time series forecasting techniques these years has
witnessed a series of works employing time series forecasting
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techniques for practical applications such as bandwidth
management14,15, resource allocation16, and resource provisioning17,
where the time series prediction-based methods can provide detailed
network traffic forecast. However, existing time series forecasting
methods suffer a severe performance degeneration since the long-
term prediction horizon exposes the non-stationarity of time series,
which raises several challenges: (a) Multi-scale temporal variations.
(b) Random factors. (c) Data Distribution Shift.

Therefore, this paper attempts to challenge the problem of
achieving a precise long-term prediction for non-stationary time
series. We start from the fundamental property of time series
non-stationarity and introduce deep stationary processes into a
neural network, which models multi-scale stable regularities
within non-stationary time series. We argue that capturing the
stable features is a recipe for generating non-stationary forecasts
conforming to historical regularities. The stable features enable
networks to restrict the latent space of time series, which deals
with varying distribution problems. Extensive experiments on
network traffic prediction and other real-world scenarios
demonstrate its advances over existing prediction-based models.
Its advantages are summarized as follows. (a) Diviner brings a
salient improvement on both long- and short-term prediction
and achieves state-of-the-art performance. (b) Diviner can per-
form robustly regardless of the selection of prediction span and
granularity, showing great potential for long-term forecasting. (c)
Diviner maintains a strong generalization in various fields. The
performance of most baselines might degrade precipitously in
some or other areas. In contrast, our model distinguishes itself for
consistent performance on each benchmark.

This work explores an avenue to obtain detailed and precise
long-term 5G network traffic forecasts, which can be used to
calculate the time network traffic might overflow the capacity and
helps operators formulate network construction schemes months
in advance. Furthermore, Diviner generates long-term network
traffic forecasts at the minute level, facilitating its broader
applications for resource provisioning, allocating, and monitor-
ing. Decision-makers can harness long-term predictions to allo-
cate and optimize network resources. Another practical
application is to achieve an automatic network status monitoring
system, which automatically alarms when real network traffic
exceeds a permitted range around predictions. This system sup-
ports targeted port-level early warning and assists workers in
troubleshooting in time, which can bring substantial efficiency
improvement considering the tens of millions of network ports
running online. In addition to 5G networks, we have expanded
our solution to broader engineering fields such as electricity,
climate, control, economics, energy, and transportation. Predict-
ing oil temperature can help prevent the transformer from
overheating, which affects the insulation life of the transformer
and ensures proper operation66,67. In addition, long-term
meteorological prediction helps to select and seed crops in agri-
culture. As such, we can discover unnoticed regularities within
historical series data, which might bring opportunities to tradi-
tional industries.

One limitation of our proposed model is that it suffers from
critical transitions of data patterns. We attribute this to external
factors, whose information is generally not included in the
measured data53,55,68. Our method is helpful in the intrinsic
regularity discovery within the time series but cannot predict
patterns not previously recorded in the real world. Alternatively,
we can use dynamic network methods69–71 to detect such critical
transitions in the time series53. Furthermore, the performance of
Diviner might be similar to other deep learning models if given a
few history series or in the short-term prediction case. The former
contains insufficient information to be exploited, and the short-
term prediction needs more problem scalability, whereas the

advantages of our model become apparent in long-term fore-
casting scenarios.

Methods
Preliminaries. We denote the original form of the time-series data as
X ¼ x1 x2 ::: xn

� �
; xi 2 R. The original time series data X is reshaped to a

matrix form as eX ¼ ~x1 ~x2 ::: ~xK
� �

, where ~xi is a vector of length T with the
time series data per day/week/month/year, K denotes the number of days/weeks/
months/years, ~xi 2 RT . After that, we can represent the seasonal pattern as ~xi and use
its variation between adjacent time steps to model trends, shown as the following:

~xt2 ¼ ~xt1 þ ∑
t2�1

t¼t1
Δest ;

Δest ¼ ~xtþ1 � ~xt ;

ð10Þ

where Δest denotes the change of the seasonal pattern, Δest 2 RT . The shift reflects the
variation between small time steps, but when such variation (shift) builds up over a
rather long period, the trend d comes out. It can be achieved as∑t2�1

t¼t1
Δest . Therefore,

we can model trends by capturing the long- and short-range dependencies of shifts
among different time steps.

Next, we introduce a smoothing filter attention mechanism to construct multi-
scale transformation layers. A difference attention module is mounted to capture
and interconnect shifts of the corresponding scale. These mechanisms make our
Diviner capture multi-scale variations in non-stationary time series, and the
mathematical description is listed below.

Diviner input layer. Given the time series data X, we transform X intoeX ¼ ~x1 ~x2 ::: ~xK
� �

, where ~xi is a vector of length T with the time series data

per day (seasonal), and K denotes the number of days, ~xi 2 RT , eX 2 RT ´K . Then
we construct the dual input for Diviner. Noticing that Diviner adopts an encoder-
decoder architecture, we construct Xin

en for encoder and Xin
de for decoder, where

Xin
en ¼ ~x1 ~x2 ::: ~xK

� �
, Xin

de ¼ ~xK�Kdeþ1 ~xK�Kde
::: ~xK

� �
, and Xin

en 2 RK ,

Xin
de 2 RKde . This means that Xin

en takes all elements from eX while Xin
de takes only the

latest Kde elements. After that, a fully connected layer on Xin
en and Xin

de is used to
obtain Ein

en and Ein
de , where E

in
en 2 Rdm ´K , Ein

de 2 Rdm ´Kde and dm denotes the model
dimension.

Smoothing filter attention mechanism. Inspired by Nadaraya-Watson
regression51,52 bringing the adjacent points closer together, we introduce the
smoothing filter attention mechanism with a learnable kernel function and self-
masked architecture, where the former brings similar items closer to filter out the
random component and adjust the non-stationary data to stable features, and the
letter reduces outliers. The smoothing filter attention mechanism is implemented
based on the input E ¼ ξ1 ξ2 ::: ξKin

� �
, where ξ i 2 Rdm , E is the general

reference to the input of each layer, for encoder Kin= K, and for decoder Kin= Kde.
Specifically, Ein

en and Ein
de are, respectively, the input of the first encoder and decoder

layer. The calculation process is shown as follows:

ηi ¼
∑
j≠i
Kðξi; ξ jÞ � ξj

∑
j≠i

K ðξi; ξjÞ
; ð11Þ

K ðξi; ξjÞ ¼ expðwi � ðξi � ξjÞ2Þ; ð12Þ

where wi 2 Rdm ; i 2 ½1;Kin� denotes the learnable parameters,⊙ denotes the
element-wise multiple, (⋅)2 denotes the element-wise square and the square of a
vector here represents the element-wise square. To simplify the representation, we
assign the smoothing filter attention mechanism as Smoothing-Filter(E) and
denote its output as Hs. Before introducing our difference attention module, we
first define the difference between a matrix and its inverse operation CumSum.

Difference and CumSum operation. Given a matrix M 2 Rm ´ n ,
M ¼ m1 m2 ::: mn

� �
, the difference of M is defined as:

ΔM ¼ Δm1 Δm2 ::: Δmn

� �
; ð13Þ

where Δmi ¼ miþ1 �mi;Δmi 2 Rm; i 2 ½1; nÞ and we pad Δmn with Δmn−1 to
keep a fixed length before and after the difference operation. The CumSum
operation Σ toward M is defined as:

ΣM ¼ Σm1 Σm2 ::: Σmn

� �
; ð14Þ

where Σmi ¼ ∑i
j¼1 mj;Σmi 2 Rm: The differential attention module, intuitively,

can be seen as an attention mechanism plugged between these two operations,
mathematically described as follows.
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Differential attention module. The input of this model involves three elements:
Q,K,V. The (Q,K,V) varies between the encoder and decoder, which is
ðHen

s ;Hen
s ;Hen

s Þ for the encoder and ðHde
s ;E

out
en ;Eout

en Þ for the decoder, where Eout
en is

the embedded result of the final encoder block (assigned in the pseudo-code),
Hen

s 2 Rdm ´K ;Hde
s 2 Rdm ´Kde ;Eout

en 2 Rdm ´K .

QðiÞ
s ;KðiÞ

s ;VðiÞ
s ¼ WðiÞ

q ΔQþ bðiÞq ;WðiÞ
k ΔKþ bðiÞk ;WðiÞ

v ΔVþ bðiÞv ; ð15Þ

eVðiÞ
s ¼ VðiÞ

s � SoftMax
QðiÞ>

s � KðiÞ
sffiffiffiffiffiffi

dm
p !

; ð16Þ

D ¼ ΣðWs eVð1Þ>
s

eVð2Þ>
s ::: eVðhÞ>

s

h i>
Þ; ð17Þ

where WðiÞ
q 2 Rda ´ dm , WðiÞ

k 2 Rdattn ´ dm , WðiÞ
v 2 Rda ´ dm , Ws 2 Rdm ´ hda ,

D 2 Rdm ´K , i∈ [1, h], h denotes the number of parallel attentions. �� � denotes the
concatenation of matrix, eVðiÞ

s denotes the deep shift, and D denotes the deep trend.
We denote the differential attention module as Differential-attention(Q,K,V) to
ease representations.

Convolution Generator. The final output of Diviner is calculated through con-
volutional layers, called the one-step generator, which takes the output of the final
decoder layer Eout

de as the input:

Rpredict ¼ ConvNet ðEout
de Þ; ð18Þ

where Rpredict 2 Rdm ´Kr ;EðMÞ
de 2 Rdm ´Kde , ConvNet is a multilayer fully convolu-

tion net, whose input and output channels are the input length of the decoder Kde

and the prediction length Kr, respectively.

Pseudo-code of Diviner. For the convenience of reproducing, We summarize the
framework of our Diviner in the following pseudo-code:

Data availability
The datasets supporting our work have been deposited at https://doi.org/10.5281/zenodo.
7827077. However, restrictions apply to the availability of NPT data, which were used
under license for the current study, and so are not publicly available. Data are, however,
available from the authors upon reasonable request and with permission of China
Information Technology Designing Consulting Institute.

Code availability
Codes are available at https://doi.org/10.5281/zenodo.7825740.
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