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Physics-Informed Bayesian learning of
electrohydrodynamic polymer jet printing dynamics
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Calibration of highly dynamic multi-physics manufacturing processes such as

electrohydrodynamics-based additive manufacturing (AM) technologies (E-jet printing) is

still performed by labor-intensive trial-and-error practices. Such practices have hindered the

broad adoption of these technologies, demanding a new paradigm of self-calibrating E-jet

printing machines. Here we develop an end-to-end physics-informed Bayesian learning fra-

mework (GPJet) which can learn the jet process dynamics with minimum experimental cost.

GPJet consists of three modules: the machine vision module, the physics-based modeling

module, and the machine learning (ML) module. GPJet was tested on a virtual E-jet printing

machine with in-process jet monitoring capabilities. Our results show that the Machine

Vision module can extract high-fidelity jet features in real-time from video data using an

automated parallelized computer vision workflow. The Machine Vision module, combined

with the Physics-based modeling module, can also act as closed-loop sensory feedback to the

Machine Learning module of high- and low-fidelity data. This work extends the application of

intelligent AM machines to more complex working conditions while reducing cost and

increasing computational efficiency.
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The programmable assembly of functional inks in two- and
three-dimensions using computer numerically controlled
(CNC) machines coupled with printing technologies has

revolutionized the design and fabrication of physical objects.
Extrusion-based additive manufacturing (AM) technologies, often
referred to as direct ink writing or 3D printing, are transforming
fields such as healthcare, robotics, electronics, and sustainability1, 2.
While the potential of 3D printing is celebrated very often in sci-
entific journals and the media, there is a “secret” that practitioners
and companies of 3D printing do not emphasize. This under-
reported reality entails the extensive experimentation and manual
labor required for tuning process parameters that are high in
number and often inter-dependent, to achieve process stability and
reproducible outcomes3. Every time a new material needs to be
processed, or ambient conditions vary, practitioners follow trial
and error approaches for printing process calibration. These cali-
bration practices have led to the creation of experienced “super
users” at the expense of an enormous degree of individual process
engineering.

Electro-hydrodynamics-based AM technologies, also known as
E-jet printing technologies, are notable examples of extrusion-
based AM technologies that have been facing such challenges due
to their complex multi-physics and highly dynamic nature4,5. A
wide variety of materials, also termed as inks, can be processed
with E-jet printing technologies. Processable inks include
homogenous solution (pure solvents or solubilized materials),
suspensions (such as colloids of quantum dots, nanoparticles,
insoluble material), melts (such as molten metal, wax, etc.), bio-
molecules (DNA, proteins, and bacteria) and polymers (solutions
or melts). During E-jet printing, the ink is extruded through a
charged needle tip towards a grounded collector. As soon as the
electrostatic stresses overcome the polymer material’s viscoelastic
and surface tension stresses, a cone-jet is formed in the free flow
regime (Fig. 1a). An instabilities area, whose span size across the
jet depends on the nature of the polymer (solution or melt),
follows the cone-jet regime. Focusing on the polymer melt case,
where the instabilities area is closer to the collector (Fig. 1a), a
translational stage can be employed to write high-resolution fibers
(Fig. 1b), a process known as melt electro-writing (MEW). With
this capability, MEW has been established as an emerging high-
resolution AM technology for fabricating architected biomaterial
scaffolds, opening new tissue engineering avenues. MEW has
undergone ten years of process optimization studies since its first
inception in the literature6,7. Tunable fiber diameter and pat-
terning fidelity are critical scaffold attributes for biological out-
comes and efficacy. These can be optimized by tuning five inter-
dependent user-controlled process parameters assuming stable
ambient environmental conditions (temperature and humidity):
(a) the applied voltage at the needle tip, (b) the extrusion volu-
metric flowrate, (c) the temperature at the syringe, (d) the col-
lector speed, and (e) needle tip to collector distance. Considering
the dynamic range of each process variable in combination with
the highly sensitive spatial and time scales of the process in the
micron range, one quickly realizes why it took 10 years for pro-
cess optimization with the vast majority of these studies using one
specific material i.e., polycaprolactone (PCL).

Earlier studies achieved printing fidelity with MEW using an
approach based on intuition, i.e., manually selecting values for the
critical process parameters, performing post-printing fidelity
measurements, assessing trends and patterns in data, and
selecting process parameter settings for follow-up experimenta-
tion. Later studies focused on understanding the previously
identified printing regimes with respect to the physics and the
dynamics of the process8–10. A recent study systematically
approached the calibration process by exploring the parameter
space using a Design-of-Experiments approach in a simple

Cartesian grid defined by the number of independent process
parameters11. In this study, computer vision was employed to
image the jet in the free-flow regime as a function of various
process parameter conditions in a high throughput manner11.
The generated dataset was then assessed offline to identify high
fidelity printability regimes11. However, selecting an exploration
strategy implies picking a resolution without knowing the model
function. To address that, the resolution is often chosen high,
aiming for an exhaustive search to avoid inaccuracies. With the
high dimensionality of the parameter space, this brute force data
collection method quickly fails to explore the space efficiently and
becomes prone to bias.

The challenges mentioned before, combined with the demand
for increasingly complex and reproducible products, warrant a
new paradigm for E-jet printing machines. In this paradigm, rigid
machines calibrated by trial-and-error practices are replaced by
“intelligent” autonomous machines capable of adapting and
learning process dynamics with minimum experimental cost.
Artificial intelligence and machine learning (ML) are transform-
ing many areas of experimental science in this direction. How-
ever, advances in manufacturing science are mainly driven by
expensive physics-based simulations that cannot resolve all scales
and, more recently, by data-hungry neural networks trained off-
line with in-process monitoring datasets for defect detection and
process performance prediction on various AM platform
technologies12.

To address these challenges, we adopt an approach inspired by
the operating principles behind autonomous materials experi-
mentation platforms, also known as research robots13–15 and
from the field of physics-informed machine learning16,17.
Research robots demonstrate closed-loop control through online
learning from prior experiments, planning and execution of new
experiments. Physics-informed machine learning lays the foun-
dations for integrating data with domain knowledge in the form
of mathematical models to allow efficient simulations of highly
multi-physics phenomena. The underlying framework of research
robots provides a systematic data-driven approach for the iden-
tification of the best follow-up experiments to optimize unknown
functions. The functions are approximated by Gaussian Process
Regression (GPR), which is a robust statistical, nonparametric
technique both for function approximation and uncertainty
quantification18,19. During the Bayesian optimization loop, an
acquisition function balances the utilization of experiments that
explore the unknown function with experiments that exploit prior
knowledge by considering the quantified uncertainty after each
function approximation step20. Efficiency with respect to the
utilization of experimental resources could be further improved
by augmenting the surrogate model with prior domain knowledge
following a multi-fidelity modeling approach21–23. The success of
this approach has been documented in the field of computational
science by using simple and potentially inaccurate models that
carry a low computational cost to achieve predictive accuracy on
a small set of high-fidelity observations obtained from accurate
models that carry a high computational cost.

Automated materials experimentation systems driven by Baye-
sian optimization active learning frameworks have demonstrated
remarkable performance in autonomously searching the vast
synthesis-process-structure-property landscape resulting to the
accelerated discovery of advanced materials for a wide variety of
applications20,24–28 including AM29,30. However, the application of
autonomic principles for the calibration of AM processes remains
underexploited. In one study concerning E-jet printing of sub-
strates with micron-scale topographical features, the authors
demonstrated a research robot, whose planner is informed by an
in-line nano-surface metrology tool and actively learns to tune the
extrusion rate until it achieves a predefined topographical feature31.

ARTICLE COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-023-00069-0

2 COMMUNICATIONS ENGINEERING |            (2023) 2:20 | https://doi.org/10.1038/s44172-023-00069-0 | www.nature.com/commseng

www.nature.com/commseng


In another study about direct ink writing of paste materials, the
authors demonstrated an autonomous 3D printer whose planner is
informed by machine vision cameras and adaptively searches the
space of four process parameters to print single struts with geo-
metrical features that match user-defined specifications32.

In this paper, we employ principles from autonomous research
robots to develop an end-to-end physics-informed probabilistic
machine learning framework that sets the basis for the next
generation of self-calibrating E-jet printing machines. Such a
framework should allow both online extraction of jet features
from in-process monitoring data and online robust modeling of
process signature dynamics using the extracted data in the most
computationally efficient way. Thus, we have followed a data-
centric approach that leverages data of multiple fidelities from
experiments and physics-domain knowledge, to demonstrate the
utility of the framework both in an offline but also in an online
process calibration scenario.

To accomplish that, we construct a virtual MEW machine
using a previously published video dataset acquired by a con-
ventional camera that performs in situ jet monitoring under
various process conditions, and we demonstrate that our data-
driven framework called GPJet is capable of:

● high-fidelity jet feature extraction in real-time from video
data using a parallelized computer vision algorithmic
workflow that is systematically profiled under various
implementations,

● low-fidelity jet feature extraction from “cheap” physics-
based models describing the evolution of the jet across the
free-flow regime and the deposition dynamics of a gravity-
driven viscous thread onto a moving surface known as the
“fluid-mechanical sewing machine.”

● With these capabilities, we demonstrate that GPJet is a
robust multi-fidelity modeling framework that can learn
the process dynamics with minimum experimental cost as
described by the required number of high-fidelity data.

Our results are supported by performance tests comparing
offline and online calibration scenarios revealing that the online
ML planner, based on an active learning approach that balances
exploration and exploitation, can effectively learn the jet evolu-
tion in the free-flow regime much more efficiently when it is
informed by physics and based on that to adaptively tune the
translational speed of the collector for minimum jet lag distance.
In that case, the ML planner follows a decision-making strategy

Fig. 1 Electrohydrodynamic Jet Printing Process. a Solution electrospinning (SES) vs. melt electrospinning (MES). The main differentiating feature
between the two processes is the extent of the jet instabilities that arise from the electrostatic forces acting at the polymer jet-air interface. For MES, the
chaotic jet regime is limited close to the grounded collector plate due to the high viscosity and dielectric properties of the pure polymer melt (external heat
(red flame) applied on the syringe barrel (red-yellow arrows)). b Melt electrowriting (MEW) and its operating principle that is based on the direct writing
of melt electrospun fibers on a grounded collector plate that is mounted on a cartesian x-y robotic stage. Different fiber topographies can be achieved
during printing by tuning the translational collector speed, Uc [mm s−1] in each axis. Straight fiber topographies can be achieved at the critical collector
speed Ucr [mm s−1] with a jet deposition position right below the needle tip. At collector speeds considerably higher than the critical collector speed, a jet
lag phenomenon is observed due to excess stretching of the viscoelastic jet.
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revealing the universality of the fluid mechanical sewing machine
model in predicting the deposition dynamics of any printing
process of viscous jets no matter what the nature of the jet driving
force is.

Results
GPJet: the physics-informed machine learning pipeline. To
demonstrate the ability of learning the dynamics of E-Jet printing
processes in a data-driven fashion, we employ a pipeline-based
approach that is depicted in Fig. 2. The approach is composed of
three modules, namely: the machine vision module, the physics-
based modeling module, and the machine learning module. In
GPJet, features that are representative of the printing process
dynamics, are extracted by the machine vision module and the
physics-based modeling module. In the context of this paper,
high-fidelity observations are referred to the jet features extracted
experimentally, and low-fidelity observations are referred to the
same jet features as predicted by a low-cost numerical model that
is a good approximation of the reality.

As a first step, jet features are engineered and extracted in real-
time using an algorithmic computer vision workflow taking as an
input time-series video data (see Methods for details). The
Machine Vision module allows us to probe and measure the jet
dynamics, a capability hereafter denoted as jet metrology. The jet
metrology serves as a feature extraction step of high-fidelity
observations corresponding to the jet radius profile (Rj [mm])
and the jet lag distance (Lj [mm]), which are then fed into the
Machine Learning module that can perform various Bayesian-
based batch and online learning tasks (see Methods for details).
The Machine Learning module can be further informed by low-
fidelity observations, a capability hereafter denoted as Multi-
fidelity modeling. The low-fidelity observations are obtained by
the Physics-based modeling module and correspond to the same

engineered features that are extracted experimentally by the
Machine Vision module (Rj [mm] and (Lj [mm]).

Collectively, the GPJet pipeline offers a range of unique
capabilities ranging from real-time feature extraction using
computer vision to physics-informed machine learning capabil-
ities that aim to minimize experimental cost without sacrificing
accuracy and robustness.

Dataset. To demonstrate the utility and performance of the GPJet
pipeline, we curated a dataset that emulates a virtual E-jet
printing machine with a dynamic range of 12 user-controlled
machine settings. The dataset is depicted in Table S1 and is
created based on previously published time-series video data10.
Specifically, the raw data is acquired by a conventional camera
with 50 fps and a field of view spanning the area between the
needle tip and the grounded collector of a melt electro-writing
(MEW) system. A detailed explanation of the raw data, the pre-
processing procedure derive the final curated dataset can be
found in Supplementary Note. MEW constitutes an ideal testbed
for demonstrating the capabilities and the flexibility of our GPJet
framework. The highly dynamic nature of the process and the
multiple user-controlled independent process parameters, pose
several challenges that we demonstrate both in an offline and an
online self-calibrating machine scenario.

Learning jet dynamics from videos. As a first goal we set out to
tackle the challenge of real-time process monitoring and jet
metrology. To demonstrate the highly dynamic nature of the
process, we plot overlaid video frames showing the jet hitting a
stationary collector (Fig. 3a). We chose to plot frames with a time
step equal to 0.2 s since the electrostatic nature of the process and
the viscoelasticity of the molten jet cause instabilities of a smaller
time scale (~0.02 s) and result in jet topologies that are indis-
tinguishable with a naked eye. This number provided a starting

Fig. 2 The GPJet Pipeline Framework. The Physics-informed Bayesian Machine Learning framework (GPJet) comprised by three different modules: a the
Machine Vision module, which takes as an input timeseries video focusing on the polymer jet in the free flow regime and performs the extraction of high-
fidelity jet features in real-time based on an automated image processing algorithmic workflow (denoted as “Jet Metrology” in Section Machine Vision
Module) – the extracted jet features are denoted on jet profile images in grayscale (0–255) with the 0 value and the 255 value in the color bar representing
the black background, and white segmented jet profile respectively, b the Machine Learning module and c the Physics-based Modeling Module, d the
Multi-fidelity Modeling Module which takes as input high fidelity experimental data from the Machine Vision module and low fidelity modeling data from
the Physics-based Modeling Module and performs a series of data-driven tasks to learn the jet dynamics. Filled contours (shading) represent uncertainty
bounds (95% confidence intervals (CIs)) of the predictions.
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point for setting a goal related to the computational efficiency of
the machine vision module for real-time performance. Since the
camera acquisition time was equal to 0.02 s (50 fps), we pro-
ceeded with the goal to maintain computational processing time
equal or smaller than that.

To accomplish this, we started by dividing the computer vision
workflow in specific algorithmic tasks and implemented a sequential
code version. We continued by systematically profiling the code,
identifying the computationally expensive tasks, and then gradually
parallelizing the code to reduce computational processing time. This
approach led to three different code implementations of the machine
vision module: (a) the sequential, (b) the concurrent and the (c)
parallel, with the last one achieving real-time performance. The
results of the profiling experiments are shown in Fig. 3b, where all
the tasks are plotted along with their respective processing time for
the three different code implementations.

Specifically, the machine vision tasks per frame are the
following:

Task 1: Read new video frame.
Task 2: Process the frame to reverse background color.
Task 3: Edge-based feature extraction and data storage.
Task 4: Object-based feature extraction and data storage.
Task 5: Show processed video output.
Task 6: Save video output.
Profiling the sequential code version reveals that an average

time of 0.033 s. is needed to perform the whole machine vision
workflow per frame with the most expensive task being the one
that performs edge-based feature extraction across the jet length
(Fig. 3c). To alleviate this source of computational cost, we
employed a multi-threading strategy for the concurrent code
version that led to a modest improvement of 0.005 s.

Multi-threading is implementing software to perform two or
more tasks in a concurrent manner within the same application.
Multi-threading employs multiple threads to perform each task with
no limitation in the number of threads that can be used10. We
learned that multithreading on one hand can reduce processing time
of I/O bound tasks almost to zero, but on the other hand does not
improve processing time of Central Processing Unit (CPU) bound
tasks, such as Task 3 and Task 4, which are the most expensive.

To further reduce processing time, we augmented the
concurrent version with a multi-processing strategy that led to
the parallel code version. Multi-processing systems have multiple
processors running at the same time. Therefore, different tasks of
an application can be run in different processors in a parallel
manner. This capability considerably accelerates program per-
formance. The limitation of this strategy is related to the fact that
the number of processes that can be employed must be less or
equal to the number of processors (CPU cores) of the device10.
Finally, by employing multi-threading for I/O bound tasks (Task
1, Task 5, and Task 6) and multi-processing for CPU bound tasks
(Task 3, Task 4), we were able to achieve real-time process
monitoring and jet metrology with processing time up to 0.014 s.

Instrumented with the capability to perform jet feature
extraction in real-time, we then focused on quantifying process
dynamics relevant features. With the edge-based feature extrac-
tion algorithm, which is described in detail in Learning Jet
Dynamics from Videos & Physics under the Methods section, we
were able to measure the jet diameter profile, the area of
the whole jet, the angle between the vertical line that connects the
nozzle tip with the collector, and different points across the length
of the jet profile and finally the translational jet speed at different
points across the length of the jet profile. The high content

Fig. 3 Machine Vision Module. a Process dynamics and its time scale represented by overlayed jet profile images of the jet profile at different time points.
b Profiling experiments for different code implementations. c Edge-based feature extraction methodology (Task 3 in Fig. 3b), features are extracted along
the jet in the positions denoted by the orange arrows on. d Object-based feature extraction methodology (Task 4 in Fig. 3b), the needle, the Taylor cone
and the jet are enclosed by a light blue, a light green and a magenta box, respectively. The imaginary direct line from the center of the needle to the
collector, the deposition point, and the jet lag distance are depicted with a red line, a red dot, and a two-ways orange arrow, respectively. The jet profile
images in c and d are images in grayscale (0–255) with the 0 value and the 255 value in the color bar representing the black background, and white
segmented jet profile, respectively.
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spatiotemporal results are plotted in Fig. S1 of the Supplementary
Information demonstrating the breadth of information of the
machine vision module and the fact that the jet point right above
the collector undergoes a highly fluctuating behavior that will
directly affect the printing quality.

We present the jet metrology results for two distinct phases
during the printing process in Fig. 4ai-ii and Fig. 4bi-ii focusing
on the jet point right above the collector, hereafter denoted as
point of interest. With the object-based feature extraction
algorithm which is described in detail in sub-section 4.1 under
the Methods section, we were able to detect key objects in the
field of view such the needle tip, the Taylor cone, which is defined
as the jet area between the needle tip outlet and the jet point 2*Ro
away from the needle tip, the remaining jet, and the collector. In
this way, we were able to measure the Lag distance, defined as the
distance between the point of interest and the projection of the
middle point of the nozzle tip outlet to the collector. All detected
objects are denoted graphically in Fig. 3d, which shows the video
output after Task 4 during the computer vision workflow.

As a next step, we asked how we could leverage the extracted
features to learn the dynamics of the process in the most efficient

data-driven way, with respect to both experimental and
computational cost. To address this question, we developed
several Bayesian learning techniques, hereafter denoted as the
Machine Learning module of the GPJet framework. The Machine
Learning module takes as input the extracted high-fidelity data
and initially uses Gaussian Processes (GPs) to approximate the
function describing the relationship between (a) the jet radius
profile and the nozzle tip to collector distance and (b) the Lag
distance and the ratio of the collector speed over the jet speed at
the point of interest.

Gaussian process regression (GPR) is a robust statistical, non-
parametric technique for function approximation with kernel
machines. GPR provides the important advantages of uncertainty
quantification, the ability to perform well with small datasets and
the capability to easily include domain-aware physics-based
models in the deployed kernels.

To learn how the jet radius profile evolves over the tip to
collector distance, we chose radial basis functions (RBF) as the
kernel approximator and performed GPR. We trained the model
under two different scenarios with n= 5 observations and n= 10
observations chosen at equally spaced points along the jet length

Fig. 4 Jet Metrology with the Machine Vision Module. a The extracted features during the deceleration-acceleration phase of the printing process.
i Overlayed video frames demonstrating the dynamics during the deceleration-acceleration phase and normalized jet length point of interest
(Z=RojR0 ¼ 17:5) denoted with red color. ii Normalized jet radius (Rj=Ro ), Normalized jet area (Aj=Ao ), Normalized jet angles (θ=90o) and Normalized jet
velocity (Uj=Ujmax) at the denoted point of interest plotted against the normalized time (t=tmax ) during the deceleration-acceleration phase. iii Jet lag
distance ðLjÞ plotted against the normalized time (t=tmax ) during the deceleration-acceleration phase. b The extracted features during the steady speed
phase pf the printing process. i Overlayed video frames demonstrating the dynamics during the steady speed phase. ii Normalized jet radius (Rj=Ro ),
Normalized jet area (Aj=Ao ), Normalized jet angles (θ=90o) and Normalized jet velocity (Uj=Ujmax) at the denoted point of interest plotted against the
normalized time (t=tmax ) during the steady speed phase. iii Jet lag distance ðLjÞ plotted against the normalized time (t=tmax ) during the steady speed phase.
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for the 1st and 2nd scenario, respectively. It is important to
mention that the machine vision module provides n= 93
observations along the jet length. The results are shown in
Fig. 5a, b for the two different training scenarios. GPs can
approximate the jet radius profile evolution with just n= 10
observations showcasing the efficiency of our data-driven
approach with respect to computational cost.

To learn the function describing the relationship between the Lag
distance and the ratio of the collector speed over the jet speed at the
point of interest, we employ the same modeling strategy as before.
Similarly, we set up two different training scenarios with n= 4
observations and n= 12 observations, respectively. Please note here
that the number of high-fidelity observations at our disposal is
constrained by our previously published experimental dataset (see
Machine vision module under the Methods section), where videos
were acquired only at 12 different speed ratio settings. The results
are shown in Fig. 5c, d for the two different training scenarios. While
in the 1st training scenario, GPR provides a smooth function
approximation, the prediction’s error from the experimental ground
truth quantified by the Root Mean Square Error (RMSE), is
significantly higher compared to the 2nd training scenario (see
Fig. S3b–d in Supplementary Information). As a result, the function
describing the relationship under question is hard to approximate
due to the limited available dataset that we used to test our
framework. Specifically, the dataset is non-uniform across the space
of the tested independent process parameters (ratio of the collector
speed over the jet speed) leaving us with no data at certain regions of
the space (see Fig. 5d).

Collectively, our machine vision module informing the GPR
capabilities of the machine learning module with high-fidelity
observations demonstrates that we can learn the dynamics of the

process. Specifically, GPJet demonstrates excellent performance
with respect to the prediction of jet radius profile evolution for a
small amount of high-fidelity observations n= 10. Furthermore,
GPJet demonstrates very good performance for the available
number of high-fidelity observations with respect to the Lag
distance behavior at different collector speed settings.

Learning jet dynamics from videos & physics. As a next step, we
focused on exploring how we could further reduce the number of
high-fidelity observations without losing the predictive capability
of GPR with respect to the jet radius profile evolution. To
accomplish that, we augmented the high-fidelity observations
obtained by the machine vision module with low-fidelity obser-
vations obtained in a principled manner by a multi-physics
model. The multi-physics model captures the electro-hydro-
dynamics, the heat transfer and viscoelastic constitutive material
behavior of the molten jet in 1D across the needle tip to collector
distance. The mathematical formulation and numeric imple-
mentation of the model are described in detail in sub-section
Machine learning module under the Methods sections.

We set up our data-driven scheme with two fidelities
corresponding to two different kernel machines integrated in
one multi-fidelity kernel, in which the correlation between the
two kernels is encoded as a linear relationship. In other words, we
constrain the prior knowledge during GPR with physics-relevant
knowledge, resulting to a physics-informed posterior prediction
that requires much less high-fidelity observations.

We trained the multi-fidelity model under two different scenarios
with n= 6 high-fidelity observations and n= 7 high-fidelity
observations, respectively. For both scenarios the number of low-
fidelity observations was kept to a number equal to 32 and equally

Fig. 5 Results of Gaussian Process Modeling Regression Tasks. a Fitting normalized (Rj=Ro ) jet radius observation data (n= 5) obtained from the
computer vision metrology module of the GPJet framework at specific z axis coordinates along the normalized jet length (Z=Ro ). b Fitting normalized jet
radius using a higher number of observation data (n= 10) compared to the previous case a. c Fitting lag distance (Lj) observation data (n= 3) obtained
from the computer vision metrology module of the GPJet framework for specific speed ratios (Uc=Vjm). d Fitting lag distance using all available observation
data (n= 12). For non-normalized quantities units are in SI. Filled contours (shading) represent uncertainty bounds (95% confidence intervals (CIs)).
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spaced points across the jet length. For the 1st scenario n= 6 equally
spaced points were chosen across the jet length depicted in the jet
schematic of Fig. 6a (upper left). The results are shown in Fig. 6ai
and Fig. 6aii. In Fig. 6ai, we plot the multi-fidelity GPR predictions
for the low and high-fidelity observations respectively. In Fig. 6aii,
we plot the predictions of the multi-fidelity GPR in high-fidelity
observations together with the predictions of a simple GP in high-
fidelity observations. Both plots demonstrate that we can learn the
jet radius profile much better using two different fidelities compared
to using only one fidelity for the same number of high-fidelity
observations. Our results, point out that we lose predictive accuracy
for the Taylor cone area (below the needle tip outlet). This
phenomenon was expected due to that the fact that similar behavior
was observed when the multi-physics model was tested and
informed the strategy of the 2nd scenario, where we chose 7 high-
fidelity observations with the additional point being in the Taylor
cone area. The results are shown in Fig. 6bi and Fig. 6bii
demonstrating that we have managed to further reduce the required
number of high-fidelity observations that need to be extracted by the
machine vision module without compromising the predictive
accuracy.

Active learning of jet dynamics. Up to now, we demonstrated that
GPJet, is a robust tool for passive learning of jet dynamics. By

“passive”, we mean that given a high-fidelity dataset provided by the
Machine Vision module and augmented by low-fidelity data pro-
vided by the Physics-based module, the GPR capabilities of the
Machine Learning module can model the function that mathema-
tically represents the relation between the jet radius and the needle
tip to collector distance. In addition to that, we employed the same
strategy without low fidelity data, to model the function describing
the highly dynamic relationship between the Lag distance and the
ratio of the collector speed and the jet velocity at the point of interest.

In this section, we asked the questions of whether we could
actively choose data points across jet length for which to observe
the outputs to accurately model the underlying function
describing the jet dynamics with respect to the extracted jet
features. To accomplish that, we deploy a virtual MEW machine,
whose dynamic range is defined by the available dataset, and we
run simulation experiments to demonstrate if we can learn the
underlying functions in an active manner as quickly and
accurately as possible.

To accomplish that, we set up an exploration scenario, a set-up
closely related to optimal experimental design scenarios as it
equates to adaptively selecting the input spatial points across the
jet length based on what is already known about the function
describing the jet radius profile and where knowledge can be
improved. We run active learning in both the multi-fidelity GP

Fig. 6 Results of Multi-fidelity Modeling Regression Tasks. a fitting normalized high fidelity observation data (n= 6, red color) of jet radius (Rj=Ro ) and
low fidelity model data obtained from the computer vision metrology module of the GPJet framework and from the multi-physics model, respectively, at
specific z axis coordinates along the normalized jet length (Z=Ro ) and comparing the results with a simple GP fit using the same number of high fidelity
observation data. b fitting a higher number of normalized high fidelity observation data (n= 7, red color) of jet radius (Rj=Ro ) and low fidelity model data
obtained from the computer vision metrology module of the GPJet framework and from the multi-physics model, respectively, at specific z axis coordinates
along the normalized jet length (Z=Ro ) and comparing the results with a simple GP fit using the same number of high fidelity observation data. Filled
contours (shading) represent uncertainty bounds (95% confidence intervals (CIs)). The jet profile images in a, b are images in grayscale (0–255) with the
0 value and the 255 value in the color bar representing the black jet profile, and the white background, respectively.
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and simple GP for the jet radius profile evolution. The results are
shown in Fig. 7. To systematically, compare the performance of
the two different models, we chose the same initial training points
(Fig. S5a-i and S5b-i) and the same number of iterations during
each training phase. For each iteration (Fig. S5a(i-vi) and
S5b(i–vi)), we graphically show, on the processed video frame
the adaptively selected point across the jet length and below that
the modeling results. The adaptive selection is based on a purely
exploratory acquisition function that steers the point selection
towards the area of least knowledge quantified by the uncertainty
output of the modeling step. The results demonstrate that we can
learn actively and in a purely exploratory scenario accurately and
fast the underlying function. Each iteration phase for the multi-
fidelity (MFD) GPs and simple GPs lasts around ~0.5 s leading to
a total learning time equal to 3 s. Lastly, we extract performance
metrics to compare the active learning between the multi-fidelity

and simple GP model (see Fig. S2a–c in Supplementary
Information). The results demonstrate that active learning on
the MFD model is significantly faster (Fig. 2a–c) with more
confident predictions since the model’s prior assumptions are
constrained by domain-aware data.

Then, we employ the same strategy to actively learn the function
describing the relation between the Lag distance and the speed ratio
(put symbol) in an exploration scenario. The results are shown in
Fig. 8. The virtual MEW machine performs remarkably well in the
prescribed experimental simulation. It starts by randomly selecting
one speed ratio equal to 5 (see Fig. 8a) and after 4 additional
iterations (see Fig. 8a–d), the underlying function is quite
effectively approximated. Performance metrics (see Fig. S3b–d
and Fig. S4 in Supplementary Information) demonstrate that the
underlying function can be learned fast in an active manner and
provide predictions with higher confidence compared to the

Fig. 7 Results of Active Learning Task on Multifidelity Data versus on only High-Fidelity Data. a Exploring the design space using Active Learning to fit a
Multifidelity Gaussian Process to normalized high fidelity observation data (red color) of jet radius (Rj=Ro ) and low fidelity model data obtained from the
computer vision metrology module of the GPJet framework and from the multi-physics model, respectively, at specific z axis coordinates along the
normalized jet length (Z=Ro ), (i–iii) denote the second, fourth and sixth (final) iteration of the active learning algorithm until it meets its termination
criteria. The points across the jet assessed at each iteration are pointed with red arrows. b exploring the design space using Active Learning to fit a
Gaussian Process to normalized high fidelity observation data (red color) of jet radius (Rj=Ro ) obtained from the computer vision metrology module of the
GPJet framework at specific z axis coordinates along the normalized jet length (Z=Ro ), (i–iii) denote the second, fourth and sixth (final) iteration of the
active learning algorithm. The points across the jet assessed at each iteration are pointed with red arrows. Filled contours (shading) represent uncertainty
bounds (95% confidence intervals (CIs)). The jet profile images in a, b are images in grayscale (0–255) with the 0 value and the 255 value in the color bar
representing the black jet profile, and the white background, respectively.
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passive learning approach and specifically after training the GP
with all the available high-fidelity observations.

Finally, we set out to address the following question. Can the
virtual MEW machine find the speed ratio corresponding to the
minimum Lag distance in an autonomous way? Autonomy in this
paper, refers to the machine’s ability to self-drive measurements of
an experiment. Some initial parameters, such as the parameters to
explore and their corresponding ranges constrained by the dataset, is
defined by the user a priori. Instead of us learning the relation
between the Lag distance and the speed ratio and afterwards
calibrating the machine hyperparameters, we aim to demonstrate a
self-calibrating scenario. To achieve that we employ an exploitation-
exploration strategy in the spirit of Bayesian Optimization (BO). It is
called exploration–exploitation as scenarios where the output of the
underlying function must be optimized require us to both sample
uncertain areas to acquire more knowledge about the function
(exploration) as well as sampling input points that are likely to

produce extremum outputs given the current knowledge of the
function (exploitation). The virtual MEW machine performs
remarkably well in the prescribed experimental simulation. It starts
again by randomly selecting a speed ratio equal to (see Fig. 9a) and
after 2 additional iterations (see Fig. 9a–c) the speed ratio
corresponding to the minimum Lag distance has been reached.
This speed ratio is close to 1, as expected from the mechanical
sewing machine model, which is described in detail in Physics-based
modeling module under the Methods section. BO validates the
initial hypothesis formed by universality about the mechanical
sewing machine model.

Conclusions
In this work, we demonstrate GPJet, an end-to-end physics-
informed probabilistic machine learning framework that sets the
basis for the next generation of self-calibrating E-jet printing

Fig. 8 Results of Exploring the Design Space Task. Exploring the design space using active learning to fit a Gaussian Process Model to lag distance (Lj)
observation data obtained from the computer vision metrology module of the GPJet framework (the distance between the red arrow and the red dashed
line) for specific speed ratios (Uc=Vjm). a–d Iterations of the active learning algorithm until it meets termination criteria. In every case, the observation point
chosen at each iteration is denoted with a black dashed line box pointed by a black arrow. Filled contours (shading) represent uncertainty bounds (95%
confidence intervals (CIs)). The jet profile images in a), b), c) and d) are images in grayscale (0–255) with the 0 value and the 255 value in the color bar
representing the black jet profile, and the white background, respectively.
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machines. We construct a virtual melt electrowriting (MEW)
machine using a previously published video dataset acquired by a
conventional camera that performed online jet monitoring under
various process conditions. We demonstrate that GPJet can
extract high-fidelity jet features in near real time from the video
data using a highly efficient computer vision algorithmic work-
flow that is implemented in a hybrid multiprocessing—multi-
threading approach. Additionally, two physics-based models were
implemented, providing efficiently prior process physics knowl-
edge, in the form of low-fidelity data. The first one can predict the
evolution of the jet across the free-flow regime while the second
one can predict the deposition dynamics of a gravity-driven
viscous thread onto a slowly moving surface known as the
“fluid-mechanical sewing machine”. Furthermore, we set out to

learn process dynamics with minimum experimental cost, as
described by the required number of high-fidelity data. To
accomplish that, a probabilistic machine learning module was
developed based on Gaussian process regression (GPR) as the
surrogate modeling step, active learning for pure process
dynamics exploration and Bayesian optimization for process
optimization. Two case studies were performed, one regarding the
jet diameter profile and the other one regarding the lag distance.
Our results demonstrate that for an offline learning strategy, the
number of data and their respective position in the design space
are crucial for the quality and the confidence of the predictions in
both cases. Also, in the case of jet radius profile, a multi-fidelity
GPR modeling approach coupling high-fidelity data from
the machine vision module, with low-fidelity data from the

Fig. 9 Results of Bayesian Optimization Task. Performing Bayesian Optimization to find the minimum lag-distance (Lj) by fitting a Gaussian Process
Model to lag distance (Lj) observation data obtained from the computer vision metrology module of the GPJet framework (the distance between the red
arrow and the red dashed line) for specific speed ratios (Uc=Vjm). a–c Iterations of the Bayesian optimization algorithm until it meets termination criteria. In
every case, the observation point chosen at each iteration is denoted with a black dashed line box pointed by a black arrow. d For speed ratios less than one
ðUc=Vjm<1Þ the process is unstable, no straight line is formed, instead the translated coiling, alternating loops, W patterns and meanders patterns are
formed (depicted with a black line), for Uc=Vjm ¼ 0:23;Uc=Vjm ¼ 0:48; Uc=Vjm ¼ 0:64;Uc=Vjm ¼ 0:83 respectively. Therefore, no lag distance (Lj)
observation data can be obtained from the computer vision metrology module of the GPJet framework. Filled contours (shading) represent uncertainty
bounds (95% confidence intervals (CIs)). The jet profile images in a, b and c are images in grayscale (0–255) with the 0 value and the 255 value in the
color bar representing the black jet profile, and the white background, respectively.

COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-023-00069-0 ARTICLE

COMMUNICATIONS ENGINEERING |            (2023) 2:20 | https://doi.org/10.1038/s44172-023-00069-0 | www.nature.com/commseng 11

www.nature.com/commseng
www.nature.com/commseng


physics-based jet evolution model, can provide better and more
confident predictions, while using less high-fidelity observations.
Incorporating prior physics knowledge leads to computational
cost reduction, since jet diameter needs to be evaluated in less
points across the nozzle to bed distance, and thus to even faster
video processing times during the high-fidelity feature extraction
step. As a next step, an online learning strategy was employed to
actively learn the jet diameter profile with and without multi-
fidelity modeling. Importantly, we demonstrate that we can
effectively learn jet evolution more accurately in the online
learning compared to the offline learning scenario when it is
informed by physics guided by the variance. Finally, in an online
calibration scenario, the Optimizer managed to minimize the lag
distance, by fine-tuning the collector’s speed.

GPJet serves as an important step towards autonomous self-
calibrating E-jet printing processes by integrating machine
learning models that offer (a) uncertainty quantification for
decision making after the modeling step and (b) lower fidelity
physics-based models for higher computational efficiency during
online deployment. It is important to recognize the current lim-
itations of GPJet and the challenges that we are trying to over-
come with our ongoing work. In this study, we are bounded by
the previously published video dataset that we used to test our
framework. We are building our own physical automated man-
ufacturing system. This will allow us to perform self-calibration
experiments by setting the machine to be guided by GPJet and
actively search for jet stability conditions with prescribed fiber
diameter values over the whole dynamic range of each indepen-
dent process parameter. Furthermore, the updating of the
Machine Vision module with more robust algorithms in the
future is imperative for generalized use by the whole family of
E-jet printing technologies. For example, the adoption of addi-
tional functions will be adopted to allow detection of the transi-
tion from the nozzle diameter to the jet diameter, providing
differentiation of the two features and tracking of the jet as it
moves toward/away from the collector. We plan to include these
updates in GPJet to explore its robustness beyond steady state
printing conditions including the transient behavior of the jet
during the initial jet formation, where we expect unseen jet
instability phenomena, such as fiber breakage and beads across
the jet length. GPJet can be easily integrated and guide any
physical E-jet printing machine using a bi-directional network
communication protocol. The jet features extracted by the
Machine Vision module between each experimental run, are fed
to the Machine Learning module that gives as an output a set of
instructions containing the values of the recommended inde-
pendent process parameters that are then fed to the machine’s
control platform through the serial port. Lastly, the generalization
of Gaussian processes beyond their training data given the
uncertainty property rests entirely on the choice of kernel that
shapes our prior belief. Incorporating prior-physics knowledge
allowed us to choose radial basis functions, whose exponential
nature correlated well with our physics-based model. Despite the
limits of the available dataset, we have demonstrated the utility of
GPJet as an automated online calibration tool that is powered by
process-relevant data of multiple fidelities presenting a large step
toward the autonomy of e-jet printing.

Methods
Machine vision module
Jet metrology. For the implementation of the Jet Metrology algorithm, Python 3.8
was used, along with the python bindings of the OpenCV library, which enables us
to read and process video data. The jet metrology algorithm consists of two sub-
algorithms. The first is the object segmentation and detection algorithm. The
second is the feature extraction algorithm.

The first sub-algorithm segments the needle tip, the Taylor cone, the jet and the
deposited fiber ‘on the collector. In addition to that, the algorithm attempts to find

the jet’s deposition point on the collector. Finally, the segmented objects of interest
are plotted for the user to visually inspect the output and assess the performance of
the algorithm. To detect the objects of interest in each video frame we use the very
much alike meanshift31 and camshift32 algorithms.

The meanshift algorithm is based on a statistical concept directly related to
clustering. Similar to other clustering algorithms, the meanshift algorithm scans the
whole frame for high concentration of pixels of the same color. The main difference
between the meanshift and the camshift algorithms is that the camshift algorithm
has the capability to adjust, so that the tracking box can change its size and
direction, to better correlate with the movements of the tracked object. The
meanshift and camshift algorithm are useful tools to employ for object tracking.
Also, unlike neural networks and other machine learning methods for object
detection, these algorithms can be immediately implemented and deployed
unsupervised, i.e., without the need to train a model with numerous labeled images.
Instead, the algorithm takes as an input the initial color of the object, that needs to
be detected, and then it tracks it throughout the rest of the video. On the other
hand, using color as a primary method of identification, neither of the two
algorithms can identify objects based on specific shapes and features, which makes
them less powerful than other methods. Furthermore, objects varying in color on a
large scale and complex or noisy backgrounds can make object detection and
tracking problematic. As a result, the meanshift and camshift algorithms work best
under controlled environments.

The first step is to reverse the image colors so that the objects of interest are white
and the background black. The next step is to apply a multi-color mask to segment
them, and then to change the image color-space from Blue, Green, Red (BGR) to
Hue, Saturation, Value (HSV). Finally, the meanshift algorithm is applied to detect
the needle and the Taylor cone and the camshift algorithm to detect and track the jet.

To find the deposition point, the algorithm needs to know the collector’s
position. Then, it creates a window around the collector, crops the region of
interest from the frame and processes that instead of the whole frame. The built-in
function used to find the deposition point is the cv2.goodFeaturesToTrack. This
function finds the most prominent corner in our region of interest by calculating its
eigen-values, as described in33.

Finally, by subtracting the deposition point from the nozzle’s position (center of
blue rectangle in Fig. 3c), we get the lag distance, which is depicted with a two-way
orange arrow in Fig. 3c.

The second sub-algorithm is the one responsible for extracting all the jet
features that are relevant to the process dynamics. These features are the diameter,
areas, and angles of the jet as we move along the z-axis. Another important feature
is the velocity of each jet’s point along the x-axis relatively to the nozzle’s position.
To get all those features we follow a straightforward procedure. The algorithm
takes three inputs, the first is the current video frame. The second input is the
calibration factor (cf ), which is a correlation between distance units (mm) and
pixels. The last one is the stride. The stride indicates every how many pixels along
the z-axis we perform computations. Using too small a stride would lead to more
precise calculations but would tremendously increase the computation time. On
the other hand, using too large a stride would lead to shorter computation times
but at a risk to lose important information.

The first step is to change the frame’s color-space from RGB scale to grayscale,
so that the Canny edge detection algorithm34 can be applied. The parameters of the
Canny edge detector are [threshold_1, threshold_2] and were specified to 150 and
255 in a semi-automatic way, using trackbars while performing edge detection to
other video samples. After performing Canny edge detection, we read the first row
of pixels in our canny frame, which now is an array of 0 and 255. If Canny
algorithm has been implemented correctly when we read this row of pixels from
left to right, the first time we encounter a 255 should be the left edge (le) of our jet.
Likewise, the first time we encounter a 255 while reading the row of pixels from
right to the left, should be the right edge (re) of our jet. By subtracting those two
pixels’ indices and multiplying with the calibration factor we get the diameter of the
jet at this position in the z-axis, which is equal to 2Rj :

Jet Radius 2Rj ¼ re� leð Þ � cf ð1Þ
Those indexes are also stored in two variables (leprevious; reprevious) so that they

can be used to calculate the jet angles as we move down the z-axis. Then we repeat
the procedure for every ‘stride’ rows. After finding the left (le) and right (re) edges
and calculating the diameter, the area and angles can be calculated as:

Jet Area Aj ¼ ½ððreprevious � lepreviousÞ � ðre� leÞÞ � stride� � cf 2 ð2Þ

Left Jet Angle θjl ¼ arctanððle� lepreviousÞ=strideÞ ð3Þ

Right Jet Angle θjr ¼ arctanððre � repreviousÞ=strideÞ ð4Þ

Jet Velocity Uj ¼ ðrecurrentframe � repreviousframeÞ � ðcf =ð1=fpsÞÞ ð5Þ
The leprevious; reprevious are then updated with the le; re values. After accessing all

frame’s rows, the algorithm returns arrays containing all the quantified diameters,
areas, right boundaries, angles left and angles right. The same procedure is
applied to all frames. Right boundaries are important because by subtracting the
right edges of two consecutive frames we can calculate the jet’s velocity ðUjÞ on
the x-axis.
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Physics-based modeling module
Multiphysics model. The importance of accurately extracting jet properties is signified by
several studies on predicting the jet stable region diameter, through mathematical
modeling. Zhmayev et al. proposed a model by fully coupling the conservation of mass,
momentum, charge and energy equations with a constitutive model and the electric
field equations at the steady state33. Similar to most models, they utilize the thin
filament approximation to obtain a simpler and more tractable solution. This
assumption is possible by appropriately averaging the model variables across the radial
direction. In addition, the charge and electric field equations are simplified, under the
assumption of low electrical conductivity, as compared to the governing equations for
isothermal simulations presented by Carroll and Joo34. The conservation of energy
relation and a non-isothermal constitutive model were added to extend to non-
isothermal situations. The resulting governing equations after being non-
dimensionalized are as follows (see Table S5 in Supplementary Information):
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The system of equations can be reduced to a set of five coupled first order

ordinary differential equations (ODEs). Boundary Conditions are required, in
order to proceed towards the numerical solution.
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The model was implemented in Python. While true properties and parameters

of the material are not provided the ones used in ref. 13 for PCL were used and are
presented in Tables S2 and S3. As also referred in refs. 12,13, the model slightly
underpredicts the jet radius while in the Taylor cone area, but when the jet is
stabilized, it accurately predicts it’s radius. Knowing this, even if the volumetric
flowrate (Q) is not provided with the dataset, a Particle Swarm Optimization (PSO)
algorithm was also implemented to find the Q for which the predicted jet’s radius
better fits the computer vision observations.

Geometrical model. Lag distance is a highly important parameter regarding the quality
of the process outcome. Specifically, for some collector speeds, the jet falls onto the
moving collector in a way reminiscent of a sewing machine, generating a rich variety of
periodic patterns, such as meanders, W patterns, alternating loops and translated

coiling (see Fig. 9d). Brun et al.35 proposed a quasistatic geometrical model, consisting
of three coupled ordinary differential equations for the radial deflection, the orienta-
tion, and the curvature of the path of the jet’s contact point with the collector, capable
of reconstructing the patterns observed experimentally while successfully calculated the
bifurcation threshold of different patterns. They also evidenced that the jet/collector
velocity ratio (Uc=Vjm) was the key factor for pattern variation.

According to this geometrical model, the deposited trace on the collector is a
combination of the obit of the contact point (when collector’s speed is equal to zero
Uc ¼ 0; the jet creates coiling patters with radius Rc) and themovement of the collector.

q s; tð Þ ¼ r sð Þ þ Uc t � s
Vjm

 !

ex ; ð17Þ

where qðs; tÞ is the deposited trace, s is the arc-length, t is time, rðsÞ is the contact point at
time s/Vjm, ex is the direction of the collector’s speed, t � s=Vjm is the time that the
contact point moves together with the collector. Differentiating q s; tð Þ and moving from
Cartesian to Polar coordinates (r;ψ denote the polar coordinates of the contact point
rðsÞ), and considering the curvature θ0 at the bottom of the jet, we get the system of
ODEs:

r0 ¼ cos cos θ � ψ
� �þ Uc

Vjm
cosψ ð18Þ

ψ0 ¼ 1
r

sin sin θ � ψ
� �� Uc

Vjm
sinψ

 !

ð19Þ

θ0 ¼ 1
Rc

ffiffiffiffiffi
r
Rc

r
1þ 0:7152 cos cos θ � ψ

� �

1� 0:715 cos cos θ � ψ
� � r

 !

sin sin θ � ψ
� � ð20Þ

This geometrical model was implemented in Python and by varying the
dimensionless parameter Uc=Vjm from 0 to 1 as suggested30, the orbit and the
deposited trace can be reconstructed. Verifying the results from30, the critical
velocity at which the straight pattern appears is Uc ¼ Vjm , which means
Uc=Vjm ¼ 1. for speed ratios 0<Uc=Vjm<1 the process is highly unstable, forming
the translated coiling, alternating loops, W patterns and meanders when the speed
ratios are 0.23, 0.48, 0.64, 0.83, respectively.

Machine learning module
Gaussian process regression. Gaussian process regression is a non-parametric sto-
chastic process with strong probabilistic establishment35. GPR is a supervised
machine learning technique, which predicts a probability distribution based on
Bayesian theory unlike other machine learning algorithms that give deterministic
predictions. The idea behind GPR is that the posterior probability can be modified
based on a prior probability, given a new observation. Those characteristics allow
the uncertainty quantification of each point prediction. Assuming there is a dataset
available, consisting of input-output pairs of observations D ¼ xi; yi

� � ¼ x; y
� �

;
i ¼ 1; 2; ¼ ; n that are generated by an unknown model function f

y ¼ f xð Þ; xϵRd ð21Þ
f xð Þ can be completely estimated by a mean m xð Þ and a covariance function

K x; x’ð Þ:
m xð Þ ¼ E½ f xð Þ� ð22Þ

K x; x0ð Þ ¼ E½ f xð Þ �m xð Þ� �
f x0ð Þ �m x0ð Þ� �� ð23Þ

GPR aims to learn the mapping between the set of input variables and the
unknown model f(x), given the set of observations D. To map this correlation f(x) is
typically assigned a GP prior.

Gaussian processes (GPs) are powerful modeling frameworks incorporating a
variety of kernels. A Gaussian Process is a collection of random variables, any finite
number of which have a joint Gaussian distribution35.

f � GP m xð Þ; k x; x0;θð Þð Þ ð24Þ
where k is a kernel function with a set of trainable hyperparameters θ. The kernel
defines a symmetric-positive covariance matrix Kij ¼ kðxi; xj; θÞ; KϵRnxn , which
reflects the prior available knowledge on the function to be approximated.
Furthermore, kernel’s eigenvalues define a reproducing kernel Hilbert space, that
determines the class of functions within approximation capacity of the predictive
GP posterior mean. Hyper-parameters θ are trained by maximizing the marginal
log-likelihood of the model35.

Assuming a Gaussian likelihood and using the Sherman–Morrison–Woodbury
formula the expression for the posterior distribution pðf jy;XÞ is tractable and can
be used to perform prediction given a new output f nþ1 for a new input xnþ1.

p y1:n; x1:n; xnþ1

� � ¼ N μn xnþ1

� �
; σ2n xnþ1

� �� � ð26Þ

μn xnþ1

� � ¼ knþ1K
�1y1:n ð27Þ

σ2n xnþ1

� � ¼ kðxnþ1; xnþ1Þ � knþ1K
�1kTnþ1 ð28Þ
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where knþ1 ¼ k xnþ1; x1
� �

; ¼ ; k xnþ1; xn
� � �

. As referenced before prediction
consists of a mean, computed using the posterior mean μ� , and an uncertainty
term, computed using the posterior variance σ2� .

Multi-fidelity modeling. The GPR framework, presented above, can be extended to
construct probabilistic models able to consider numerous information sources of
different fidelity levels24. Supposing that s levels of information source are available,
the input, output data pairs can be organized by increasing fidelity as
Dt ¼ xt ; yt

� �
; t ¼ 1; 2; ¼ ; s. So, ys denotes the output of the most accurate and

expensive to evaluate model, while y1 denotes the output of the cheapest and least
accurate model to evaluate. Assuming that only two models are available, a high-
fidelity model and a low fidelity model, the high-fidelity model can be defined as a
scaled sum of the low fidelity model plus an error term:

f high xð Þ ¼ ρf low xð Þ þ f err xð Þ ð29Þ
where ρ is a scaling constant quantifying the correlation between the two models
and f errðxÞ denotes another GP which models the error.

A numerically efficient recursive inference scheme can then be constructed, by
replacing the GP prior f lowðxÞ with the GP posterior f lownlowþ1

xð Þ of the previous

inference level, while assuming that the corresponding experimental design sets
{D1, D2, …, Ds} have a nested structure. This implies that the training inputs of
higher fidelity model needs to be a subset of the training inputs of the low fidelity
model. This scheme is matching totally the Gaussian posterior distribution
predicted by the fully coupled scheme, only now the inference problem is
decoupled into two GPR problems, yielding the multi-fidelity posterior distribution

p yhigh; Xhigh; f lownlowþ1

� �
with a predictive mean and variance at each level18.

μlowðxnlowþ1Þ ¼ μerr þ knlowþ1K
�1
low ylow1:nlow

� μerr

h i
ð30Þ

μhighðxnhigh Þ ¼ ρμlow xnhighþ1

� �
þ μerr þ knhighþ1

K�1
high yhigh1:nhigh

� ρμlow xhigh1:nhigh

	 

� μerr

� �

ð31Þ

σ2low xnlowþ1

� �
¼ kðxnlowþ1; xnlowþ1Þ � knlowþ1 K

�1
low k

T
nlowþ1 ð32Þ

σ2high xnhighþ1

� �
¼ ρ2σ2lownlowþ1

xnhighþ1

� �
þ k xnhighþ1; xnhighþ1

� �
� knhighþ1 K

�1
high k

T
nhigh

ð33Þ
where nhigh; nlow denote the number of training points from the high and low
fidelity models, respectively.

Active learning. Let’s assume again that n observations are available xi; yi
� �

; i ¼
1; ¼ ; n where yi ¼ f xi

� �
and the next point to be evaluated ðxnþ1; ynþ1Þ needs to be

considered. The question that arises is if there is a more informed way to pick those
points when evaluation is expensive to perform, rather than random picking.

This is achieved through an acquisition function uð�Þ. The role of the acquisition
function is to guide the search for the optimum. They are defined in a way such
that high acquisition values correspond to a potential optimum of the unknown
model f , large prediction uncertainty or a combination of those. Maximizing the
acquisition function is used to select the next point to evaluate the function at.
Consequently, the goal is to sample f sequentially at argmaxxuðxjDÞ.

Every acquisition function depends on μ; σ2 or a combination of both. The scale at
which it depends on each one of those defines the exploration-exploitation tradeoff.
When exploring, points where the GP variance is large should be chosen. When
exploiting, points where the GP mean is closest to the extremum should be chosen.
Many acquisition functions are available, some of them are presented in Table S4.

After sampling xnþ1 and evaluating f nþ1, GP regression is performed to fit to
the new point as well. Then the process repeats itself until termination criteria are
met, such as a maximum number of iterations, a minimum or maximum value is
reached, or uncertainty is below an allowed value.

Data availability
The datasets generated during and/or analyzed during the current study are available in
the Github repository, https://github.com/superlabs-gr/gpjet.

Code availability
The source code of the GPJet framework is available to the readers through this public
GitHub repository: https://github.com/superlabs-gr/gpjet.
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