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Data-driven quantum approximate optimization
algorithm for power systems
Hang Jing 1,4, Ye Wang 2,3,4✉ & Yan Li 1✉

Quantum technology provides a ground-breaking methodology to tackle challenging com-

putational issues in power systems. It is especially promising for Distributed Energy

Resources (DERs) dominant systems that have been widely developed to promote energy

sustainability. In those systems, knowing the maximum sections of power and data delivery is

essential for monitoring, operation, and control. However, high computational effort is

required. By leveraging quantum resources, Quantum Approximate Optimization Algorithm

(QAOA) provides a means to search for these sections efficiently. However, QAOA per-

formance relies heavily on critical parameters, especially for weighted graphs. Here we

present a data-driven QAOA, which transfers quasi-optimal parameters between weighted

graphs based on the normalized graph density. We verify the strategy with 39,774 expec-

tation value calculations. Without parameter optimization, our data-driven QAOA is com-

parable with the Goemans-Williamson algorithm. This work advances QAOA and pilots its

practical application to power systems in noisy intermediate-scale quantum devices.
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Quantum technology is emerging as a new hope to address
challenging computational tasks in power systems, includ-
ing quantum chemistry simulation for new type

batteries1–3, efficient power system analysis by solving linear systems
of equations4–8, forecasting highly chaotic systems9, scheduling and
dispatching power grids10, unit commitment11, optimal reconfi-
guration of distribution grids12, etc. However, the existing algo-
rithms require substantial quantum resources, limiting their near-
term utilization on noisy intermediate-scale quantum (NISQ)
devices13. Even though specific instances of quantum algorithms
have been demonstrated on various quantum processors with tens of
qubits14–16, practical applications to address power system problems
will still require further advances in algorithmic design.

In power systems, one emerging quantum application is to
analyze the Distributed Energy Resources (DERs) dominant
power system, which provides a potent solution to seek an edge
toward energy sustainability. In Fig. 1, we illustrate a typical DER
dominant cyber-physical power system includes physical layer
and cyber layer. The physical layer is energized by DERs and the
cyber-layer enables the communication among DERs17 through
the advanced metering infrastructure and Internet of Things
system18 for system coordination and control19.

To improve the resiliency of the system, it is critical to effi-
ciently obtain the maximum sections of power energy in the
physical layer and data traffic in the cyber layer20–22. Mathema-
tically, finding the maximum section of power energy or data
traffic is to solve the Max-Cut problem, which is an NP-hard
issue23. Therefore people implement classical approximation
algorithms24–27 to address the Max-Cut problem in practical
applications. However, for specific instances, classical algorithms
can only guarantee an approximation ratio of 0.87824,28.

The Quantum Approximate Optimization Algorithm (QAOA),
a hybrid quantum-classical algorithm, is expected to obtain better
approximate solutions than any existing classical algorithms29,30.
QAOA utilizes a classical computer trains the parameters for
quantum circuit29. The parameterized quantum circuit approx-
imates the adiabatic evolution from an initial Hamiltonian, whose
ground energy state is easy to prepare, to a final Hamiltonian,
whose ground energy state encodes the solution of the Max-Cut

problem. With an ideal approximation, people expect to obtain
the exact solution of the Max-Cut problem with high
probabilities31. Consequently, the parameters involved in the
quantum circuit play an essential role in getting high-quality
approximations32–34. However, how to efficiently obtain appro-
priate parameters is still an open question.

This work presents a data-driven QAOA with parameter
transfer strategy to tackle the challenging issue of efficiently
obtaining appropriate parameters for QAOA. Therefore, the data-
driven QAOA enables efficient search of the maximum sections
of power delivery and data traffic in cyber-physical power sys-
tems. The contributions of this work are summarized below. First,
a parameter transfer strategy based on the normalized graph
density is developed for QAOA on generic weighted graphs.
Through the transfer strategy, quasi-optimal parameters can be
obtained for the target (new) graphs from the seed (existing)
graphs. Those parameters can then be either directly applied or
used as an initial guess for further optimization. The transfer
strategy is designed to be extendable, allowing new verified graph-
parameter pairs to be added to the transfer database. Therefore,
we can enable efficient QAOA computation. Second, based on the
transfer strategy, the data-driven QAOA framework is estab-
lished. We have numerically justified the effectiveness of the
strategy through evaluating the QAOA’s performance on 1710
random instances with the transferred parameters and the ones
after optimization. Third, we also perform the data-driven QAOA
in practical power systems to get their maximum sections.
Simulations on 996 case studies have validated that the data-
driven QAOA can efficiently obtain comparable results to the
Goemans-Williamson (GW) algorithm. It sheds light on
the online computation and analysis. Additionally, the study
on the near-term achievable noise of quantum processor shows
that it is negligible to our data-driven QAOA method. Overall,
this work reduces the computational effort required for training
QAOA parameters, advances the development of QAOA, and
highly promotes its wide applications for solving engineering
problems. As a practical quantum application, it is feasible shortly
in the NISQ era to address problems in power systems. Recently,
we became aware of a similar work by Shaydulin et al. about the
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Fig. 1 Illustration of the cyber-physical power system. It includes physical layer and cyber layer. The physical layer is Distributed Energy Resources
(DERs) dominant power grid. The cyber layer is used for the communication among DERs and the control center for the system’s operation and control.
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transferability between weighted graphs35, which was carried out
independently.

Results
Maximum sections problem formulation. In the power system,
the maximum power (data) section is defined as an edge collec-
tion C� of the graph G= (V, E), which is modeled from the
physical (cyber) layer. The collection C� has the following three
properties: First, C� is a subset of the edge set E, namely, C� � E.
Second, the reduced graph �G ¼ ðV ; C�Þ is a bipartite graph.
Third, as shown in (1), the summation of the edge weights in C� is
the supremum of the edge summation of all possible collections C,
which satisfy the first two properties.

∑
i;jh i2C�

wij ¼ sup
C�E

∑
i;jh i2C

wij ð1Þ

It is critical to efficiently obtain the maximum sections because
of three reasons. First, the maximum power section offers a cost-
effective way to monitor the dynamics and power delivery
capability of the physical system, especially when the system’s
operation frequently changes caused by intentional/unintentional
disturbances, such as the fluctuations of DERs and the changes of
system topology due to the join or removal of subsystems (e.g.,
microgrids)20. Second, the maximum power sections cast light on
the dynamic system’s control and operations. Dispatchable DERs
can be coordinated for controlling the electric power over the
maximum section to improve the whole system’s operation21.
Third, the maximum data traffic sections provide an insight into
enhancing the overall power system’s resilience through strate-
gically designing and managing the communication network22,36,
e.g., packet routing and traffic control.

Mathematically, finding the maximum section is to solve a
Max-Cut problem of a weighted graph G= (V, E), where ∣V∣= n
is the vertex number, ∣E∣=m is the edge number, and wij

represents the normalized weight of the edge hi; ji 2 E, where
MaxðwijÞ ¼ 1. The Max-Cut solutions are identical before and
after normalization. The edge weight is obtained via power flow
calculation for the physical layer and means the data traffic in the
cyber layer. Modeling details are provided in the Methods section
“Modeling the Power System”.

The objective is to find a subset S⊂V that maximizes
∑i2S;j=2S wij for cyber or physical layers, respectively. Suppose an
n-bit string Z= z1⋯ zi⋯ zj⋯ zn∈ {−1, 1}n can denote the status
of vertices V, showing each bit zi will be equal to 1 if the ith vertex
is in the subset S, otherwise be− 1. We can exhibit the partition
of vertices for obtaining the maximum section. Thus, the classical
cost function of the Max-Cut problem can be defined as,

CðZÞ ¼ ∑
i;jh i2E

wij

1� zizj
2

¼ ∑
i;jh i2E

wijCijðZÞ; ð2Þ

where Cij(Z) represents the contribution of wij to the cost function.
The Max-Cut problem translates into finding the n-bit string Z to
maximize the cost function C(Z). Given the n-bit string Z, we define
the approximation ratio to be C(Z)/C(ZMax-Cut), where ZMax-Cut is
the exact Max-Cut solution. The goal of approximate algorithms is
to find the solution with a high approximation-ratio.

QAOA for max-cut problem. On quantum computers, we use n
quantum bits (qubits) Zj i ¼ jz1 � � � zi � � � zj � � � zni to represent
the status of n vertexes. Each qubit jzii can be a superposition of
quantum states 0j i and 1j i, denoted as jzii ¼ aij0i þ bij1i, where
0j i and 1j i are the eigenstates of the Pauli-Z operator σz with the
eigenvalues of 1 and− 1 respectively. When we measure the qubit
in the computational basis, which is z basis, according to the
quantum mechanics, the qubit could collapse to the state 0j i with

probability of jaij2 and the state 1j i with probability of jbij2.
Therefore, unlike classical computers, the measurement results
could vary even though the qubit is identical at each execution. If
we consider that measuring 0j i represents zi= 1 and measuring
1j i represents zi=− 1, we can obtain various n-bit strings
Z= z1⋯ zi⋯ zj⋯ zn∈ {−1, 1}n and calculate C(Z) in (2) after
every single quantum computer execution.

On the other hand, we could obtain the deterministic n-bit
string Zk out of the measurements on 2nn-qubit eigenstates in the
computational basis, denoted as jZki with jzk;ii ¼ 0j i or 1j i and
zk;i ¼ hzk;ijσzi jzk;ii. Therefore, we can have

CðZkÞ ¼ ∑
i;jh i2E

wij

1� zk;izk;j
2

¼ ∑
i;jh i2E

wij

1� hzk;ijσzi jzk;iihzk;jjσzi jzk;ji
2

¼ Zk

� ��HC Zk

�� �

� C Zk

�� �� �
;

ð3Þ

where

HC ¼ ∑
i;jh i2E

wij

I � σzi σ
z
j

2
: ð4Þ

We consider Cð Zj iÞ ¼ Zh jHC Zj i as the quantum analog of
C(Z). Then 2n classical cost functions C(Zk) are one-on-one
mapped to 2n quantum cost functions CðjZkiÞ. The Max-Cut
problem translates into finding the quantum state jZki to
maximize the cost function CðjZkiÞ.

The 2njZki states form the complete basis of the 2n Hilbert
space for n-bit quantum states. Therefore we can decompose an
arbitrary state Zj i into a linear combination of jZki, denoted as

Zj i ¼ ∑2n

k¼1 αk Zk

�� �
with ∑2n

k¼1 αk
�� ��2 ¼ 1. The quantum cost

function of an arbitrary state Zj i can be written as

Cð Zj iÞ ¼ Zh jHC Zj i

¼ ∑
2n

k¼1
α�k Zk

� ��
� �

HC ∑
2n

k¼1
αk Zk

�� �� �

¼ ∑
2n

k¼1
αk
�� ��2C Zk

�� �� �
:

ð5Þ

Since Cð Zj iÞ ¼ Zh jHC Zj i≥ 0, we have maxCð Zj iÞ ¼ k ¼
12nmaxCðjZkiÞ. Notably, in quantum mechanics, Cð Zj iÞ ¼
Zh jHC Zj i is the expectation value of system energy for a
quantum system described by Hamiltonian HC. The Max-Cut
problem translates into finding the maximum energy state for the
quantum system described by Hamiltonian HC.

QAOA utilizes a quantum circuit running on the quantum
computer to approximate an adiabatic evolution from the maximum
energy state of an initial Hamiltonian, HB, to the maximum energy
state of the final Hamiltonian, HC. For the Max-Cut problem, we
particular define the HB as

HB ¼ ∑
n

j¼1
σxj : ð6Þ

According to adiabatic theorem37, with an ideal approximation,
we expect to obtain the maximum energy state of HC, which leads to
the exact Max-Cut solution, with a high probability.

To implement QAOA on quantum computers, we first prepare
the maximum energy state of HB, þj i�n, as the initial state for the
quantum circuit. Then we run the quantum circuit with 2p
trainable parameters γ ¼ ðγ1; γ2; ¼ ; γpÞ and β ¼ ðβ1; β2; ¼ ; βpÞ
to approximate the p-step Trotter expansion of the adiabatic
evolution. We measure the output state, obtain the classical n-bit
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string, and estimate the quantum cost function using (5) with
multiple executions. After that, we use the classical-quantum
hybrid optimizer iterating 2p parameters to maximize the
quantum cost function. Ideally, when p tends to infinity, the
probability of obtaining the exact Max-Cut solution will tend to
be 1. Even with a finite p, measuring the final state Zj i of the
optimized circuit could generate high approximation-ratio
solutions. More details are discussed in the Methods section
“Adiabatic Approximation with QAOA”.

Data-driven QAOA. People have studied QAOA’s efficiency and
accuracy in regular graphs with constant circuit depth29,38–41. On
the other side, the performance of QAOA on generic weighted
graphs is an open question and challenging to estimate
rigorously42. Heuristic strategies show potentials to find quasi-
optimal parameters with high approximation-ratio solutions, a
claim backed by numerical evidences32,38,40. However, research-
ers have not exhaustively explore the heuristic strategies on
generic weighted graphs42.

Our data-driven QAOA for generic weighted graphs can
provide a high approximation-ratio solution without parameter
optimization to avoid expensive computational effort. The data-
driven QAOA is based on normalized weighted graph density
D43, which is defined as,

D ¼ ∑
i;jh i2E

2wij

nðn� 1Þ : ð7Þ

The data-driven QAOA includes five steps as shown in Fig. 2
and introduced as follows, where an innovative parameter
transfer strategy is the key idea.

Step 1: Formulate the search of maximum section to the Max-
Cut problem of the normalized weighted graph and calculate
its D.

Step 2: Obtain the quasi-optimal parameters (γ, β) based on D
via the parameter transfer strategy, and then pass these
parameters to the quantum processors. The transfer strategy
works for generic weighted graphs.

Step 3: Construct the quantum circuit with the adjacency
matrix Wadj and parameters (γ, β), and run it in a quantum
processor. Then, measure the output state of the quantum circuit
to get the probability distribution and calculate the cost
function value.

Step 4: Optimize the parameters by the classical optimizer for a
better result when necessary. Step 4 is optional.

Step 5: Expand the database by adding more pairs denoted by
(n,D, γ, β) from verified cases, to provide more quasi-optimal
parameters. Step 5 is optional.

Decent initial guesses obtained in Step 2 can also help to
handle noise-free barren plateaus, which are linked to random
parameter initialization44. These initial guesses also reduce the
iterations between the classical optimizer and the quantum
processor, saving the running time of the algorithm. For the
proposed data-driven QAOA, we also provide the pseudocode
Algorithm 1 in “Supplementary Methods”.

Parameter transfer strategy. The essential idea of the data-driven
QAOA in Fig. 2 is the parameter transfer strategy, as summarized
in the Step 2. It includes the following three substeps, which
highly improves the effectiveness of transfer.

Substep 1: Establish the initial database. Several seed graphs are
randomly generated, with their normalized graph densities
spreading over [0, 1]. Considering the small size of these graphs,
we can calculate the quasi-optimal parameters (γ, β)40,41 as
shown in Methods section “Optimization of Parameters”. These
parameters provide potentially quasi-optimal parameters for new
graphs. This feature is particularly appealing to relatively larger
target graphs. The database can then be established, based on the
pairs (n,D, γ, β).

Substep 2: Develop the mapping table. The mapping table is
designed for transferring quasi-optimal parameters from seed
graphs to target graphs with the same circuit layer number p. For
creating the mapping table, several target graphs are also
randomly generated, with normalized graph densities spread
over [0, 1]. With the parameters obtained from the seed graphs,
QAOA calculation is performed for each target graph to get the
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cost function value Cð Zj iÞ. Assume there are N seed graphs with
ns vertices and M target graphs with nt vertices, the values of
Cð Zj iÞ are then organized into a N ´M matrix Mp(ns↦ nt), i.e.,
the mapping table. In the table, each column is corresponding to
one target graph and each row is corresponding to one seed
graph. Note a mapping table only needs to be prepared once in
advance for the same p, ns, nt.

Substep 3: Transfer parameters to new graphs. For a new graph
with normalized graph density D0 and size n0t, several appropriate
seed graphs will be selected from the mapping table Mpðns 7!n0tÞ,
whose size ns needs to be equal or close to n0t. Then, in the
mapping table, one (or more) column, whose corresponding D is
equal or close to the new graph’s D0, will be selected. Since each
entry of this column is associated with a pair ðns; ~D; γ; βÞ of the
seed graph, we can choose entries that are bigger than a threshold
to get quasi-optimal parameters for the new graph. Specifically,
based on the obtained entries, the parameters in the pair
corresponding to each entry will be identified and then
transferred to the new graph. In this sense, we can use an
interval ½~Dl; ~Dr� to summarize the identified pairs and denote the
mapping as D0 7!½~Dl; ~Dr�, as shown in Fig. 2. To improve the
result’s accuracy, the layer number p can be accordingly
increased, with parameters obtained by above transfer strategy.

The presented quasi-optimal parameter database is expendable,
as mentioned in the Step 5 of the data-driven QAOA. In the
Substep 3, we obtain the identified quasi-optimal parameters. For
one thing, these parameters can be directly applied to the QAOA
calculation of the new graph. The new result can then be added to
the current mapping table Mpðns 7!n0tÞ as a new entry, which is

associated with the pair ðns; ~D; γ; βÞ. For another, these parameters
can also be decent initial guesses for further optimizing the
parameters. Then based on the optimized result, a new pair
ðn0t;D0; γ0; β0Þ can be added to the database to provide potential
parameters for new graphs, which is equivalent to the Substep 1.
For the proposed parameter transfer strategy, we also provide the
the pseudocode Algorithm 2 in Supplementary Methods.

In summary, the key idea of data-driven QAOA includes the
following five steps referring to Fig. 2: First, by modeling the
cyber-physical system into two normalized weighted graphs, we
compute the normalized graph density from adjacency matrix
Wadj. Second, in the parameter transfer module, we first
determine the seed graph size ns and layer number p. Then,
according to the mapping table Mp(ns↦ nt) in Supplementary
Fig. 1, we can obtain the quasi-optimal parameters (γ, β) from
seed graphs, whose normalized densities can be expressed by an
interval ½~Dl; ~Dr�. Third, the transferred parameters (γ, β) are
directly passed to the quantum circuit with multiple layers for
QAOA. By measurement, it generates the probability distribution
αk
�� ��2 in (5), from which we can obtain Cð Zj iÞ and select a high
approximation-ratio solution. Fourth, if a better performance is
desired, we will further optimize (γ, β) for C Zj ið Þmax. This step is
optional. Fifth, the obtained pair (n,D, γ, β) can be used to
develop an expandable quasi-optimal parameter database to
provide quasi-optimal parameter for new target graphs. If fourth
step is performed, by obtaining the optimized parameters, we can
store a new pair (nt,D, γnew, βnew) in a new mapping table for
target graphs; otherwise, we can add one new entry Cð Zj iÞ to the
original mapping table, as exampled in Supplementary Fig. 1.
This step is also optional.

Numerical justification of the parameter transfer strategy.
Since rigorously estimating the QAOA performace on generic
weighted graphs is still an open question42, we provide numerical
examples to justify the effectiveness of the parameter transfer

strategy. We verify the efficacy of the transferred parameters from
three aspects by comparing the approximation ratios with the
ones obtained by QAOA using random parameters, QAOA using
optimized parameters and GW algorithm.

For developing the mapping tables, we randomly generate 9
unweighted graphs with ns1= 10 and 9 weighted graphs with
ns2= 24 as seed graphs, as given in Supplementary Table I. The
1710 non-planar target graphs with nt= 24 are also randomly
generated, including 714 unweighted graphs and 996 weighted
ones. The justifications involve 39, 744 QAOA expectation value
calculations and at least 16, 146, 548, 640 shots. We apply two
classical optimizers based on the Newton and the Constrained
Optimization BY Linear Approximation (COBYLA) methods45 to
get the mean approximation-ratio of the seed graphs and their
corresponding quasi-optimal parameters. The values for
p= 1, 2, 3 are summarized in Supplementary Table I. These
parameters (γ, β) provide the initial data for the expandable
database as introduced in Fig. 2.

According to the Substep 2, we develop 12 mapping tables as
examples, among which the 6 mapping tables in Supplementary
Fig. 1 are for the unweighted seed graphs under both weighted
and unweighted target graphs with p= 1, 2, 3, respectively; the
other 6 mapping tables in Supplementary Fig. 2 are for the
weighted seed graphs.

Numerical justification—comparison with using random
parameters. We compare the QAOA results from the transferred
parameters and from random parameters to verify the parameter
transfer strategy. We apply each seed graph’s quasi-optimal
parameters to the QAOA calculation for the 1,710 target graphs,
respectively. Figure 3 summarizes the mean approximation-ratios
of QAOA in the unweighted and weighted graphs for p= 1, 2, 3.
In Fig. 3, each black circle represents the mean approximation-
ratio for a target graph with the identified parameters obtained
from the 9 groups parameters in the mapping tables developed
from unweighted ns1= 10 seed graphs. These black circles show
the high approximation-ratios, which are 0.8501, 0.8911, 0.9125
in average for p= 1, 2, 3, respectively. Comparing these black
circles with the pink circles showing the approximation ratios
with random parameters, we can see that the parameter transfer
strategy significantly improves the approximation ratio, especially
for low density graphs, which verifies the effectiveness of the
transfer strategy. In addition, in Fig. 4, we also observe high
approximation-ratio with parameters transferred from weighted
ns2= 24 seed graphs.

Meanwhile, we have two insights in both Figs. 3 and 4. First,
the significant improvement in low density graph is particularly
appealing to power systems, which usually have low densities.
Second, it is challenging for the random parameters method to
efficiently handle barren plateaus, while our method can address
this issue by providing quasi-optimal initial guesses46. Further
explanations for the effectiveness of the transfer strategy are
shown in “Methods” section “Findings for Transfer Principles”.

Numerical justification—comparison with using optimized
parameters. We verify that the transferred parameter can provide
warm starting for QAOA. Figure 5 compares the mean
approximation-ratio of QAOA using the transferred and unfa-
vorable parameters in the mapping table with and without further
optimization.

On the one hand, the transferred parameters can be decent
initial guesses. Figure 5 shows that after further optimizing the
transferred parameters (blue scatters), the result (orange scatters)
has no significant improvement. On the other hand, those
transferred parameters also can be quasi-optimal parameters.
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Fig. 4 The mean approximation-ratio of randomly generated target graphs under parameters of seed graphs with ns2= 24. a p= 1, unweighted target
graphs. b p= 2, unweighted target graphs. c p= 3, unweighted target graphs. d p= 1, weighted target graphs. e p= 2, weighted target graphs. f p= 3,
weighted target graphs.
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Fig. 3 The mean approximation-ratio of randomly generated target graphs under parameters of seed graphs with ns1= 10. a p= 1, unweighted target
graphs. (inset) The detail approximation-ratio distribution of one data point. The solid red curve is the fitting normal distribution for the original distribution.
The dotted green line is the mean value of the original distribution. b p= 2, unweighted target graphs. c p= 3, unweighted target graphs. d p= 1, weighted
target graphs. (inset) The detail approximation-ratio distribution of one data point. e p= 2, weighted target graphs. f p= 3, weighted target graphs. The
mean approximation-ratios are computed by the probability distribution, with details given in (5) and the Methods section “Measurement Outcomes for
the Cost Function Value''. The probability with respect to approximation-ratio is fitted by normal distribution. The σwindow is the standard deviation of the
scatters with the same color in the 0.1 scan window regarding to D.
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Most of blue scatters without optimization are better than the
purple scatters, which are optimized from yellow scatters with lots
of computational effort. There is a significant increment when
comparing the transferred parameters with the worst parameters
in the mapping table, as shown by the blue and yellow scatters in
Fig. 5. These comparisons validate the effectiveness of the
parameter transfer strategy.

In addition, the optimized parameters associated to the orange
scatters in Fig. 5 can be adopted to expand the database.

Numerical justification—comparison with the GW algorithm.
For further verifying our strategy can provide the promising
results, we compare the results of using the GW algorithm with
the ones via the data-driven QAOA. p= 1, 2, 3, 10 are adopted as
examples. In Fig. 6, when p increases, the overall performance of
transferred parameters increases. when p= 10, the transferred
parameters without any optimization have better mean
approximation-ratio than GW algorithm in the 113 graphs out of
total 996 graphs. It is encouraging that, without any parameter
optimization, the data-driven QAOA is competitive with GW

algorithm. We expect that proper optimization and larger p could
improve the approximation ratio further.

The drop trend of approximation ratio with p= 10 in the large
graph density regime, as shown in Fig. 6, is due to the overfitting
on the seed graphs with D= 0.9111 and D= 1. The 20
parameters in the 10-layer QAOA circuits could be excessive to
be justified for some 10-vertex seed graphs. Notably, p ¼
OðlogðnÞÞ could be sufficient to obtain high approximation-
ratio solutions42. The overfitting issue could be resolved in large
seed graphs with n vertexes and p ¼ OðlogðnÞÞ.

Numerical examples of data-driven QAOA on power systems.
We test and verify the data-driven QAOA on a typical power
system. The physical system is a modified IEEE 24-bus system47,
as given in Supplementary Fig. 3. Eleven DERs are integrated into
the system. Considering the output fluctuations of DERs, the
normalized graph density will correspondingly change over time.
So, two operational scenarios with normalized graphs densities
D= 0.0525 and D= 0.1053 are given as examples for the test. The
communication network also has 24 vertices. Considering the
dynamic data traffic in the network, two scenarios are considered
as examples with D= 0.1143 and D= 0.3280, respectively. We
provide the results from the following two aspects.

Numerical example—test without the depolarizing noise. We
carry out the test according to the steps given in Fig. 2. Based on
the power flow calculation of the physical system or the data
traffic measurement of the cyber layer, four normalized weighted
graphs can be obtained. With the normalized graph densities,
quasi-optimal parameters can be identified through the mapping
table in Supplementary Fig. 1 for the QAOA calculation. To
provide a comparison, Table 1 summarizes the mean
approximation-ratios with all the parameters in the mapping
table when p= 1, 2, 3 for the four graphs. The highlighted results
emphasize that the best results based on the mapping table can be
obtained with the transferred parameters. Thus, it justifies the
effectiveness of the parameter transfer strategy.

We also compare the data-driven QAOA’s results with the GW
algorithm. Figure 7a–c shows the approximation-ratio distribu-
tions of different normalized graph densities when p= 10, with
the following findings. First, the results show that the approx-
imation means are very close to those of the GW algorithm. More
importantly, Fig. 7b, c show that the data-driven QAOA’s results
are better than the GW algorithm, as there is at least ten times
higher probability for the data-driven QAOA method than the
GW algorithm to get the highest approximation ratio, as shown
in the zoom-in details. In practice, we usually use the highest
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Fig. 5 The mean approximation-ratio of quantum approximate optimization algorithm (QAOA) results after optimization. The blue scatters denote the
approximation-ratio under the transferred parameters without optimization. The orange scatters denote the approximation-ratio under the transferred
parameters with optimization. The yellow scatters denote the worst parameters in mapping table without optimization. The purple scatters denote the
worst parameters in mapping table with optimization. a p= 1, weighted target graphs. b p= 2, weighted target graphs. c p= 3, weighted target graphs.
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Fig. 6 The comparison of the Goemans–Williamson (GW) algorithm and
the data-driven Quantum Approximate Optimization Algorithm (QAOA)
with different layer numbers without parameter optimization. The gray
scatters denote the approximation-ratio of the GW algorithm. The blue,
orange, purple, and green scatters denote the approximation-ratio of the
QAOA algorithm without parameter optimization with layer number
p ¼ 10, p ¼ 3, p ¼ 2, and p ¼ 1, respectively.
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cut value as an approximate solution instead of the mean
approximation-ratio. The data-driven QAOA can be better than
the GW algorithm. Note these parameters are transferred from
the mapping tables without any further optimization. Hence,
according to the “Numerical Justification—Comparison with
Using Optimized Parameters” section, when these parameters
are used as initial guesses for further optimizing them, the
better mean approximation-ratio are 0.9569, 0.9499, 0.9751 for
the cases in Fig. 7a–c, respectively. Second, Table 1 shows that
the mean approximation-ratio will increase as p increases;
and thus, a relatively larger p is recommended for practical
applications.

Numerical example—test with the depolarizing noise. To verify
the practicability of data-driven QAOA, we introduce the depo-
larizing noise on quantum gates to simulate the realistic noise on
quantum simulators48. Two noise models are considered. The
noise model I is with 0.1% depolarizing error on single-qubit
gates and 1% depolarizing error on two-qubits gates, which is
presently achievable. The noise model II is with 0.01% depolar-
izing error on single-qubit gates and 0.1% depolarizing error on
two-qubits gates, which is achievable in the near term.

We carry out the numerical noise experiments on the test
graphs. Figure 7d–i shows the examples of three graphs with
D= 0.1053, D= 0.1143, and D= 0.3280, under the transferred
parameters when p= 3. By comparing the approximation-ratio
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Fig. 7 The comparison of the approximation-ratio distributions between the Goemans-Williamson (GW) algorithm and the date-driven Quantum
Approximate Optimization Algorithm (QAOA) with different layer numbers. Noise model I is 0.1% depolarizing error on single-qubit gates and 1%
depolarizing error on two-qubits gates; Noise model II is 0.01% depolarizing error on single-qubit gates and 0.1% depolarizing error on two-qubits gates.
a D= 0.1053, p= 10, without noise. b D= 0.1143, p= 10, without noise. c D= 0.3280, p= 10, without noise. d D= 0.1053, p= 3, noise model I.
e D= 0.1143, p= 3, noise model I. f D= 0.3280, p= 3, noise model I. g D= 0.1053, p= 3, noise model II. h D= 0.1143, p= 3, noise model II. i D= 0.3280,
p= 3, noise model II.

Table 1 The QAOA results in four test graphs with different normalized graph densities

No. seed graph ~D Cð Zj iÞðD ¼ 0:0525Þ Cð Zj iÞðD ¼ 0:1053Þ Cð Zj iÞðD ¼ 0:1143Þ Cð Zj iÞðD ¼ 0:3280Þ
p= 1 p= 2 p= 3 p= 1 p= 2 p= 3 p= 1 p= 2 p= 3 p= 1 p= 2 p= 3

1 0.2667 0.6865 0.7393 0.7724 0.7840 0.8180 0.8315 0.7828 0.8260 0.8495 0.8159 0.7581 0.7475
2 0.5333 0.6316 0.7059 0.7445 0.7577 0.7985 0.8216 0.7590 0.8150 0.8448 0.8448 0.8878 0.9107
3 0.6444 0.6135 0.6987 0.7368 0.7459 0.7941 0.8163 0.7431 0.8098 0.8384 0.8466 0.8940 0.9177
4 0.7333 0.6010 0.6991 0.7396 0.7373 0.7958 0.8176 0.7308 0.8110 0.8378 0.8450 0.8958 0.9189
5 0.8000 0.5920 0.7028 0.7460 0.7309 0.7965 0.8206 0.7216 0.8115 0.8363 0.8424 0.8963 0.9138
6 0.8667 0.5848 0.6892 0.7427 0.7258 0.7882 0.8209 0.7138 0.8027 0.8376 0.8393 0.8965 0.9146
7 0.9111 0.5793 0.6596 0.7259 0.7218 0.7769 0.8133 0.7077 0.7735 0.8306 0.8365 0.8669 0.9115
8 0.9556 0.5749 0.6448 0.6708 0.7183 0.7676 0.7876 0.7024 0.7537 0.7720 0.8337 0.8516 0.8607
9 1.0000 0.5710 0.4736 0.6386 0.7155 0.6593 0.7648 0.6979 0.6244 0.7454 0.8310 0.7617 0.8482

The bold expectation is the best value in the column.
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distributions and means between the results with and without
noise, we can see that the mean approximation-ratios drop, with
noise model I, as given in Fig. 7d–f. While with the smaller noise,
the reduction of mean approximate-ratio is negligible, as shown
in Fig. 7g–i. Therefore, it is feasible to run the data-driven QAOA
on a NISQ quantum processor and address the Max-Cut problem
in the practical power system in the near term.

Conclusions
We present a data-driven QAOA to efficiently search for the
maximum power or data sections in DER dominant power sys-
tems by leveraging quantum advantage. The parameter transfer
strategy is designed to provide quasi-optimal parameters from
seed graphs to target graphs. It addresses the challenge of
obtaining the critical parameters in QAOA; and thus, highly
improving the efficacy and efficiency of QAOA. In the transfer
strategy, normalized graph density is utilized to bridge the seed
and target graphs for developing an extendable mapping table.
We have verified the transfer strategy by comparing our
approximation ratios with those obtained by QAOA using ran-
dom parameters, QAOA using optimized parameters and GW
algorithm. The improvements show the superiority of proposed
strategy, and encourage that the data-driven QAOA is competi-
tive with GW algorithm. The parameter transferability has also
been verified from two perspectives, namely between unweighted
and weighted graphs and between small scale and large scale
graphs as well as graphs with the same size. We simulate the
presented method in a modified IEEE 24-bus system and
demonstrated its effectiveness in finding the maximum sections
with and without depolarizing noise. The presented method
showcases the new computation of power systems when meeting
quantum technology.

The potentials of this work include the following aspects. First,
the application of the proposed data-driven QAOA with the
parameter transfer strategy has a strong potential to be extended
from Max-Cut problem to the general binary combinatorial
optimization problems. Second, from the power engineering
angle, our work has many potential applications including the
optimization for smooth and quick black start, the unit com-
mitment in large-scale systems, designing and managing the
communication network, and among others. Therefore, as a
promising early candidate for achieving quantum advantage on
NISQ systems, our method can also be extended to address
challenging issues in other complex engineered systems and
eventually evolve into a formal quantum methodology.

Methods
Adiabatic approximation with QAOA. According to the adiabatic evolution
theorem31, during the time interval [0, T], we can slowly change the system’s
Hamiltonian from HB to HC and obtain the maximum energy state of HC with high
probability29. The changing process is exampled in below equation:

H tð Þ ¼ 1� s tð Þ½ �HB þ s tð ÞHC; ð8Þ

where s tð Þ is a smooth function, s 0ð Þ ¼ 0 and s Tð Þ ¼ 1. We then use Trotterization
technique to emulate the evolution process49.

We discretize the total time interval [0, T] into intervals [jΔt, (j+ 1)Δt] with
small enough Δt. Over the jth interval, the Hamiltonian is approximately constant,
i.e., H(t)=H((j+ 1)Δt). Therefore, the total time evolution operator U(T, 0) can be
approximately discretized into 2p implementable operators with constant
Hamiltonian49, as written in (9). The approximation will improve as Δt gets
smaller or, equivalently, as p gets bigger.

U T; 0ð Þ ¼ UðT;T � ΔtÞUðT � Δt;T � 2ΔtÞ � � �UðΔt; 0Þ

¼ Qp�1

j¼0
Uðð jþ 1ÞΔt; jΔtÞ 	 Qp

j¼1
e�iH jΔtð ÞΔt ; ð9Þ

where U((j+ 1)Δt, jΔt) represents the time evolution from jΔt to (j+ 1)Δt.
Inserting (8) to (9) and using eiðA1þA2Þx ¼ eiA1xeiA2x þOðx2Þ, the time evolution

operator can be expressed as,

U T; 0ð Þ 	
Yp
j¼1

e�i 1�s jΔtð Þð ÞHBþs jΔtð ÞHC½ �Δt

	
Yp
j¼1

e�i 1�s jΔtð Þð ÞHBΔt e�is jΔtð ÞHCΔt þ OðΔt2Þ

	
Yp
j¼1

U
jð Þ

B U
jð Þ

C ;

ð10Þ

where U
jð Þ

B and U
jð Þ

C are the time evolution operators, evolving the system under
the Hamiltonian HB for the time period of βj= (1− s(jΔt))Δt and the Hamiltonian
HC for the time period of γj= s(jΔt)Δt, respectively, as defined in (11).

U
jð Þ

C ¼ e�is jΔtð ÞHCΔt ¼ e�iγjHC

U
jð Þ

B ¼ e�i 1�s jΔtð Þ½ �HBΔt ¼ e�iβjHB

8<
: ð11Þ

In the evolution, φ
�� �

represents the quantum state Zj i in the “QAOA for Max-

cut Problem” section. Through applying U
jð Þ

B and U
jð Þ

C to the initial state φð0Þ
�� � ¼

þj i�n alternately, we can compute the final state φðTÞ
�� �

in (12), which is expected
to lead a high Cð φðTÞ

�� �Þ and collapse to maximum energy state after measurement.

φ T; γ; β
� ��� � ¼

Yp

k¼1

U
jð Þ

B U
jð Þ

C φ 0ð Þ
�� �

; ð12Þ

where γ ¼ ðγ1; γ2; ¼ ; γpÞ and β ¼ ðβ1; β2; ¼ ; βpÞ need to be optimized, which
requires expensive computational effort. For the original QAOA for Max-Cut
problem, we also provide the the pseudocode Algorithm 3 in Supplementary
Methods.

Measurement outcomes for the cost function value. Quantum computers
perform calculations based on the probability distribution of quantum states. In
QAOA, we obtain the cost function value in (5) by sampling the quantum states,
where jαkj2 is the probability that the final state jφi collapses on the computational
basis jZki, as explained below.

First, we construct the quantum circuit of QAOA for the target graphs. In our
study, the circuit is built in the Qiskit simulator50. The quantum circuit prepares
the initial maximum energy state and computes the final state in (12) by using the

quantum operators U
jð Þ

B and U
jð Þ

C , whose implementations are illustrated in Fig. 2
and also shown in (13) and (14), respectively.

e�iβkHB ¼ e�iβk ∑
n
j¼1 σ

x
j ¼

Yn
j¼1

e�iβkσ
x
j ¼

Yn
j¼1

RðjÞ
X ð2βkÞ; ð13Þ

e�iγkHC ¼ e�iγk∑wij

I�σz
i
σz
j

2 ¼
Y
i;jh i2E

R
i;jh i

ZZ ð�γkwijÞ; ð14Þ

where RðjÞ
X means only applying RX gate to the jth qubit without changing other

qubits; and R
i;jh i

ZZ means only applying RZZ gate to the ith and jth qubits.
Second, we run the quantum circuit Nshot times and measure the final state for

the probability distribution. Suppose the final state collapses on the jZki with Nk

times, the approximation of jαkj2 is j~αkj2 ¼ Nk=Nshot. The approximation will
improve as Nshot gets bigger. In this study, to get an accurate probability
distribution and mean approximation-ratio, we perform Nshot= 219 to
approximate the distribution coefficients jαkj2. In practice, 2, 048 shots works well
and is recommended.

Third, we calculate the cost function CðjφiÞ as shown in (5), which is the
weighted summation of CðjZkiÞ with the non-zero coefficients j~αkj2. Since the
standard deviation of CðjφiÞ is in the order of

ffiffiffiffi
m

p 29, Nshot is in the polynomial

order. So, it is efficient to compute CðjZkiÞ with non-zero coefficients ~αk
�� ��2. Based

on the calculation of CðjZkiÞ with non-zero coefficients j~αkj2, we select the jZopti
with the maximal cut value as the final solution Zopt.

Optimization of parameters. This subsection explains the parameter optimization
involved in three perspectives of the “Numerical Justification of the Parameter
Transfer Strategy” section and the “Numerical Examples of Data-Driven QAOA on
Power Systems” section, where we need to optimize the parameters for high cost
function values in seed graphs with ns= 10 and in target graphs with nt= 24, when
p= 1, 2, 3, 10. The three perspectives are introduced below.

First, we get the optimal parameters for the seed graphs with ns= 10 when
p= 1, 2, 3 by classical optimization method. In our study, the Newton method is
used to get the exact cost function values. Considering the non-convex landscapes
of the cost function, we adopt multiple initial guesses for (γ, β) within
[0, 2π]p × [0, π]p. The number of initial guesses is designed in the polynomial order
of n and m, which is proved to be sufficient for obtaining the optimal parameters29.
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Second, we get the quasi-optimal parameters for the seed graphs with ns= 10
when p= 10 by Fourier heuristic strategy32. In the Fourier strategy, the time
complexity of obtaining quasi-parameters is reduced into OðpolyðpÞÞ to avoid
computational burden32, thus the parameters with high p can be obtained efficiently.

Third, after getting the transferred parameters, we further optimize them for
verifying the efficacy of the transferred parameters. Specifically, we use the
COBYLA method45 to further optimize the transferred parameters due to the
fluctuations of the cost function values. As mentioned in Methods section
“Measurement Outcomes for the Cost Function Value”, the quantum computer
estimates the cost function values by sampling copies of output quantum state,
which results in the fluctuations of the cost function values. The COBYLA method
is used to address the optimization with this issue. The optimized results under the
COBYLA method are given in Fig. 5 and Supplementary Table I. The COBYLA
method is also used to carry out the optimization of transferred parameters for the
test cases without the depolarizing noise.

Note that some certain gradient-based methods might also be able to find the
quasi-optimal parameters with fluctuating cost function value, where the inaccurate
gradient estimation may cause the escape from a local maximum and allow the
converge towards a better one41.

Test graphs preparation. Without losing generality, the test graphs are randomly
generated, as introduced below. First, we randomly generate adjacency matrices.
Second, we set the entries to be zero with different probability to ensure the
densities of the test graphs spread over [0, 1]. Third, since there exist a polynomial
algorithm for Max-Cut problem for the planar graph51, we check the generated
graphs’ planar property by Kuratowski’s Theorem, such that all of the test graphs
are not planar. Finally, we generate 11, 840 graphs, sort them by normalized graph
densities, and then uniformly pick out 1710 graphs as test graphs.

Findings for transfer principles. Here we show two important findings in Fig. 3 to
further explain the transfer principles.

First, the mean approximation-ratio of QAOA for the target graphs are
correlated to a Lipschitz continuous curve with respect to their normalized graph
densities, although these target graphs are randomly generated. It is justified by a
scan window with the size 0.1, as given in Fig. 3. The window shows that the upper
limit of the standard deviations of the scatters with the same parameters is 0.057,
which further indicates the scatters approximately follow a curve. It also indicates
the normalized graph density is a effective metric. According to these curves, we
can directly estimate the mean approximation-ratio of new graphs with parameters
in the database. Thereafter the parameters with outstanding performance can be
quickly identified for the QAOA circuit, avoiding the high computing effort.

Second, the parameters of seed graphs with low density perform better in target
graphs with low density than in the ones with high density, and vice versa. This
property is also uncovered in the mapping tables, where the yellow area denoting
the high approximation-ratio will increase as D increases. Specifically, when the
sizes of the seed and target graphs are very close, the yellow area will be around the
diagonal line as shown in Supplementary Fig. 2; while, when the size of the target
graph is much bigger than that of the seed graphs, the area will be above the
diagonal line as shown in Supplementary Fig. 1. With this property, the quasi-
optimal parameters can be effectively identified.

Modeling the power system. We model the physical layer and then get multiple
normalized weighted graphs through the power flow calculation when disturbances
from DERs are considered. Power flow calculates the bus voltages for a given load,
generation, and network condition, based on which the line powers (weights) can
be obtained. The power flow equations are given in (15).

Pi þ jQi ¼ _Vi ∑
n

k¼1
_y�ik _V

�
k ; ð15Þ

where * denotes conjugate, _Vi 2 C is the ith bus (vertex) voltage in the physical
grid, Pi;Qi 2 R is the injection active and reactive power of the ith bus, and
_yik 2 C is the admittance of the line between the ith bus and kth bus.

After solving the power flow equations, we can obtain the complex power over
each line. In our study, the apparent power is used as the edge weight. Due to the
complex landscape of parameters21, the edge weight is then normalized. Thus, the
modeling graph for the physical system is a normalized weighted graph.

The (15) describes the steady state of the physical power system. The DERs
could be grid-forming or grid-following, and the corresponding bus types could be
PV-bus, Vδ-bus, or PQ-bus, respectively. The (15) does not involve the dynamic
modeling of DERs but concludes them as the PQ-bus, PV-bus, or Vδ-bus,
depending on the microgrid system’s operational mode. When we consider the
dynamics of power system, we can model the DERs in grid-following or grid-
forming pattern. Then, differential algebra equations can be developed to describe
the dynamics of the system. At each time step, the transient state describes the
power delivery among buses. Then, our method can also be utilized to search the
maximum power energy section. Thus, the current application on the steady state
can then be extended to a general case.

The modeling graph of the cyber layer is based on the communication network
data traffic that is flexible and random. In our study, we randomly generate nt= 24

graphs to represent the communication network. In practical applications, we can
monitor the data traffic to set up the edge weights for the cyber graphs.

Depolarizing noise model. For demonstrating the potential of our method to be a
promising candidate for achieving quantum advantage on NISQ systems, we
introduce the depolarizing noise for the quantum gates in QAOA circuits. In our
study, Qiskit50 is used to simulate the depolarizing noise and investigate the
influences. The simulator needs to calculate the density matrix after each quantum
gate to include the noise model, which costs exponentially more calculation
resources than the noiseless vector simulation.

The approximation-ratio distribution of GW algorithm. In Fig. 7a–c, we obtain
the approximation-ratio distributions of the GW algorithm, as summarized below.

The GW algorithm relaxes the constraint of Max-Cut problem from discrete
variables to the vectors on a unit sphere. The relaxed problem then becomes a
semidefinite programming (SDP) problem. By solving the SDP problem, we obtain
the optimal vector distribution. By randomly cutting the unit sphere into two parts,
we correspondingly separate the vectors into two groups and obtain an
approximate solution. When we cut the sphere several times, there is a guarantee
that we have at least 0.878 expected approximation ratio.

Similarly to the shots in QAOA, with certain cut times, the GW algorithm
outputs a probability distribution with respect to the approximation ratio, e.g., the
approximation-ratio distribution. In the theoretical research, we usually compare
the expectation of the approximation-ratio distribution to evaluate the algorithm
performance, while in the practical applications to power systems, we can take the
maximum approximation-ratio as the final approximation solution.

Data availability
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