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Geodesy of irregular small bodies via neural
density fields
Dario Izzo 1,2✉ & Pablo Gómez 1,2

Asteroids’ and comets’ geodesy is a challenging yet important task for planetary science and

spacecraft operations, such as ESA’s Hera mission tasked to look at the aftermath of the

recent NASA DART spacecraft’s impact on Dimorphos. Here we present a machine learning

approach based on so-called geodesyNets which learns accurate density models of irregular

bodies using minimal prior information. geodesyNets are a three-dimensional, differentiable

function representing the density of a target irregular body. We investigate six different

bodies, including the asteroids Bennu, Eros, and Itokawa and the comet Churyumov-

Gerasimenko, and validate on heterogeneous and homogeneous ground-truth density dis-

tributions. Induced gravitational accelerations and inferred body shape are accurate, resulting

in a relative acceleration error of less than 1%, also close to the surface. With a shape model,

geodesyNets can even learn heterogeneous density fields and thus provide insight into the

body’s internal structure. This adds a powerful tool to consolidated approaches like spherical

harmonics, mascon models, and polyhedral gravity.
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The last two decades have witnessed the beginning of space
exploration aimed at minor solar system bodies, such as
asteroids and comets, beyond simpler fly-by missions. The

mission NEAR visited the asteroid 253 Mathilde and was later
successfully inserted into an initial orbit around 433 Eros in
February 2000. From there, it thoroughly studied the asteroid and
eventually performed a successful touchdown a year later as the
mission ended1. After that, in 2005, the sample return mission
Hayabusa, briefly touched down on the Muses Sea of 25143
Itokawa to collect samples from the asteroid surface and bring
them back to Earth2,3. In 2011 the spacecraft Dawn surveyed
Vesta for 12 months to then leave and reach, in 2015, its final
destination, Ceres. In 2014, the Rosetta spacecraft and its
Philae lander were able to visit and land on 67P
Churyumov–Gerasimenko, examining at close proximity the
activity of the frozen comet as it approached the Sun4. Hayabusa
2 sampled 162173 Ryugu5 in 2018 and later returned the sample
to Earth. Most recently, in 2020, OSIRIS-Rex obtained a sample
from 101955 Bennu6. The continuation of this trend is clear as
several missions are planned for this decade, such as Hera7,
ZhengHe8, and Psyche9. Sampling and surveying asteroids and
comets provide unique opportunities to study the history and
development of the solar system10–12. Interest in visiting and
surveying small solar system bodies was exclusively scientific up
to recently, when several commercial entities showed interest into
prospective asteroid mining and—with human space flight
ambitions once again looking beyond Earth orbit—since topics
surrounding in-situ resource utilization on minor planets are now
of particular interest13–15.

In these types of interplanetary missions, knowledge of the
geodesy of the investigated bodies plays a critical role in suc-
cessfully performing orbital and surface proximity operations, in
closely tracking touch-and-go trajectories as well as in evaluating
the collected measurements and observations. The gravity field
generated by the body and the acceleration induced on the
spacecraft allows the precise planning and execution of mission
operations16,17, while knowledge of the body shape and of its
internal mass distribution—which may give insight into the
body’s origin and composition—are of interest to both scientists
and mission operators18–20. The gravitational field of a celestial
body is, for most operational purposes, typically represented by a
spherical harmonics expansion of the gravitational potential with
coefficients learned via Kalman filtering techniques16,17. Unfor-
tunately, this approach loses its appeal as the body irregularities
become more important21,22. Other options, such as mascon
models23,24 and polyhedral gravity25,26 can overcome some of
these difficulties, but also introduce other requirements, such as
the need for a shape model or the assumption of a homogeneous
internal density. In the case of ESA’s Hera mission7, planned to
rendezvous with the 65803 Didymos-Dimorphos system in late
2026, it is foreseen to operate the spacecraft at different distances
from the bodies during an early characterization phase followed
by a second detailed characterization phase. In the first phase, the
mass and a preliminary shape model of the bodies will be
assembled and later used, during the second phase, to obtain
insights into the surface and internal properties. During these
phases, the bodies’ gravity fields will be measured and important
data produced that will be used later during accurate geodetic
studies.

In preparation for this type of work, we introduce geodesyNets,
a new, generic and unified approach to gravity representation able
to reach competitive results with respect to the state-of-the-art.
To develop geodesyNets, we took inspiration from recent trends
and breakthroughs in artificial intelligence and computer vision,
such as the Generative Query Networks by ref. 27 or the Neural
Radiance Fields by refs. 28–30 who introduced novel neural

network architectures and training methods for three-
dimensional scene reconstruction from two-dimensional images.
In a more abstract sense, their works follow a general, emerging
trend of utilizing neural networks as a method for solving inverse
problems31–34. These works showed how deep networks can
represent complex three-dimensional scenes with great accuracy
when appropriately trained. Thus, if a training procedure can be
found that makes use of gravitational measurements, it is only
consequential that a deep network could learn also the complex,
irregular, mass geometry of Solar System bodies.

With geodesyNets, we solve the body-specific problem of
gravity inversion and shape reconstruction using a neural net-
work as an approximator for the distribution of mass in an
enclosing cubic volume. The investigated bodies in our test cases
are asteroids or comets. We are able to reach competitive accu-
racy compared to previous approaches with notably fewer
assumptions about body shape and density distribution. The
trained geodesyNets are able to simultaneously represent both
body shape and density distribution accurately. Further, the
approach is able to incorporate body shape information for
improved results. Assuming the availability of a shape model, we
demonstrate the successful application of our technique to bodies
with a heterogeneous density distribution. Finally, we show that
training geodesyNets is a computationally efficient process, which
bears the promise of on-board applicability. To allow for easy
replication of our results, we provide all code (https://github.com/
darioizzo/geodesynets) and data online (https://zenodo.org/
record/4749715#.YJrR6OhfiUk).

Results
Geodesy artificial neural networks: geodesyNets. We represent
and study the geodetic properties of generic celestial bodies using
fully connected neural networks that we call geodesyNets. A
geodesyNet represents the body density directly as a function of
Cartesian coordinates. In other words, the parameters of the
network (i.e. the weights and biases) represent the density as a
differentiable, and thus continuous, field. ref. 28 introduced a
related network architecture called Neural Radiance Fields
(NeRF) to represent three-dimensional objects and used it to
reconstruct complex scenes with impressive accuracy learning
from a set of two-dimensional images. The training of a NeRF
solves the inverse problem of image rendering as it back-
propagates the difference between images rendered from the
network and a sparse set of observed images. Similarly, the
training of a geodesyNet solves the gravity inversion problem.
The geodesyNet network learns from a dataset of measured
gravitational accelerations back-propagating the difference to the
corresponding accelerations computed from the density repre-
sented by the network. The similitude between our technique and
previous works on an implicit neural representation that inspired
us27,28,35 cannot, unfortunately, be brought any further since we
address here a fundamentally different inversion problem, that of
a gravitational field, hence the underlying physics and resulting
equations and implemented methods diverge substantially.

At the end of its training, our network provides a differentiable
(and thus continuous) expression mapping the position within a
cubic volume V to a body density ρ(x, y, z) compatible with the
observed accelerations. Analogously to the radiance fields of the
NeRF, we refer to ρ as a neural density field. The neural density
field can be used to study the body’s internal structure, to
compute the gravitational potential field and accelerations outside
and inside the body, as well as to derive quantities such as the
spherical harmonics coefficients that depend uniquely on said
density function. Because of the mathematical properties of
artificial neural networks as universal approximators, recently
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re-discussed in depth by ref. 36, sharp density discontinuities and
sudden variations of the body structure can also be represented,
and, in fact, a geodesyNet implicitly learns a plausible
representation of the asteroid surface as a two-dimensional
discontinuity embedded in the three-dimensional space. In other
words, indicating with VB the volume actually occupied by the
body, a geodesyNet learns to infer a vanishing density outside VB

and to jump to a finite value when approaching the body surface
∂VB, without ever being trained on where ∂VB actually is.

The overall architecture of a geodesyNet is shown in Fig. 1
(more details are given in the method section). First, the
Cartesian coordinates x, y, z—indicating the position of a point
within the hypercube V—are fed into an encoding layer mapping
them to a representation suitable for the network. Rahaman
et al.37 have recently noted how the expressivity property of deep
networks, able to fit even random input-output mappings, comes
with a spectral bias manifesting in the network learning low-
frequencies first. This is important to the geodetic application
proposed here as an irregular body shape, to start with, might
suffer from a poor representation of important high-frequency
contents, for example, at the surface ∂VB. The encoding layer
allows experimenting with transformations of the Cartesian
coordinates able to control the network’s spectral bias. Eventually,
we find that a direct Cartesian encoding, coupled with periodic
activation functions between layers35, offers optimal performance
in terms of the resulting quality of the neural density field
(supplementary methods, Table S5). After the encoding layer, a
number of fully connected layers follow, forming the main body

of the network with its learnable parameters. The network output,
i.e., the neural density field indicated with ρ, is then used to
compute the gravitational acceleration at the measurement point.
A detailed account of how this is achieved via a numerical
quadrature is reported in supplementary methods, Supplemen-
tary Method 2. The numerical quadrature necessitates the
evaluation of the network at N distinct points inside the
hypercube V and its numerical precision will depend on it, as
shown in supplementary methods, Fig. S1. The difference
between the computed and the measured (ground-truth) values
is expressed in a loss function LðθÞ minimized as to update the
model parameters θ.

The result is a process that gradually learns a three-
dimensional model of the body density compatible with the
measured gravitational field, as seen, for example, in Fig. 2, where
the learning process is shown in the case of synthetic gravitational
data generated for the comet Churyumov–Gerasimenko. The
learned model can be used to determine the geometric shape and
(to some extent) the internal structure of the body, its orientation
in space, and its gravity field, thus allowing the geodetic
properties of the body to be fully determined from the parameters
θ defining the neural architecture. The same pipeline can also be
applied to measurements of the gravitational potential, resulting
in a neural density field with similar accuracy.

The ground truths. To produce synthetic values for the mea-
surements yi of gravitational accelerations, we use mascon models

Fig. 1 GeodesyNets. Overall schematics of the process of training a geodesyNet.
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representing mass distributions with varying degrees of hetero-
geneity. When enough mascons are considered, this discontinuous
representation approximates well a continuous distribution, while
also offering the flexibility of easy and direct implementation. Each
mascon model is a list of tuples M ¼ ðxi; yi; zi;miÞ i ¼ 1::n

� �

and allows to compute the ground-truth gravitational acceleration
at a generic point ri via the formula:

aðriÞ ¼ �G ∑
n

j¼1

mj

r3ij
rij;

where G is the Cavendish constant, and mj is the generic
mascon mass placed at rj. We consider the asteroids 433 Eros,
25,143 Itokawa, and 10,1955 Bennu and the comet 67P
Churyumov–Gerasimenko, as well as a fictitious Planetesimal and a
toroidal-shaped body we call Torus. The specific test cases were
chosen to compare to prior research or study difficult cases. First,
we generate a mascon model for each body that represents a
homogeneous mass distribution. Then, in the case of Bennu, Ito-
kawa, and Planetesimal, we generate additional mascon models
representing a heterogeneous mass distribution. For Bennu, we

Fig. 2 Exemplary training of a geodesyNet on the gravitational acceleration of a homogeneous density Churyumov–Gerasimenko comet model
(visualized in green). Non-dimensional units are used (see supplementary methods, Table S3). The training loss is shown in (a), while the learned mass
distribution in the hypercube V= [−1, 1]3 is shown in (b) for the xy, xz, and yz cross sections. As learning progresses (from left to right), the mass
distribution evolves to reconstruct the correct asteroid shape and a uniform internal density.
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introduce an equatorial region with lower density with a reduction
factor f= 2. For Itokawa, we make the asteroid head heavier, aug-
menting its density by a factor f= 1.6. For Planetesimal, instead, we
create an internal cavity of spherical shape, thus radically changing
the body topology. Overall, the ground truths were chosen to
represent real objects and, additionally, objects that can explore
potential edge cases. In the case of Planetesimal, a cave inside the
object is modeled and the Torus serves to showcase a highly non-
convex object.

The resulting mascon models are visualized in the supplemen-
tary methods, Fig. S2, and their parameters are reported in the
supplementary methods, Table S3. More details on the generation
process are also given in the supplementary methods, Supple-
mentary Method 4. Note that the body sizes of the chosen bodies
vary greatly as, e.g., Bennu has a diameter of merely 525 m while
Eros has one of almost 17 km. For convenience and consistency,
we, therefore, introduce and use non-dimensional units for all the
obtained models. As a result, the integration volume V for all
cases is reduced to be the cube [−1, 1]3 which is ensured to
contain all of the asteroid mascons.

Learned models. We apply the training pipeline depicted in Fig. 1
to obtain a neural density field for each of the nine mascon
models generated, including the heterogeneous models for Bennu,
Itokawa, and Planetesimal. The quality of the final result is
assessed quantitatively by comparing the ground-truth accelera-
tion from the mascon model to the accelerations caused by the
neural density field at 10,000 random validation points located at
specific altitudes. For each body, we fix a low, medium, and high
altitude corresponding respectively to 0.05, 0.1, and 0.25 units of
length. An example of the resulting validation points in the case
of Eros is shown in the supplementary methods, Fig. S3 for the
medium-altitude case. Additional details on the training, valida-
tion, and sampling are given in the Methods section. In Table 1,
we show the results in terms of mean absolute error and mean
relative error. For all cases considered, our geodesyNet is able to
learn the mass density in the volume VB such that it reproduces
the ground-truth gravity field with a relative error between 0.11
and 0.28% on all bodies at all tested altitudes.

A visual indication of the achieved accuracy for all the
homogeneous solar system bodies is given in Fig. 3, where the
neural density field is plotted against the mascon ground-truth.
Note that even small-scale surface features, such as larger rocks
and craters, are reconstructed to some extent. For completeness,
we also report the relative error close to the surface, in the case of
the heterogeneous Itokawa model, in Fig. 4. The error distribu-
tion across the asteroid surface appears overall to be quite
uniform along the asteroid body, revealing how the neural density

field is able to balance errors caused by the presence of complex
surface features. It is worth to note how most of the relative error
is, as expected in the case of the heterogeneous Itokawa,
concentrated around the heavier asteroid head where the close
proximity to the larger source of the gravitational field is
penalizing.

Comparison with existing methods. The use of machine learn-
ing to represent the gravity field of small bodies has been the
subject of two recent works38,39. The work of ref.39 proposes
the use of a Hopfield network to represent and learn on-board the
spherical harmonic coefficients. Unlike GeodesyNets, such a
representation, useful for the use of preliminary navigational
models, is subject to the same convergence concerns as any model
based on spherical harmonics. The original work of ref. 38,
instead, uses a network to represent directly the gravity potential.
This approach requires a pre-existing model of the gravity field to
learn from and must inform the loss as to enforce the Laplace
equation. Since a GeodesyNet represents the density ρ directly,
such an equation is satisfied by construction and needs not to be
enforced.

A direct quantitative comparison with prior literature is
difficult as a common validation practice for modeling irregular
gravity fields has not been established yet and many of the
available modeling approaches either rely on different assump-
tions or make use of data not made available, and are thus
essentially not reproducible. It is nevertheless of interest to look to
published and independent works, with the understanding that
exact comparisons are not possible at this stage. In this respect, a
good candidate to establish a benchmark is perhaps the work by
ref. 24, who provides a detailed analysis on the performance of a
state-of-the-art method representing the gravity field of a
perfectly uniform Eros, albeit informed by a shape model. Their
work makes use of a hybrid description of the asteroid gravity
field, hybridizing a mascon model to a spherical harmonics
model. A detailed comparison to their work, provided in
supplementary methods (see Supplementary Method 5), reveals
how the GeodesyNet approach is able to reach similar accuracies,
remarkably even if no shape model is assumed.

In order to allow for a rigorous quantitative comparison and
introduce a further solid benchmark, we implemented our own
version of a pure mascon approach, one that does not rely on any
shape information, and we used it to create a gravitational
representation for all the homogeneous bodies here investigated.
We refer to this new model as a masconCUBE: a uniform grid of
N masses mj placed in a regular grid inside the volume V. Such a
model does not make use of a shape model and is thus an
appropriate benchmark to study the representation quality of

Table 1 Learned models—mean absolute and relative acceleration errors at three altitudes (low, medium, and high).

Sampling altitudes Absolute errors Relative errors

Body hlow[m] hmed[m] hhi[m] ϵlow[m/s2] ϵmed[m/s2] ϵhi[m/s2] ϵlow[%] ϵmed[%] ϵhi[%]

HMG Bennu 14.1 28.2 70.4 2.63e-08 4.75e-09 6.89e-10 0.11 0.02 0.005
Churyumov–Gerasimenko 125 250 625 1.13e-07 2.02e-08 2.20e-09 0.19 0.04 0.006
Eros 817 1630 4080 2.24e-06 4.45e-07 5.52e-08 0.16 0.04 0.01
Itokawa 14 28 70.1 3.15e-08 6.35e-09 1.06e-09 0.15 0.04 0.01
Planetesimal 125 250 625 5.69e-08 1.31e-08 3.43e-09 0.11 0.03 0.011
Torus 125 250 625 1.41e-07 3.74e-08 8.49e-09 0.28 0.09 0.034

HTG Bennu 14.1 28.2 70.4 4.70e-08 9.57e-09 1.57e-09 0.20 0.05 0.011
Itokawa 14 28 70.1 4.27e-08 9.36e-09 9.33e-10 0.20 0.05 0.009
Planetesimal 125 250 625 9.90e-08 2.53e-08 4.22e-09 0.20 0.06 0.014

Altitudes for validation are chosen depending on the body size as a fraction of its diameter.
HMG homogeneous, HTG heterogeneous.
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GeodesyNets. For each of our homogeneous bodies, we thus train
a masconCUBE (i.e., we find the values of all the N masses mj) on
the very same gravitational data we used for the corresponding
GeodesyNet. In past works, large mascon models have been
trained using the batch least square estimation methodology24,40.
For the purpose of the comparison we use, instead, the same
procedure used to train the GeodesyNet weights. Two small
changes are necessary, namely a readjustment on the learning
rate, set to 0.1, and on the definitions of the model parameters ηj
which are defined as to satisfy mj ¼ η2j as to ensure positive
values for all mascon masses as well as improved gradient
information. We make sure that the number of mascon N is the
same as the number of parameters (weights and biases) used in
our largest networks and, in particular, N= n3= 91,125 corre-
sponding to n= 45 mascons per cube side. The results are
summarized in Table 2, where the relative error on the
acceleration vector is reported averaged over points randomly
sampled close to the surface (i.e., within ≈0.15 length units from
the surface) and further away (i.e., between ≈0.15 and ≈0.3 length
units from the surface) The novel GeodesyNet model describes
the gravitational field of the irregular bodies considered with great
accuracy, in particular, close to the body surface. A comparison in
terms of the spherical harmonics computed using both methods

is also given in the supplementary methods (see Supplementary
Methods 6, 7, and Table S6).

Taking advantage of a shape model. If additional information on
the body shape ∂VB is available, this can be seamlessly integrated
into the geodesyNet training. A geodesyNet can, in fact, be
trained to represent, instead of the body density, the density
variation from a homogeneously distributed density inside ∂VB.
We refer to this variant of the training pipeline as differential
training (see more details in supplementary methods, Supple-
mentary Method 3). We apply the differential training pipeline
only to the three heterogeneous cases, as for the homogeneous
bodies, the neural density field learned by the differential
approach is trivial as it would vanish entirely, and so would the
obtained relative errors. Figure 5 visualizes the heterogeneous
ground truths and the network’s predicted distributions. In
Table 3, the relative and absolute errors on the predicted accel-
erations are given. In comparison to the previously trained geo-
desyNets (see Table 1), differential training achieves similar
results in terms of acceleration error, in particular, halving the
relative error at low altitudes. The advantage of differential
training becomes clear in the qualitative description of the

Fig. 3 Standard training—results on the four (homogeneous) solar system bodies. Ground-truth models are in (a), as well as the selected slice location
for the slices depicted below. For each slice, a heatmap of the neural density field is overlaid with the mascons (green) in (b). Only mascons within a small
distance to the selected slice are shown, hence the apparent mascon sparsity. The neural density fields are able to correctly reconstruct the body shape as
well as their internal homogeneous density.
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Fig. 4 Differential training—results on the three heterogeneous bodies. Ground-truth modelsare shown in (a) indicating the lower and higher density
regions by shade. For each slice, a heatmap of the reconstructed neural density field is overlaid with the mascons (green) in (b). Only mascons within a
small distance to the selected slice are shown, hence the apparent mascon sparsity.

Table 2 Relative errors [%] using GeodesyNets and a comparable mascon representation.

Bennu Churyumov–Gerasimenko Eros Itokawa

GeodesyNet low 0.72 2.30 1.82 2.13
hi 0.02 1.75 0.17 0.38

masconCUBE low 1.00 2.87 2.39 2.47
hi 0.01 2.03 0.13 0.70

Close to the surface, the advantage offered by the use of GeodesyNet is revealed (bold numbers indicate the best model).
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resulting density field resulting closer to the actual heterogeneous
density distribution.

In the heterogeneous Bennu case, the neural density field
clearly shows the presence of a lower density region at the equator

(see Fig. 5 left column) and it also outputs density values
compatible with the ratio f= 2 used to create the ground-truth
density difference between polar and equatorial regions. Note that
the asteroid core is left at a slightly higher density than the outer

Fig. 5 Relative acceleration errors. Visualization of relative errors of the gravitational acceleration predicted by the trained geodesyNet close to the body’s
surface. Different hemispheres are displayed in (a–c). Points are located 17.5 m above the asteroid surface (0.05 in non-dimensional units). The spread is
quite uniform, except for points closer to the heavier asteroid head that are correlated to higher errors, as expected.
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layers at the equator—a solution selected by the network bias
among the ones compatible with the observations. For the
heterogeneous version of Itokawa, the trained geodesyNet is able
to precisely reconstruct the higher density region at the asteroid’s
“head”—closely matching the ground-truth (see Fig. 5 right); also
from a quantitative point of view as the predicted density values
are compatible with the correct ratio f= 1.6. A small inaccuracy is
notable in the predicted slightly higher density of a thin layer
close to the surface, likely a numerical artifact caused by the
mismatch between the shape of the asteroid and the mascon
approximation near the surface. Mascon models suffer from
inaccuracies next to the body surface where their point mass
nature becomes evident. For the case of Planetesimal, while
differential training improves the description of the surrounding
gravity field, reducing the relative error from 0.2 to 0.08% in the
near field—see Tables 3 and 1—we note that the obtained neural
density field fails to fully reproduce closely the cavity inside the
asteroid, settling instead for a solution where the ratio between
the density inside the cavity and the one outside is not zero. We
must note that the gravity inversion problem is, for this particular
shape, particularly challenging as the heterogeneity chosen for
this rather symmetrical Planetesimal nears a configuration where
the Shell theorem would apply, exacerbating the ill-posed nature
of the gravity inversion problem41–44.

Discussion
Gravity representation. Prior to our work, three main repre-
sentations of a gravity field have been widely studied and used in
the context of geodesy: spherical harmonics, mascon models, and
polyhedral gravity representations25. A qualitative comparison of
these approaches is displayed in Table 4.

The spherical (or the spheroidal) harmonics approach allows
the representation of a generic gravity field via the coefficients of
its Fourier series expansion in spherical (or similar) coordinates.
Its use is particularly suited for bodies, such as large planets and
moons, that have strong axial symmetry and regularity. For

example, thanks to accurate data collected during missions such
as the Steady-state Ocean Circulation Explorer (GOCE)45 or the
Gravity Recovery and Climate Experiment (GRACE)46, spherical
harmonics expansions could be computed to describe the Earth’s
gravity field up to wavelengths of the order of ≈160 km 47,
including terms of degree up to 250. However, applying the same
technique to achieve comparable precision for irregularly shaped
bodies is possible but troublesome. Inside the Brillouin sphere48,
the convergence of spherical harmonics expansions is known to
be erratic21 and requires special attention22. Outside the Brillouin
sphere, the convergence becomes slower as soon as the body
shape has irregularities departing notably from a simple reference
triaxial ellipsoid. In the case of small solar system bodies such as
comets and asteroids, the use of such an expansion outside the
Brillouin sphere, when possible, requires an increasingly high
number of coefficients. For example, ref. 22 developed a
spheroidal harmonics model for the relatively regularly shaped
asteroid Bennu using terms of degree up to 360 and reported
relative errors, on the obtained potential, of the order of ≈1% in
the exterior field (e.g., at 5–20m from the Brillouin sphere). It has
been proposed to make use of a different expansion for the
interior gravity49 at the cost of introducing an artificial boundary
at the Brillouin sphere surface. A geodesyNet model makes no
distinction between the inner and exterior fields as it equally
learns to match gravitational observations inside and outside of
the Brillouin sphere. Its neural architecture, based on the neural
radiance fields, is not impacted as much by the complexity of the
represented bodies, as shown also by the work of ref. 28 that
reports success in encoding many different three-dimensional
scenes using a fixed amount of parameters.

A second method classically used to represent the gravitational
field is that of filling the volume occupied by the body with point
masses or “mascons”. Each mascon is assigned a mass so that the
total body mass is reconstructed. All our ground-truth gravity
fields were generated this way. The approach has the great
advantage of its simplicity and it is straightforward to implement,
but it also has several deficiencies when employed to represent

Table 3 Differential training—mean absolute and relative acceleration errors for heterogeneous bodies at three altitudes (low,
medium, and high).

Sampling altitudes Absolute errors Relative errors

Heterogeneous body hlow[m] hmed[m] hhi[m] ϵlow[m/s2] ϵmed[m/s2] ϵhi[m/s2] ϵlow[%] ϵmed[%] ϵhi[%]

Bennu 14.1 28.2 70.4 4.07e-08 1.19e-08 7.67e-09 0.10 0.03 0.031
Itokawa 14 28 70.1 2.49e-08 1.45e-08 1.01e-08 0.12 0.08 0.091
Planetesimal 125 250 625 3.55e-08 2.29e-08 1.84e-08 0.08 0.06 0.071

Latitudes for validation are chosen depending on the body size as a fraction of its diameter.

Table 4 Comparative table of different fundamental approaches able to represent and learn gravity fields of three-dimensional
bodies.

Approach

Masc. Harm. Poly. geodesyNets

Differentiable ✗ ✓ ✓ ✓
Inside Brillouin sphere ✓ ✗ ✓ ✓
Heterogeneous densities ✓ ✓ ✗ * ✓
Shape model not needed ✓ ✓ ✗ ✓
Can utilize shape model ✓ ✗ ✓ ✓
Accurate in the near field ✗ ✓ ✓ ✓

Mascons (Masc), Spherical Harmonics (Harm), and Polyhedral gravity (Poly) models are compared, qualitatively, to our GeodesyNets.
*Note that models based on Polyhedral gravity can be used to some degree for heterogeneous densities but such a practice is impractical and limited.
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observed gravity fields. The number of mascons needed to achieve
accuracies comparable to that of spherical harmonics in the
description of the exterior field is very large23. In the interior field,
and specifically close to the surface, the accuracy is troublesome
as it becomes unclear whether a point is underneath or just over
the body surface. These drawbacks can be reduced using
hybridized techniques24 and introducing knowledge of the shape
and composition of the asteroid. A geodesyNet, as shown in the
result section, is able to achieve comparable performances to that
of mascon hybridized techniques while using no prior informa-
tion on the body shape and returning a continuously differenti-
able representation of the internal body density.

The last approach, polyhedral gravity, has been widely used in
the context of irregular bodies’ gravity. Therein, the divergence
theorem, or Gauss’s theorem, is used to transform the triple
volume integral needed to compute the gravitational acceleration
or potential into the integral along the asteroid surface of its
flux23,25. The surface is then approximated by a polyhedron and
an analytical formula is derived that enables computing the
gravity produced by any polyhedral body having a homogeneous
density. This technique is only valid for homogeneous bodies and
requires the availability of a high-fidelity model of the body shape
to derive a polyhedral model. Often, this is computed on-ground
thanks to reconstruction techniques based on the images available
from on-board cameras. This method can also have a high
computational complexity as a large amount of evaluations of
functions like arctangents and logarithms is needed26. A
geodesyNet, on the other hand, does not need a homogeneous
density body to be able to learn a representation of the gravity
field, but it is able to use, if available, the shape information to
improve the quality of its predictions and to build plausible
models for the internal structure of heterogeneous asteroids. In
Table 4, we have summarized the different properties of
fundamental representations of a gravity field, highlighting the
broad applicability and various use cases of the proposed
geodesyNets.

Gravity inversion. From a methodological viewpoint, there are
several distinguishing factors and relevant parallels of geodesy-
Nets in comparison to previous approaches. One noteworthy
aspect of geodesyNets is the ability to serve several purposes at
once: after training, the same geodesyNet can be used to represent
both the gravitational field around a body as well its shape and
density. In detail, the geodesyNet learns a representation for the
gravitational field outside of the body, for the body density inside
—i.e., the gravity inversion problem—and for the body shape ∂VB

itself. This stands in contrast to past approaches, for example, on
gravity inversion—either employing a mascon perspective44 or
working in the mass density space directly42,50,51—which rely on
the existence of a shape model for the body.

There are also notable similarities with other approaches.
Previous approaches assume a kernel and create a highly
parametric model of the body density inside a known volume
and then fit it to reproduce gravitational observations42. This is to
some degree similar to our approach, where the kernel functions
are, analogously, defined by the neurons’ non-linearities and the
network weights are the model parameters. Stochastic gradient
descent then allows fitting the model parameters to the
observations. From this viewpoint, the main difference between
past gravity inversion methods and the use of a geodesyNet stems
from the mathematical properties of the parametric representa-
tion employed.

Unlike previous approaches, we use a feedforward artificial
neural network and thereby rely on its universal function
approximator property (see ref. 36). This property makes it

particularly well suited to describe sharp density discontinuities,
such as those encountered when crossing ∂VB or across possible
interfaces between density layers. A more traditional polynomial
or spline51 parametrization, while in principle able to capture
these effects, would require far too many coefficients to capture
this feature with similar precision. In consequence, such density
representations are typically limited to a given, known volume
within the body42 and are unable to represent the whole geodetic
properties of a given body. Overall, geodesyNets replicate the
results from previous approaches while providing a more holistic
solution which requires fewer assumptions.

On-board utilization. The accurate characterization of the
spacecraft’s orbital environment is a crucial requirement of
missions to comets and asteroids43. The approach we introduce
here offers a potential simplification to this critical mission phase
if the training of a geodesyNet can be performed on-board and in
real-time while the spacecraft performs its orbits around the
target body. This might save mission resources by eliminating the
need to collect visual information for, e.g., a three-dimensional
reconstruction of the shape. Further, if performed on-board the
shape information can be collected online and less data may have
to be transmitted. We argue that such a possibility, while cur-
rently not fully developed, is likely to become available in the near
future. The use of dedicated on-board hardware enabling
advanced artificial intelligence approaches for space missions has
been recently reviewed by ref. 52 who discusses radiation-
hardened GPUs as well as FPGAs or hardware accelerators
such as Myriad 253. In our case, as more batches of data would
become available to the on-board computer, these could be
seamlessly exploited by continuously adjusting the network
parameters with some update rule to gradually improve the
neural density field stored in the on-board geodesyNet. The
network would be able to continuously learn during various
mission phases—also accounting for unforeseen deviations and
anomalies in the incoming data—and eventually be sent back to
the ground as a compressed, differentiable, representation of the
body shape and its first plausible internal structure. The memory
requirement during training is perhaps the main limiting factor
for the precision achievable in a possible on-board utilization,
being mainly driven by the number of points N used for the
numerical quadrature used to evaluate the volume integral that
defines the acceleration from a neural density field. Adjustments
to enable a smaller batch size or a more memory-efficient
numerical integration scheme may alleviate these concerns,
however. On the other hand, the number of model parameters—
supplementary methods, Table S4—is relatively modest (below
100,000 double precision parameters) and at most, a few hun-
dreds of kilobytes are needed to store a trained geodesyNet. Note
that reasonable accuracy for a rough estimate of the density
distribution and induced acceleration is obtained even when
using a small number of parameters.

Methods
The training process shown in Fig. 1 is merely an outline and a number of
important details were found to be important in training a geodesyNet. Hence, we
describe the training setup in more detail and focus in even more depth on the
choice of the loss function, the numerical integration method, and the differential
training.

Training setup. At its core, the chosen neural network architecture is reminiscent
of a SIREN network, as proposed by ref. 35. It is a fully connected network with
nine hidden layers of 100 neurons with sinusoidal activation functions in between
layers. The final activation layer computes an absolute value (densities should be
positive) or—in case of the differential training—a hyperbolic tangent (densities
variations can be signed). A detailed analysis of the impact of the architecture
details (SIREN’s ω, layers, neurons) is given in the supplementary methods, Tables
S1, S2, and S5.

ARTICLE COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-022-00050-3

10 COMMUNICATIONS ENGINEERING |            (2022) 1:48 | https://doi.org/10.1038/s44172-022-00050-3 | www.nature.com/commseng

www.nature.com/commseng


The network is trained using the ADAM optimizer with an initial learning rate
of 10−4. The loss function has been specifically designed for geodesyNets and is
presented in the supplementary methods, Supplementary Method 1. During
training, a learning rate decay is used when the training loss plateaus for 200
iterations with a reduction with a factor of 0.8 up to a minimum learning rate of
10−6. Anecdotally, we observed several reductions in most training runs. The batch
size during training is comparatively high at 1000 to average out the impact of
noise in the form of numerical errors during the numerical integration. As a larger
number of parameter studies is part of this work requiring hundreds of GPU hours,
only one random seed was investigated for each run. Training consists of up to
10,000 iterations with early stopping on the training loss after a warmup of 3000
iterations, if 2000 iterations without a new optimum are computed. One iteration
encompasses computing the ground-truth and model accelerations on one batch
(1000) of points using a numerical integration sampling 500,000 points in the
density field. Thus, the acceleration is computed at 10e8 points evaluating the
neural density 5e10 times. The model with optimal training loss is then used for
validation.

The synthetic observations which serve as the network’s training data require a
choice of sampling points at which the ground-truth acceleration is computed. The
choice is critical to ensure numerical stability and plausibility (in practice, only
sampling outside the body is plausible for spacecraft) while optimally providing
information to the network. Hence, sampled points were sampled uniformly inside
a unit sphere around the center of the body but always outside the body (the
coordinate frame is chosen so that the body fits precisely inside [−0.8, 0.8]3). The
location of the sampled points (inside/outside the body) is determined with a
custom PyTorch implementation of the ray-triangle intersection algorithm by
Möller & Trumbore54. A low-poly version of the body meshes is used for the
location determination. In a practical application, the sampled points would not be
random, but be determined by, e.g., a spacecraft’s trajectory or observed particles’
locations. For computational efficiency, we resample new observations only every
ten training iterations. Numerical integration and a mascon model then provide the
ground-truth label as described in the previous sections. The network’s prediction
is analogously computed using the numerical integration over the neural density
field. The method for the numerical integration is explored in more detail in the
following sections.

To compute robust results on previously unobserved data we implemented a
high-accuracy validation procedure. The validation consists of computing all
reported error values on, respectively, 10,000 randomly sampled points at three
specific altitudes above the body (0.04, 0.08, 0.2 length units). The sampling is
displayed in supplementary methods, Fig. S3. The validation utilized a larger
number (500,000) of samples in the numerical integration and high-fidelity - not
low-poly - meshes for the location (inside/outside) determination.

Data availability
All data and collected results needed to evaluate the conclusions in the paper is released
online at https://zenodo.org/record/4749715#.YJrR6OhfiUk. The data were available
under a Creative Commons Attribution 4.0 International license.

Code availability
All code used to produce the results is available online at https://github.com/darioizzo/
geodesynets. It is licensed under a GPL-3.0 open-source license.

Received: 18 July 2022; Accepted: 16 December 2022;

References
1. Veverka, J. et al. NEAR at Eros: Imaging and spectral results. Science 289,

2088–2097 (2000).
2. Yano, H. et al. Touchdown of the Hayabusa spacecraft at the Muses Sea on

Itokawa. Science 312, 1350–1353 (2006).
3. Fujiwara, A. et al. The rubble-pile asteroid Itokawa as observed by Hayabusa.

Science 312, 1330–1334 (2006).
4. Capaccioni, F. et al. The organic-rich surface of comet 67P/Churyumov-

Gerasimenko as seen by VIRTIS/Rosetta. Science 347, aaa0628 (2015).
5. Watanabe, S. et al. Hayabusa2 arrives at the carbonaceous asteroid 162173

Ryugu—A spinning top–shaped rubble pile. Science 364, 268–272
(2019).

6. Lauretta, D. et al. OSIRIS-REx: sample return from asteroid (101955) Bennu.
Space Sci. Rev. 212, 925–984 (2017).

7. Michel, P., Küppers, M. & Carnelli, I. The hera mission: European component
of the esa-nasa aida mission to a binary asteroid. 42nd COSPAR Scientific
Assembly 42, B1–1 (2018).

8. Jin, W. et al. A simulated global GM estimate of the asteroid 469219 Kamo
‘oalewa for China’s future asteroid mission.Mon. Notices Royal Astronom. Soc.
493, 4012–4021 (2020).

9. Lord, P. et al. Psyche: journey to a metal world. In 2017 IEEE Aerospace
Conference 1–11 (IEEE, 2017).

10. Glassmeier, K.-H., Boehnhardt, H., Koschny, D., Kührt, E. & Richter, I. The
Rosetta mission: flying towards the origin of the solar system. Space Sci. Rev.
128, 1–21 (2007).

11. Connolly Jr, H. C. & Jones, R. H. Chondrules: the canonical and noncanonical
views. J. Geophys. Res. Planets 121, 1885–1899 (2016).

12. Herbst, W., Greenwood, J. P. & Yap, T. E. The macroporosity of rubble pile
asteroid Ryugu and implications for the origin of Chondrules. Planet. Sci. J. 2,
110 (2021).

13. Hein, A. M., Matheson, R. & Fries, D. A techno-economic analysis of asteroid
mining. Acta Astronaut. 168, 104–115 (2020).

14. Calla, P., Fries, D. & Welch, C. Asteroid mining with small spacecraft and its
economic feasibility. Preprint at arXiv:1808.05099 (2018).

15. Zacny, K., Cohen, M. M., James, W. W. & Hilscher, B. Asteroid mining. In
AIAA Space 2013 Conference and Exposition (AIAA 2013-5304). Published by
the American Institute of Aeronautics and Astronautics. (2013).

16. Hashimoto, T. et al. Vision-based guidance, navigation, and control of
Hayabusa spacecraft-Lessons learned from real operation. IFAC Proceedings
Volumes 43, 259–264 (2010).

17. Accomazzo, A. et al. The final year of the Rosetta mission. Acta Astronaut.
136, 354–359 (2017).

18. Kanamaru, M., Sasaki, S. & Wieczorek, M. Density distribution of asteroid
25143 Itokawa based on smooth terrain shape. Planet. Space Sci. 174, 32–42
(2019).

19. Scheeres, D. et al. Heterogeneous mass distribution of the rubble-pile asteroid
(101955) Bennu. Sci. Adv. 6, eabc3350 (2020).

20. Braun, A. et al. The geophysical reconnaissance asteroid surface probe
(GRASP), a lander mission to determine asteroid density distribution. 42nd
COSPAR Scientific Assembly 42, B0–2 (2018).

21. Hirt, C. & Kuhn, M. Convergence and divergence in spherical harmonic series
of the gravitational field generated by high-resolution planetary topography—
A case study for the Moon. J. Geophys. Res. Planets 122, 1727–1746 (2017).

22. Sebera, J., Bezděk, A., Pešek, I. & Henych, T. Spheroidal models of the exterior
gravitational field of asteroids Bennu and Castalia. Icarus 272, 70–79 (2016).

23. Werner, R. A. & Scheeres, D. J. Exterior gravitation of a polyhedron derived
and compared with harmonic and mascon gravitation representations of
asteroid 4769 Castalia. Celest. Mech. Dyn. Astron. 65, 313–344 (1996).

24. Wittick, P. T. & Russell, R. P. Mixed-model gravity representations for small
celestial bodies using mascons and spherical harmonics. Celest. Mech. Dyn.
Astron. 131, 31 (2019).

25. Paul, M. The gravity effect of a homogeneous polyhedron for three-
dimensional interpretation. Pure Appl. Geophys. 112, 553–561 (1974).

26. D’Urso, M. G. Analytical computation of gravity effects for polyhedral bodies.
J. Geodesy 88, 13–29 (2014).

27. Eslami, S. A. et al. Neural scene representation and rendering. Science 360,
1204–1210 (2018).

28. Mildenhall, B. et al. Nerf: representing scenes as neural radiance fields for view
synthesis. Commun. ACM 5, 9–106 (2020).

29. Park, K. et al. Nerfies: Deformable neural radiance fields. In IEEE/CVF
International Conference on Computer Vision, 5865–5874 (2021).

30. Schwarz, K., Liao, Y., Niemeyer, M. & Geiger, A. GRAF: generative radiance
fields for 3d-aware image synthesis. In Advances in Neural Information
Processing Systems 33, 20154–20166 (2020).

31. Padmanabha, G. A. & Zabaras, N. Solving inverse problems using conditional
invertible neural networks. J. Comput. Phys. 433, 110194 (2021).

32. Xu, K. & Darve, E. The neural network approach to inverse problems in
differential equations. Preprint at arXiv:1901.07758 (2019).

33. Kim, B., Lee, S. & Kim, J. Inverse design of porous materials using artificial
neural networks. Sci. Adv. 6, eaax9324 (2020).

34. Gómez, P., Schützenberger, A., Semmler, M. & Döllinger, M. Laryngeal
pressure estimation with a recurrent neural network. IEEE J. Trans. Eng.
Health Med. 7, 1–11 (2018).

35. Sitzmann, V., Martel, J., Bergman, A., Lindell, D. & Wetzstein, G. Implicit
neural representations with periodic activation functions. Advances in Neural
Information Processing Systems 33 (2020).

36. Calin, O. In Deep Learning Architectures (Springer, 2020).
37. Rahaman, N. et al. On the spectral bias of neural networks. In International

Conference on Machine Learning 5301–5310 (PMLR, 2019).
38. Martin, J. & Schaub, H. Physics-informed neural networks for gravity field

modeling of the earth and moon. Celest. Mech. Dyn. Astron. 134, 1–28
(2022).

39. Pasquale, A., Silvestrini, S., Capannolo, A., Lunghi, P. & Lavagna, M. Small
bodies non-uniform gravity field on-board learning through hopfield neural
networks. Planet. Space Sci. 212, 105425 (2022).

COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-022-00050-3 ARTICLE

COMMUNICATIONS ENGINEERING |            (2022) 1:48 | https://doi.org/10.1038/s44172-022-00050-3 | www.nature.com/commseng 11

https://zenodo.org/record/4749715#.YJrR6OhfiUk
https://github.com/darioizzo/geodesynets
https://github.com/darioizzo/geodesynets
www.nature.com/commseng
www.nature.com/commseng


40. Arora, N. & Russell, R. P. Efficient interpolation of high-fidelity geopotentials.
J. Guid. Control Dyn. 39, 128–143 (2016).

41. Cicci, D. A. Improving gravity field determination in ill-conditioned inverse
problems. Comput. Geosci. 18, 509–516 (1992).

42. Tricarico, P. Global gravity inversion of bodies with arbitrary shape. Geophys.
J. Int. 195, 260–275 (2013).

43. Park, R. S., Werner, R. A. & Bhaskaran, S. Estimating small-body gravity field
from shape model and navigation data. J. Guid. Control Dyn. 33, 212–221
(2010).

44. Russell, R. P. & Arora, N. Global point mascon models for simple, accurate,
and parallel geopotential computation. J. Guid. Control Dyn. 35, 1568–1581
(2012).

45. Drinkwater, M., Floberghagen, R., Haagmans, R., Muzi, D. & Popescu, A. VII:
Closing session: GOCE: ESA’s first earth explorer core mission. Space Sci. Rev.
108, 419–432 (2003).

46. Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. & Watkins, M. M.
GRACE measurements of mass variability in the Earth system. Science 305,
503–505 (2004).

47. Visser, P. Gravity field determination with GOCE and GRACE. Adv. Space
Res. 23, 771–776 (1999).

48. Takahashi, Y. & Scheeres, D. Small body surface gravity fields via spherical
harmonic expansions. Celes. Mech. Dyn. Astron. 119, 169–206 (2014).

49. Takahashi, Y., Scheeres, D. J. & Werner, R. A. Surface gravity fields for
asteroids and comets. J. Guid. Control Dyn. 36, 362–374 (2013).

50. Chambat, F. & Ricard, Y. Empirical 3-D basis for the internal density of a
planet. Geophys. J. Int. 162, 32–35 (2005).

51. Berkel, P. & Michel, V. On mathematical aspects of a combined inversion of
gravity and normal mode variations by a spline method. Math. Geosci. 42,
795–816 (2010).

52. Furano, G. et al. Towards the use of artificial intelligence on the edge in space
systems: challenges and opportunities. IEEE Aerosp. Electron. Syst. Mag. 35,
44–56 (2020).

53. Moloney, D. et al. Myriad 2: eye of the computational vision storm. In 2014
IEEE Hot Chips 26 Symposium (HCS) 1–18 (IEEE, 2014).

54. Möller, T. & Trumbore, B. Fast, minimum storage ray-triangle intersection. J.
Graphics Tools 2, 21–28 (1997).

Acknowledgements
The authors are grateful to Dr. Francesco Biscani from the Max Planck Institute of
Astronomy (Heidelberg) for making stable configurations of plausible planetoids avail-
able to be used as mascon ground truths in the paper and to Dr. Dawa Derksen for the
interesting discussions and exchanges on neural scene representations.

Author contributions
D.I. formulated and led the project, developed and implemented the theoretical calcu-
lations for the spherical harmonics and mascon gravity ground truths, and developed the
masconCUBE approach. D.I. and P.G. refined the geodesyNET methodology and
developed the code base, performed the numerical experiments, and wrote and revised
the paper. P.G. automated the numerical experiments.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s44172-022-00050-3.

Correspondence and requests for materials should be addressed to Dario Izzo.

Peer review information Communication Engineering thanks Yu Takahashi, Sean
McArdle and the other, anonymous, reviewer(s) for their contribution to the peer review
of this work. Primary Handling Editors: Miranda Vinay and Ros Daw. Peer reviewer
reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-022-00050-3

12 COMMUNICATIONS ENGINEERING |            (2022) 1:48 | https://doi.org/10.1038/s44172-022-00050-3 | www.nature.com/commseng

https://doi.org/10.1038/s44172-022-00050-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commseng

	Geodesy of irregular small bodies via neural density�fields
	Results
	Geodesy artificial neural networks: geodesyNets
	The ground truths
	Learned models
	Comparison with existing methods
	Taking advantage of a shape model

	Discussion
	Gravity representation
	Gravity inversion
	On-board utilization

	Methods
	Training setup

	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




