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A deep learning-based predictive simulator for
the optimization of ultrashort pulse laser drilling
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Ultrashort pulse laser drilling is a promising method for the fabrication of microchannels in

dielectric materials. Due to the complexity of the process, there is a strong demand for

numerical models (simulators) that can predict structures produced under specific proces-

sing conditions in order to rapidly find optimal processing parameters. However, the validity

of conventional laser drilling simulators for dielectrics has been confined to a range of strict

interpolations of the data used during the construction of the model, and thus, their use-

fulness is limited. Here, we demonstrate simulator-based optimization for ultrashort pulse

laser drilling in dielectrics based on an iterative deep neural network which is trained to

predict microchannel structure after a small number of irradiated pulses. Our approach

predicts the development of hole shapes over a wide variety of conditions and allowed the

discovery of 20% more energy efficient processing strategies than in the initial experimental

data. More broadly, our approach can address realistic problems in laser processing

considering a variety of processing parameters, and thus enabling improved performance of

next-generation smart laser processing systems.
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As the manufacturing industry evolves towards a paradigm
of mass customization1,2, there is a rising demand for
cyber-physical systems3,4 that can efficiently manufacture

tailored products for individual customers. Laser processing is a
candidate component for such manufacturing systems due to its
precision, versatility, and compatibility with computer-aided
control5,6.

A key concept of cyber-physical systems is simulator-based
optimization, which is the search for an optimal processing
condition to produce a target design using a simulator. In this
paper, we will refer to a simulator as a numerical model that can
predict a structure produced under a given processing condition.
The advantage of simulator-based optimization is that one can
perform an optimal search on a computer without the need for
trial-and-error in physical space. The utility of a simulator for
optimization is directly linked to its range of validity, which
provides hard bounds to the possible search space. Such limits
often correspond to the range of the experimental data used for
tuning the model7–10. In laser processing, expanding this range of
validity and hence, creating a truly useful simulator, remains
challenging due to the difficulty of constructing a model able to
encompass the enormous parameter space available for laser
processing.

Notwithstanding, extensive studies have been performed to
construct models for laser processing. The approaches taken in
these studies can be roughly categorized as microscopic or phe-
nomenological. The microscopic approach models laser proces-
sing from the bottom-up from basic physical equations, and has
helped elucidate fundamental processes such as electronic exci-
tation and atomic motions;11–17 however, a model that can pre-
dict structures on a practical scale has yet to be achieved. This is
because laser processing is the accumulation of numerous phe-
nomena distributed over a vast spatiotemporal scale, many of
which are still under intense debate18–20. Therefore, the micro-
scopic approach is not yet applicable for simulator-based opti-
mization. The phenomenological approach, on the other hand,
focuses on creating simplified models of ablation processes tuned
with experimental data to reproduce experimental observations.
Various phenomenological models that can output structure
have been developed, differing in the number of fitting
parameters21–29. These models work well for optimization pro-
blems where the parameter space to be explored has a few
dimensions. However, a realistic problem in laser processing
often involves a variety of processing parameters, as well as
diverse processing methods where parameters are dynamically
modulated, which have been made available by recent advances in
laser processing30–32.

Optimization across parameter-modulated conditions involves
a much higher-dimensional search space than for parameter-
constant conditions, since parameters can take arbitrary values
within their respective range for every step in the process. An
increase in dimensions leads to an exponential increase in the
number of possible conditions. For example, in a simple case
where a parameter value can take M discrete values and the
number of steps in the process is N, the number of parameter-
constant conditions is M×N, while the number of parameter-
modulated conditions is MN (Fig. 1a). Therefore, the realization
of a simulator applicable to high-dimensional optimization using
conventional phenomenological approaches would require an
infeasible amount of fitting data, and there has been no report on
such high-dimensional optimization.

Here, we report on the demonstration of simulator-based
optimization conducted across a much higher-dimensional space
than that of the fitting data, in ultrashort pulse laser drilling of
glass. The fabrication of high-aspect ratio microchannels in brittle
materials such as glass is a key process in various fields, ranging

from microfluidics33,34 to IC packaging35,36. Ultrashort pulse
laser drilling is a promising method for realizing such structures
with speed and precision37,38. However, it remains a challenge to
find the optimal drilling condition that produces a microchannel
of given design, as the drilled structure depends greatly on
numerous laser parameters37,39–46, and effects such as nonlinear
absorption and beam propagation further complicate ablation
mechanisms compared to metallic materials29–31. In this work,
we aimed to construct a laser drilling simulator which can be used
to rapidly find an energy-efficient drilling condition for a
microchannel of given structure. Energy efficiency is an impor-
tant optimization objective in the field of laser processing, as the
realization of sustainable and carbon neutral technologies is
desired in various fields of machining. The simulator was con-
structed using an iterative deep learning scheme47 which enables
optimal search across a vast parameter space previously unac-
hievable by conventional deep learning-based methods. Using
this simulator, we conducted a virtual grid search for 46,656
different pulse energy-modulated drilling processes in less than
2 h. From the grid search result, we discovered a modulation
condition 20% more energy-efficient than any of the experimental
data on which the simulator was trained, and this optimal con-
dition was successfully validated (See Supplementary Fig. 8 for an
overview of the operations conducted in our work). This work
verifies the potential of our deep learning-based approach for the
realization of next-generation smart laser processing systems with
predictive capabilities.

Results
Training and simulation scheme of the deep learning-based
simulator. In this section, we provide an overview of our deep
learning-based scheme for developing a simulator for deep hole
drilling of glass. Deep learning48 is a subfield of machine learning,
where a multi-layer function called the deep neural network
(DNN) is used to approximate input-output relationships. Its
advantage over other machine learning methods is that the DNN
can be designed and trained to directly approximate relationships
between high-dimensional data such as images, which can be
attributed to the massive amount of fitting parameters composing
the DNN. Due to this advantage, deep learning has been
applied to various tasks in laser processing such as the prediction
of processing results27,28,47, feature extraction49,50, quality
evaluation49, and fetching the used processing parameters51.

In order to develop a simulator for deep hole drilling of glass,
we employed an iterative deep learning-based scheme where a
DNN is trained to predict the processed result after a small
number of irradiated pulses. Once the DNN is trained, a full
drilling process consisting of many irradiated pulses can then be
simulated by iteratively re-inputting the predicted output of the
DNN into itself. Using this scheme, we developed a DNN which
takes a pulse energy value and the current microchannel
structure as inputs, and predicts the resulting microchannel
structure after 10 irradiated pulses. Our scheme allows the
straightforward simulation of drilling processes of arbitrary pulse
number, as well as practical processes where pulse parameters
such as energy and polarization are dynamically modulated30–32.
This scheme is fundamentally different from the conventional
deep learning-based scheme for laser processing applications for
processing result prediction27,28 where a DNN is trained to
directly predict the final outcome of the entire process without
iteration.

A conceptual diagram of the training process and simulation
method is shown in Fig. 1. First, the training data for the DNN
was collected (Fig. 1b). Laser drilling was performed on a sheet
of borosilicate glass with an ultrashort pulse laser (800 nm,
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35 fs, 1 kHz repetition rate), during which a series of
transmissive images of the drilled microchannel was captured
with a high-speed camera. The camera was synchronized with
the repetition of the laser, enabling real-time acquisition of the
microchannel image after every irradiated pulse (See Methods
for details on experimental setup). Transmissive images were
collected for drilling processes of 1000 pulses and constant
pulse energy. The pulse energy was fixed to 25 different values,
ranging from 10 μJ to 250 μJ in 10 μJ increments. Three drilling
experiments were repeated for each pulse energy condition, and
the data collected for two trials were used to train the DNN,
while the remaining data was left out for validating the DNN

during training. Once the transmissive images were collected,
the structure of the drilled microchannel was extracted from
each image as a black-and-white image representing the region
free of glass, which we will refer to as a vacancy map (Methods).
The vacancy maps were re-arranged into numerous pairs of
maps 10 pulses apart (Supplementary Fig. 5), and a DNN was
trained to reproduce the latter map of the pair when it received
an input of the former map and pulse energy value (Fig. 1c). By
using the trained DNN in an iterative manner, we were able to
obtain a sequence of vacancy maps representing the transient
growth of the microchannel after every 10 irradiated pulses
(Fig. 1d).

d

...

n

Fig. 1 Diagram of the exponential expansion of the optimization space for higher dimensions, and the construction of a simulator for optimization in
such spaces. a Schematic comparison between parameter-constant conditions (green box) and parameter-modulated conditions (blue box). b–d Training
and simulation scheme of the DNN simulator. b Collection of the training data using a high-speed camera. c Training process of a deep neural network
(DNN). The red region in the right vacancy map indicates the newly drilled area of the microchannel. d Iterative simulation using the trained DNN.
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Evaluating the accuracy of the DNN for trained conditions. In
order to evaluate the applicability of our DNN simulator to
optimization, we first investigated whether the DNN could
reproduce the drilling processes on which it was trained. While the
DNN was trained to predict the change of microchannel structure
over 10 pulses, the evaluation focused on whether the DNN could
reproduce the final structure over several hundred pulses.

Simulations of 1000 pulses were conducted for pulse energies
of 10 μJ to 250 μJ in 10 μJ increments, and the predicted vacancy
maps were compared to that of the actual experimental data. The
simulation results and corresponding experimental data for
drilling processes at three different pulse energies (50 μJ, 150 μJ
and 250 μJ) are shown in Fig. 2 and Supplementary Movies 1–3.
The visual comparisons (Fig. 2a–c) show that the final
microchannel shape predicted by the simulator reproduces the
experimental data. The transient evolution of the microchannel
depth was also compared between simulation and experiment
(Fig. 2d). For pulse energies 50 μJ and 150 μJ, the simulation
reproduces the linear rise and eventual saturation of the
microchannel depth. As for the plot for 250 μJ, the saturation
of the microchannel depth is due to the microchannel approach-
ing the bottom edge of the vacancy map (Fig. 2c) which was
limited by the imaging range of the high-speed camera
(Methods); the actual saturation of depth occurred beyond 800
pulses. As a quantitative method to evaluate the accuracy of the
DNN simulator, we chose to calculate the relative error of drilled
depth. The average relative error for all predicted microchannels
with depths between 50 μm and 554 μm (Methods) was found to
be 3%, indicating the high accuracy of the DNN simulator for
energy-constant drilling conditions.

Evaluating the ability of the model to simulate pulse energy-
modulated drilling processes. Once confirmed that the DNN
could reproduce the change of microchannel structure over sev-
eral hundred pulses for energy-constant drilling conditions
included in the training data, we evaluated the predictability of
the DNN for conditions where the pulse energy is modulated
during the drilling process. Here, the difference between energy-
constant conditions and energy-modulated conditions should be
noted in detail: although the processing parameters (pulse energy
and number of pulses) and their range are the same for both types
of conditions, the latter has a much higher degree of freedom, or
number of dimensions, since the pulse energy value can take a
different value every 10 pulses (Fig. 1a). Therefore, the evaluation

of predictability for energy-modulated conditions was a test of
whether our simulator could make valid predictions across a
much higher-dimensional space than that from which the train-
ing data was collected, which has not been achieved by conven-
tional deep learning-based schemes as well as other interpolation
methods26,52,53 applied to laser processing.

Two basic energy modulations were chosen as test cases: an
upward modulation where the pulse energy increases mono-
tonically during the process, and a downward modulation with
the opposite feature. The pulse energy was set to increase (or
decrease) every 200 pulses, and the increase (or decrease) was
repeated 4 times to produce a sequence of 800 pulses (Fig. 3a, c).
Both modulations shifted between 4 discrete pulse energy values
(37 μJ, 125 μJ, 213 μJ and 250 μJ). A third condition, where the
pulse energy is constant (125 μJ) and the total pulse energy is
equal to the other two conditions, was chosen as a reference
(Fig. 3b). The energy-modulated drilling processes were simu-
lated by setting the input pulse energy of the DNN to the
prescribed value for each iteration. The experimental validation
of the modulation conditions was conducted using the same
experimental setup used for training data collection (see
Methods).

The simulation result and corresponding experimental result
for the three conditions are shown in Fig. 3d–f. Comparing the
experimental results in Fig. 3d–f, it can be observed that different
modulations produce microchannels of different structure even
under equal total pulse energy. This can be attributed to the fact
that the distribution of energy deposited in the glass depends
greatly on the structure of the microchannel created by the
previous pulses, since the microchannel shape alters both
propagation and absorption characteristics of the subsequent
pulses. Figure 3 shows that the simulator was able to reproduce
the tendency that a downwards modulation produces a deeper
microchannel than an upwards modulation. The simulator was
able to predict the final drilled depth for the three conditions with
an average relative error of 5% in depth. The simulator was not
able to reproduce certain features of the drilling process such as
the bending of the microchannel in Fig. 3f, which can be
attributed to the re-deposition of ablated material on the inner
walls of the microchannel, creating an asymmetry in the
propagation of subsequent pulses41,43.

Optimization. Once we confirmed that our DNN simulator
could make accurate predictions for basic energy-modulated

Fig. 2 Comparison of simulation and experiment for drilling conditions included in the training data. a–c Simulation result and experimental data of the
drilled microchannel for pulse energies of a 50 μJ, b 150 μJ and c 250 μJ. Scale bar is 100 μm. d Change of microchannel depth over multiple irradiated
pulses for three pulse energies. Solid lines correspond to the simulation result, and the red points correspond to the experimental data. Horizontal dashed
line indicates the distance between the glass surface and bottom edge of the vacancy map, which is 554 μm. Error bars show the error of the drilled depth
calculated from three experimental trials.
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conditions not included in the training data, we applied our
simulator to an optimization problem involving a high-
dimensional search space consisting of diverse modulation con-
ditions. The objective of optimization was chosen to be the total
pulse energy required to drill a microchannel of a given depth, as
energy efficiency is an object of industrial interest in the field of
laser processing54. We conducted an extensive grid search
simulation across a multitude of energy-modulated conditions,
and searched for the condition that drills a microchannel with the
least total energy.

The grid simulation was conducted as follows. All modulations
consisted of 1200 pulses and were chosen to be 6-step sequences,
each step consisting of 200 pulses. The energy value of each step
was taken from 6 discrete energy values for a total of 66 ¼ 46; 656
modulation patterns. It is worth noting that, due to the increase in
dimensions, this quantity is considerably greater than the number
of energy-constant drilling conditions the DNN was trained on,
which was 25. One hundred and twenty vacancy maps were
obtained from each modulation simulation, corresponding to each
of the 120 iterations for the DNN to simulate a 1200-pulse drilling
process. The time required for the DNN to simulate all
modulations was under 2 h on typical consumer-grade hardware.
The data collection for 25 energy-constant drilling conditions took
2 h with our setup, including the time required for translating and
replacing the glass sample; therefore, an experimental grid search
covering all 46,656 drilling conditions would take 5 months.
Several examples of the simulated modulation conditions and the
corresponding results from the grid search are shown in
Supplementary Fig. 7. The entire grid search result was then
visualized by plotting the predicted microchannel depth versus
total pulse energy for each simulated modulation.

The grid search visualization result is shown in Fig. 4a. Each
blue point in the figure corresponds to a simulation result under a
different energy modulation or number of pulses. Here, the
plotted grid simulation conditions are limited to those that our
experimental setup was capable of experimentally validating, the
number of such conditions being 950 out of 46,656 (see
Methods). Considering the 120 intermediate simulation results
for each of the 950 conditions, a total of 29,560 results with
unique modulation and number of pulses were obtained and
plotted. As a reference, the experimental results for constant
drilling conditions included in the training data (10 μJ to 250 μJ in
10 μJ increments) are plotted as a cluster of red points. The blue
cluster is distributed more broadly than the red cluster, showing
that energy-modulated processes produce diverse structures that
cannot achieved by energy-constant drilling, according to the
DNN simulator.

The plot was utilized to find the most energy efficient
condition that realizes a given microchannel depth. The red
circle and red triangle correspond to the most and least energy-
efficient condition to realize a microchannel depth of 500 μm
among all constant drilling conditions, respectively. For both
conditions, the simulation results agree well with experiment, as
shown in Fig. 4c, d. The most energy-efficient condition among
modulated conditions for 500 μm is indicated by a blue circle,
which lies left of the red circle by 20%. This prediction implies
that a 500 μm-deep microchannel could be achieved with 20%
better energy efficiency than constant drilling by modulating the
pulse energy. The optimal condition predicted by the DNN was
validated by experiment, as shown in Fig. 4b and Supplementary
Movie 4. The DNN was able to predict the final structure of the
microchannel with a relative error of 6% in depth. Such optimal

Fig. 3 Comparison of simulation and experiment for three different energy-modulated conditions with equal total energy. a–c Pattern of (a) downward
modulation, (b) constant, and (c) upward modulation. d–f Experimental result (left) and simulation result (right) for (d) downward modulation, (e)
constant, and (f) upward modulation. Scale bar is 100 μm.
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modulation conditions exist for other depths, as shown by the
blue line tracing the left edge of the blue cluster.

Discussion
We succeeded in discovering and validating an optimal mod-
ulation condition outside the training data, with an energy effi-
ciency unachievable by any constant drilling condition. Since the
depth of the microchannel was the main feature chosen for
evaluating the validity of our DNN simulator, it may seem that a
simulator simply predicting depth would have been sufficient for
optimization; however, it is to be emphasized that the change of
structure caused by subsequent pulses depends greatly on the
structure of the initial microchannel, and the drilling process
cannot be described simply by depth. Moreover, our simulator
can easily be utilized for optimizing quantities other than depth
such as aspect ratio or inner wall curvature. Although a grid
search was employed in this study to demonstrate the applic-
ability of our simulator to high-dimensional optimization, the
employment of a more time-efficient algorithm is of high interest,
since even a virtual grid search becomes less feasible with the
expansion of the search space, due to computational limits.

The application of our simulator also extends to other
important tasks in laser processing, such as rapidly investigating
the effect of processing parameter fluctuations on the final pro-
cessing result to determine processing windows. On a broader
scale, our iterative deep learning-based scheme for deep hole
drilling can be used to develop even more versatile simulators,
which take multiple pulse parameters as inputs, and predicts
features other than structure such as distribution of peripheral
damage. This research verifies the potential of our simulator
development approach for the realization of next-generation
smart laser processing systems.

Methods
Experimental setup. The sample used was a thin borosilicate glass sheet from
Matsunami Ltd, with a planar dimension of 18 mm × 18mm and a thickness of
0.12–0.17 mm. Laser drilling was performed using a mode-locked, regeneratively
amplified Ti:Sapphire laser system (Astrella, Coherent), operating at 800 nm with
35 fs pulse duration and 1 kHz repetition rate. The pulse was focused onto the
surface of the thin side of the glass using a plano-convex lens with a focal length of
150 mm. The diameter of the beam spot was measured to be 30 μm. The glass was

illuminated by a 637 nm laser diode from a direction perpendicular to that of the
drilling pulse, and the transmitted light was imaged onto a high-speed camera
with a sensor of 1024 pixels × 1024 pixels (FASTCAM Mini AX50, Photron). The
camera was synchronized with the repetition of the laser using a delay generator
(DG645, Stanford Research Systems), enabling real-time acquisition of the drilled
microchannel image after every irradiated pulse. A polarization beam splitter and a
half-waveplate mounted on a mechanical rotational stage was inserted before the
focusing lens for pulse energy adjustment. The imaging range of the camera was
614 μm× 614 μm, and transmissive images of 144 μm width and 576 μm depth
were cropped from the full range to be later converted to vacancy maps. See
Supplementary Fig. 1 for a diagram of the experimental setup.

Generation of vacancy maps. The main objective of converting the collected
transmissive images to vacancy maps was to prepare a dataset that only contained
structural information on the microchannel, and therefore, prevent the DNN from
making predictions based on features irrelevant to the drilled microchannel. Such
irrelevant features include damage formed on the lateral surface of the glass, and
interference patterns caused by back reflection between the glass and optical
components (Supplementary Fig. 2). The lateral damage was formed during the
drilling process but remotely from the microchannel, as was observed by a scan-
ning electron microscope (Supplementary Fig. 3). The spatial extent of the lateral
damage depended on pulse energy and were thought to be attributed to the
interaction of the lateral surface with either the refracted portion of the pulse or
shockwaves formed at the tip of the microchannel. Although lateral damage was
removed from the vacancy maps to limit the scope of the simulator to micro-
channel structure, the inclusion of such features in the training data to construct a
simulator applicable to damage prediction and reduction is an interesting problem
to be discussed in future works.

Polarization microscopy was also conducted on a few sample microchannels, in
order to image microscopic cracks extending directly from the microchannel, and
to investigate any possibilities of erroneously detecting such cracks as ablated
regions in the transmissive image. As a result, we found that the cracks visible in
the polarization image did not appear as clearly as the ablated region in the
transmissive image, therefore eliminating the possibility of mistaking a crack for an
ablated region (Supplementary Fig. 9).

An additional advantage of training the DNN on vacancy maps was that the
predicted outputs could be easily interpreted and analyzed. Since the region of
black pixels represents the spatial extent of the drilled microchannel, basic
quantities such as channel depth and width profile could be calculated by
measuring the dimensions of the black region.

Vacancy map generation was conducted by inputting the transmissive images
into a DNN different from the DNN simulator. This DNN took a U-Net
structure55 (Supplementary Fig. 4), and was trained in advance on 600 pairs of
transmission images and manually extracted vacancy maps. The weights of the
DNN were optimized using the Adam algorithm56 to minimize the mean-squared
error, which was calculated by averaging the squared error of each pixel of the
vacancy map. The training was run for 300 epochs.

d

Fig. 4 Results of the virtual grid search and optimization. a Visualization of grid search result. Red plots correspond to the simulation results of constant
drilling conditions included in the training data. Blue plots correspond to modulated conditions not included in the training data. Horizontal solid line
corresponds to a depth of 500 μm. Horizontal dashed line indicates the distance between the glass surface and bottom edge of the vacancy map, which is
554 μm. The blue circle indicates the most energy-efficient condition among modulated conditions for realizing a 500 μm-deep microchannel. The red
circle and red triangle indicate the most and least energy-efficient condition among constant drilling conditions, respectively. b–d Pulse energy sequence
(top), simulation result (bottom right), and experimental validation result (bottom left) for (b) most efficient energy-modulated condition, (c) most
efficient energy-constant condition, and (d) least efficient energy-constant condition to produce a microchannel of 500 μm depth. Dotted lines are drawn
at a depth of 500 μm. Scale bar is 100 μm.
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Once all transmissive images were converted to vacancy maps, the maps were
re-arranged into numerous pairs of maps 10 pulses apart to be used as the training
data for the DNN (Supplementary Fig. 5). The interval value of 10 irradiated pulses
was chosen so that the difference in depth between the input and output
microchannel during the early stages of the drilling process was greater than 5 μm,
corresponding to a few pixels in the vacancy map; when the DNN was trained on
pairs that were only 1 irradiated pulse apart, the DNN made erroneous predictions
where the microchannel would either recede midway or not evolve at all, and this
effect was attributed to the inability of the DNN to detect the few pixels’ difference
of depth between the input and output vacancy map. The training was conducted
on a graphics processing unit (RTX A6000, NVIDIA).

Calculating the relative error of predicted depth. The relative error of depth was
calculated by dividing the depth difference between the predicted and target
microchannel by the depth of the target microchannel. The depth of both predicted
and target microchannels were measured by counting the number of black pixels
from the surface to the bottom of the microchannel in the vacancy map. As for the
training accuracy of the DNN simulator, the relative error of depth was calculated
for all predicted microchannels with depths between 50 μm and 554 μm, and
averaged. The lower limit of 50 μm was chosen since a typical microchannel for
industrial application has an aspect ratio exceeding unity, and the average width of
the microchannels produced in this experiment was 50 μm. The upper limit of
554 μm corresponds to the distance between the glass surface and bottom edge of
the vacancy map.

Although the main metric used in this research to evaluate the error of the
simulation result was error of depth, an alternative and more 2D-oriented method
is to compare the volume of the microchannel between the predicted and target
image. A volume of a microchannel can be calculated by adding up the square of
the microchannel halfwidth at each depth, assuming that the microchannel is
axially symmetrical. Using this method, the relative error of volume can be
calculated by dividing the difference in volume by the volume of the target
microchannel. For example, the relative volume error for the simulation result in
Fig. 4d is 3%.

Training specifications of the DNN simulator. The structure of the DNN
simulator was chosen to be a modified version of the U-Net structure, where a
multi-layer perceptron branch taking a pulse energy value as input was merged at
the encoding layer of a conventional U-Net structure which took a vacancy map as
input (Supplementary Fig. 6). Therefore, a single training data consisted of two
inputs and one output: the initial vacancy map and the pulse energy as the two
inputs, and the resulting vacancy map as the single output. In addition to the
vacancy maps generated from the experimental data, zero-energy data were arti-
ficially created and added to the training dataset, where the input energy value was
zero, and the input and output vacancy maps were identical. This augmentation
was based on the physical assumption that the structure of a microchannel does not
change when there is no incident pulse, i.e. the pulse energy is zero. The rapid and
efficient preparation of training data is a key ingredient for an effective deep
learning application, and data augmentation methods such as the one conducted in
our work are powerful techniques for achieving this, especially when there is a limit
to how rapidly one can collect data by experimental means. Once augmented, the
full dataset consisted of 28,167 data. The DNN was trained on this dataset for 300
epochs. The weights of the DNN were optimized using the Adam algorithm to
minimize the mean-squared error between the predicted map and target map.

Specifications of the experimental validation of the energy-modulated pro-
cesses. For the experimental validation of energy-modulated drilling processes, an
additional polarization beam splitter and half-wave plate were inserted into the
setup (Supplementary Fig. 1), and the waveplate was mounted on an electrical
rotational stage (ELL14K, Thorlabs). The rotation angle of the stage per single step
was fixed. The rotation direction for each step was controlled via a microcomputer
board (Arduino Uno Rev 3). The actual pulse modulation was measured by
monitoring the residual transmitted light from a turning mirror with an oscillo-
scope (DSOX3054T, Keysight). It is to be noted that the modulated drilling pro-
cesses realized with this modulation system were not included in the training data,
and only used for the validation of the DNN simulator.

Specifications of the grid search simulation. The energy values of each mod-
ulation step were taken from 6 discrete energy values: 17 μJ, 62 μJ, 125 μJ, 188 μJ,
233 μJ and 250 μJ. These values correspond to the pulse energy values that could be
obtained by rotating the waveplate from 0° to 45° in 45°/6= 7.5° increments, with
the maximum pulse energy set to 250 μJ. The number of pulses per modulation
step was set to 200, corresponding to a duration of 200 ms. The value of 200 ms was
chosen to be sufficiently greater than the time required for the waveplate to rotate
7.5°, which was measured to be 10 ms. The 950 simulated conditions plotted in
Fig. 4 were limited to conditions where the pulse energy values of each step were
adjacent to or equal to one another, since the waveplate could only be rotated in
three ways (clockwise, anti-clockwise, or static) for each step.
950 × 120= 114,000 simulation results were obtained from the grid simulation
including the intermediate vacancy maps, and duplicate conditions with the same

number of pulses and energy modulation were excluded to yield 29,650 unique
simulation results. For most energy modulations with multiple energy values close
to 250 μJ (Supplementary Fig. 7d, i), the microchannels reached the bottom edge of
the map at around 800 pulses, and after 1200 pulses the microchannel exceeded the
bottom edge. Therefore, the majority of the microchannels shallower than the
bottom edge was drilled in less than 800 pulses, which was also the case for the
modulation conditions in Fig. 4b–d.

Computer specifications. The training of the DNN models and the grid search
optimization was conducted on a computer with an AMD X399 motherboard,
whose power was supplied by a 1500W power unit (AX1500i, Corsair). The
motherboard hosted a CPU with 64 threads and a base clock frequency of 3 GHz
(Ryzen Threadripper 2990WX, AMD), eight 16 GB memories (CD16G-D4UE2666,
Century Micro), and two GPUs (RTX A6000, NVIDIA). Only one of the two GPUs
was used in this work.

Data availability
The source data for Fig. 2d and Fig. 4a is provided as Supplementary Data 1 and
Supplementary Data 2, respectively. Other data used in this paper are available from the
corresponding author upon reasonable request.

Code availability
The DNN models were written in Python and are available from the corresponding
author upon reasonable request.
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