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Machine learning for flow-informed aerodynamic
control in turbulent wind conditions
Peter I. Renn 1✉ & Morteza Gharib 1

Control of aerodynamic forces in gusty, turbulent conditions is critical for the safety and

performance of technologies such as unmanned aerial vehicles and wind turbines. The pre-

sence and severity of extreme flow conditions are difficult to predict, and explicit modeling of

fluid dynamics for control is not feasible in real time. Model-free reinforcement learning

methods present an end-to-end control solution for nonlinear systems as they require no

prior knowledge, can easily integrate different types of measurements, and can adapt to

varying conditions through interaction. Here, we show that reinforcement learning methods

can achieve effective aerodynamic control in a highly turbulent environment. Algorithms are

trained with different neural network structures, and we find that reinforcement learning

agents with recurrent neural networks can effectively learn the nonlinear dynamics involved

in turbulent flows and strongly outperform conventional linear control techniques. We also

find that augmenting state observations with measurements from a set of bioinspired flow

sensors can improve learning stability and control performance in aerodynamic systems.

These results can serve to inform future gust mitigation systems for unmanned aerial vehicles

and wind turbines, enabling operation in previously prohibitively dangerous conditions.
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Atmospheric winds are often turbulent, containing tran-
sient flow disturbances which result in intermittent
aerodynamic forces1. These forces affect many systems

and structures, but are especially impactful on inherently aero-
dynamic technologies. For example, unmanned aerial vehicles
(UAVs) and wind turbines both rely on fluid interaction for
normal operation, but can be damaged or destroyed when
operating in turbulent wind conditions2–4. Mitigating the effects
of these turbulent forces through active control strategies is an
ongoing challenge for both UAV and wind turbine
applications3–9. However, turbulent conditions in the atmosphere
are highly nonstationary and nonlinear making them difficult to
model or control in real-time1,10.

Biological systems have long inspired engineers aspiring to
develop systems robust to chaotic environments. Along with
inertial and visual cues, sensed through vestibular, proprioceptive,
or ocular systems, some animals navigate turbulent and unsteady
environments through the use of biological flow sensors11. For
example, the lateral line is a sensory system common to most fish
species, and is typically made up of hundreds of neuromasts
located all along the fish’s body12. The flow information observed
by the lateral line allows fish to sense disturbances remotely,
which can be used for finding prey, avoiding predators, achieving
schooling formations, and navigating turbulent waters13–16.
Similarly, often admired for their acrobatic flight capabilities, bats
have a set of microscopic hairs located on their wings that sense
airflow and may enable enhanced control of unsteady
aerodynamics17–19. Finally, large sea birds of the Procilliforme
family (e.g. Wandering Albatross, Giant Petrel) use their tubular-
shaped nostrils to sense and ride turbulent air gusts from
breaking waves, allowing for long-distance flight with minimal
energy expenditure20.

The impressive capabilities of these biological systems have
previously motivated research for enhanced control of under-
water and aerial autonomous vehicles through bio-inspired flow
sensors21–28. This work has generally implemented basic
proportional-integral-derivative (PID) control techniques when
testing flow sensory systems. While PID control is very effective
for systems that can be linearized, the dynamics of turbulent flow
are strongly nonlinear and cannot be reduced to even locally
linearized approximations10,29,30. To properly realize the poten-
tial of bio-inspired flow sensing for control, nonlinear control
methods are needed.

Model-free reinforcement learning (RL) is a machine learning
framework that can be formulated to control nonlinear systems
without any prior knowledge or modeling of the system
dynamics. RL methods were principally inspired by biological
learning theories regarding how animals learn new behaviors
through repeated trial-and-error31. In RL, these trial-and-error
interactions fit the formal framework of a Markov decision pro-
cess framework (Fig. 1a), where discrete time steps consist of
observing the state of the environment and choosing an action
based on that observation. A numerical reward associated with
each previous interaction is used to learn and improve the action
decision-making. Observations can be comprised of any available
state information, which the agent learns to interpret through
experience alone. Actions can consist of any actuations or
manipulations that the agent can physically realize. Capable of
learning control policies and observation interpretations through
direct interactions with physical phenomena, it may hold
potential for flow-informed aerodynamic control in turbulent,
non-stationary conditions32.

Here, we experimentally investigate the use of state-of-the-art
RL methods provided integrated flow information for aero-
dynamic control in a highly turbulent and vortical environment.
RL algorithms are implemented on an aerodynamic testbed

consisting of a wing with actuated trailing-edge flaps. Responding
to incoming disturbances at each time-step by adjusting the
position of the trailing-edge flaps to control the aerodynamics of
the system, we set the goal of minimizing the standard deviation
of lift in an unsteady, turbulent flow field. The wing system fea-
tures an array of pressure sensors used to observe the aero-
dynamic state, and is mounted on a load-cell which can be used
to observe the inertial state. We use recurrent neural networks
(RNNs) to improve learning in a highly stochastic and partially
observable physical environment that cannot be simulated trivi-
ally in a computational setting. Through these wind tunnel
experiments, we show that RL agents are able to effectively
integrate flow knowledge and achieve superior disturbance
rejection relative to a conventional linear controller (i.e. PID).
Overall, we find that model-free RL methods are capable of
learning and controlling physical aerodynamic systems in tur-
bulent and highly irregular flow fields.

Fig. 1 Basics of experimental setup and design. a Schematic depicting the
use of a Markov decision process framework, where agents take actions
based on their observations of their environment, to address the problem of
turbulent disturbances. b Symmetric airfoils produce zero lift when aligned
with uniform flow. Changing the position of a trailing edge flap can change
the coefficient of lift and create an aerodynamic force either upward or
downward. c The wing system used for training featured a modular design,
as shown by the different color sections. Each section is removable and
replaceable, and the locations of flow sensors are labelled. The wing is 1 m
in length (see Methods for more details). d The system was trained in the
wake of an asymmetric bluff body in a conventional closed-loop wind
tunnel. The cylindrical portion of the bluff body has diameter of 30 cm, and
was placed 170 cm upstream of the wing system.
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Results
Flow-informed aerodynamic testbed. The problem of an aero-
dynamic system in turbulence was abstracted and generalized to a
basic setting. We developed a testbed consisting of a symmetric
airfoil with motorized trailing-edge flaps and integrated flow sen-
sors. A generic platform such as this is ideal for aerodynamic study
as it can easily be abstracted to more specific applications such as
fixed-wing UAVs and wind turbine blades. In a uniform flow
symmetric airfoils have lift coefficient CL ¼ 0 at 0� angle-of-attack,
which means no aerodynamic force is produced in the upwards or
downwards direction. As illustrated in Fig. 1b, the lift coefficient of
a symmetric airfoil in a uniform flow can be manipulated by
adjusting the position of a trailing-edge flap which results in a non-
zero force along the lifting axis.

The wing system (Fig. 1c) was designed to be modular, allowing
for variation of sensor type and placement. For this work, the
model was configured to include nine sensors at different positions
placed 10 cm apart from one another along the spanwise axis. The
center position sensor featured a pitot-static tube for measuring
mean flow velocity. The remaining eight sensors consisted of
pressure taps placed at various chord lengths near the leading edge
(details in Methods). The locations of the sensors were chosen
based on previous works for aerodynamic parameter estimation
from sparse on-body flow measurements33,34.

Turbulent environment. Bluff body wakes are a well-studied
problem in fluid mechanics. Famously, these wakes can feature a
phenomenon commonly known as a Kármán vortex street which
consists of alternating vortices shedding at a fixed frequency.
However the behavior of vortex shedding in a bluff body wake
can change, and there exists a well-established relationship
between this behavior and the Reynolds number of the flow35–38.
At a sufficiently high Reynolds number the wake becomes tur-
bulent and vortex shedding, while still present, becomes less
regular (Fig. 2a)36. To simulate a gusty environment, we placed
our wing system in the wake of a large, asymmetric bluff body
which was mounted on elastic bands in a wind tunnel (Fig. 1d).
The asymmetry of the body and dynamic mounting produces
highly irregular turbulent disturbances. This flow field is not
intended to exactly match any specific atmospheric conditions,
but rather to create challenging environment with frequent large
amplitude vortical disturbances.

A hot-wire anemometer, placed near the leading edge of the
wing, characterized the velocity, turbulence intensity, and
frequency spectrum of the flow (see Methods for details). The
mean velocity was recorded as 6.81m s−1, which corresponds to a
Reynolds number of approximately ReD � 230,000 over the bluff
body. Figure 2b depicts the power spectral density calculated from
the hot-wire anemometer measurements. Here we see a peak at
2.44 Hz, which can be assumed to be the primary vortex shedding
frequency. This corresponds to a Strouhal number of St ¼ 0.19,
which is in good agreement with the expected value for a bluff body
wake at this Reynolds number36. However, the power spectrum
also suggests that there is much energy stored at frequencies lower
than the primary vortex shedding frequency, given the width of the
high-energy, low frequency region. This indicates that flow
disturbances are highly irregular in length and time scales and
demonstrates the presence of gust-like disturbances arriving at
random intervals. We also note the energy decay beginning at the
primary shedding frequency which follows a −5/3 power law,
agreeing with theory of the turbulent energy cascade39,40.

Model-free reinforcement learning. To achieve flow-informed
aerodynamic control of our wing system, we implemented the
twin delayed deep deterministic policy gradient algorithm (TD3)

as well as variant known as LSTM-TD341,42. These are off-policy
actor-critic type algorithms which use neural networks to make
control policy decisions (see Methods). TD3 was previously
deployed successfully for experimental flow control in a different
setting43. LSTM-TD3 features a modification to the neural net-
work structure of TD3 to include recurrent long-short-term-
memory (LSTM) cells. The presence of recurrent cells in neural
networks can considerably improve performance in partially
observable systems, which can impact performance and predic-
tion in highly stochastic settings such as the development of
turbulent flows42,44. Since training RL algorithms is an inherently
stochastic process, we trained each of the agents presented here
with five separate random seedings and averaged the results to
show general performance. Each agent was trained for 200 epi-
sodes which took approximately 150 min per agent.

Through training, RL algorithms attempt to learn control
policies that maximize a numerical reward signal which is
prescribed beforehand to set the desired goal of learning. We
designed our reward to hold a constant lifting force (arbitrarily
set to zero) in the presence of flow disturbances, setting it equal to
Ri ¼ � Liþ1

� �2
, where Ri is the reward at timestep i, and Liþ1 is

the lifting force at timestep iþ 1 (see Methods for details). A
perfect system would achieve zero lifting force at each timestep,
giving a maximum possible reward equal to zero. We can use the
mean accumulated reward of each episode as a measure for
comparison between algorithms and as a basic indicator of
learning behavior. As the name implies, the mean accumulated
award is the sum of rewards accumulated in a single episode

f -(5/3)

a

b

Fig. 2 Characterization of turbulent flow conditions. a Smoke
visualizations showing the turbulent wake of a standard cylinder at
Reynolds number ReD � 50;000. This was taken in the Caltech Center for
Autonomous Systems and Technologies fan-array wind-tunnel at a lower
Reynolds number for purposes of visualization. The actual flow conditions
used for testing and training were too turbulent for effective smoke
visualization. b Power spectrum measured in the bluff-body wake plotted
logarithmically. We note the peak frequency at 2.44 Hz (dashed line), the
relative width of the high-energy low-frequency region (left of dashed line),
and the –5/3 slope energy decay that agrees with turbulence theory (right
of dashed line)39,40.
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averaged across the five agents. We also use the standard
deviation of lift calculated from the time-histories of each episode
to evaluate performance directly related to disturbance rejection.

Comparison with baseline control methods. As a metric of
baseline performance, we compared the RL algorithms with basic
PID control. The PID controller was tuned manually and set to
achieve constant zero lift with feedback from forces measured by
the load cell. LSTM-TD3 and TD3 agents were provided near
identical network parameters (see Methods). To gauge how the
respective control policies reduce the effect of flow disturbances,
we also measured the wing system sitting passively in the tur-
bulent environment for comparison. Due to the randomized
nature of training model-free algorithms, performance and con-
sistency of learning are both important metrics when evaluating
the behavior of RL agents. The fully trained RL agents, PID
control, and passive configuration were set to perform over
approximately one minute each, and the resulting standard
deviations of lift and calculated episodic mean accumulated
reward are shown in Table 1. PID offered only modest
improvements in disturbance rejection over no control, with a
~13% reduction in standard deviation of lift. The TD3 algorithm
had a similar reduction in standard deviation as PID, however
also demonstrated large variation between agents, indicating
inconsistency in its ability to learn the system dynamics. The
LSTM-TD3 algorithm performed well, reducing standard devia-
tion of lift by 42% relative to the passive case. Noting that the
maximum reward possible is zero, we also see that TD3 accu-
mulates a negative value over five-times greater than that of
LSTM-TD3. Additionally, as indicated by the uncertainties,
LSTM-TD3 was also more consistent across agents despite the

stochasticity of training. These uncertainties, calculated as the
standard deviation of the respective quantities across the five
agents are themselves indicators of training stability.

Further, the mean accumulated reward (per episode) plot
(Fig. 3a) indicates that LSTM-TD3 agents consistently improved
throughout training, whereas the TD3 agents struggled to find
even locally optimal behaviors. While the reward signal returned
for the TD3 agents became less erratic with training, it eventually
decays and showed a downward trend during the final episodes
with increased variance. This suggests that the dynamics learned
by TD3 are not representative of the real system. As expected
from the uncertainty in the standard deviation of lift (Table 1), we
can confirm that the learning process for the TD3 is inconsistent
and there exists variation across the separately trained agents. The
episodic standard deviation of lift (Fig. 3b) remains relatively
stable after approximately 100 episodes of training for both
algorithms. The lack of reduction in standard deviation of lift
from both agents across such a large span of episodes suggests
that they have reached asymptotic performance for the given
conditions. Despite these two methods being nearly identical
algorithmically, it seems that the simple inclusion of RNNs in
LSTM-TD3 makes aerodynamic control tractable in this
turbulent environment.

Effect of flow sensing. Conventional control strategies for UAVs
mitigate turbulent disturbances by sensing and correcting the
resulting inertial deviations. They have no knowledge of the flow or
source disturbance itself. This purely reactive-corrective strategy is
insufficient for maintaining stability under extreme atmospheric
turbulence45. Alternatively, as biological swimmers and flyers
would imply, directly observing the physics responsible for inertial
disturbances may allow for aerodynamic systems to react before
inertial effects are realized. The flow sensing capabilities of biolo-
gical systems can then be used as inspiration to improve these
strategies, given the direct correlations between easily measurable
flow quantities, such as pressure, and aerodynamic forces.

To show the effect of flow sensing on the performance of
aerodynamic control in turbulence, we conducted ablation studies
wherein we maintained the same reward signal but varied the
sensory information provided to the agent. We considered three
cases to establish how flow sensing impacts the ability to learn
system dynamics. In Case I, the RL agents observed and chose
actions based on the value of the lift force alone through the real-
time load cell values. Observing only the lift force, the RL agent in
Case I were effectively provided with inertial information
equivalent to conventional UAV controllers. In Case II, actions
were selected using only flow measurements as the observation,

Fig. 3 Training performance of TD3 and LSTM-TD3. The respective shaded regions represent the full range of performance of each algorithm at each
episode. a Learning curve showing the episodic mean accumulated reward across the five agents trained for each algorithm. b Episodic standard deviation
for the two algorithms as it decreases with training.

Table 1 Statistical comparison of control schemes

Algorithm/
controller

Standard
deviation of
lift (mN)

Mean accumulated reward

No control 305± 20 N/A
PID 264±6 N/A
TD3 266± 79 �8960± 10728
LSTM-TD3 176± 11 �1716±452
Rewards and standard deviation of lift values were averaged over five agents trained for both of
the reinforcement learning algorithms and five separate runs for the proportional-integral-
derivative (PID) control. They were calculated over a 4000 time step horizon, which
corresponds to approximately 1 minute of testing or four-times the length of a training episode.
Uncertainty shown is equal to the standard deviation in the presented value across five separate
training sessions. Supplementary figure 1 shows examples of the load signal over a 60 s interval
for all four methods listed in the table below.
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though the lift measurements were used to calculate rewards
during an offline training phase. In Case III, the agents observed
both the lift force and flow measurements. With both inertial and
flow information, Case III was afforded a set of information
similar to a flow-sensing biological flyer. All three cases were
trained using the LSTM-TD3 algorithm; they differed only in the
sensory information provided to the agent for action selection.

From a comparison of the respective episodic reward signals
(Fig. 4a), we found that the three cases seem to learn similarly
effective control strategies in after training 200 episodes. While all
three cases occasionally experienced policy updates that decreased
performance (as indicated by downward spikes), these detrimental
updates appeared most frequently and most strongly for the Case I
agents. The Case II agents also had several notable bad policy
updates, but recovered more quickly than the Case I agents. The
Case III agents learned more stably and reliably than the Case I and
Case II agents, with the best Case III agents consistently
outperforming the best Case I and Case II agents throughout
training, and with the worst Case III agents rarely performing
worse than equivalent Case I and Case II agents (highlighted
regions-Fig. 4a). Case III agents also achieved the lowest mean
standard deviation of lift and lowest minimum standard deviation
across agents for most episodes throughout training (Fig. 4b).

In addition to considering the performance during learning, we
also compared performance of the fully trained RL agents for all
three cases. We averaged the performance of fully trained models for
all three cases over a time interval of approximately one-minute to
reduce the effect of stochasticity in the flow. From the final time-
averaged standard deviation of lift values for the three cases (Table 2)
we see all three agents considerably reduced the variance of lift
relative to the passive case. We find that that Case III shows superior
performance in reducing the standard deviation of lift and is the
most consistent in that metric across the five separately trained
agents. Both the training process (Fig. 4) and the final standard
deviation (Table 2) suggests that the addition of flow sensing helps
RL agents learn a more stable approximation of the system dynamics
and improved performance in terms of disturbance rejection (i.e.
reduction of standard deviation).

Interestingly, we find that Case I achieves the best (least
negative) mean accumulated reward out of the three cases, with
Case III falling closely behind by only a small margin. We note
that the uncertainty reported for the reward of these two cases is
approximately twenty-times the apparent difference in perfor-
mance, which reduces the significance of this comparison. Still, it
is not surprising that the Case I performance excels in terms of
raw reward, as the only observation given in Case I is directly
proportional to the reward itself. Considering that the Case I

agents achieve a higher standard deviation of lift, the performance
in terms of reward is the result of the agents holding a lower
mean lift. Although Case I agents are given less information about
the surrounding physics, the information they are given has only
one dimension and excludes highly non-linear flow sensor
readings. These attributes would enable a more simple and less
sensitive control policy which simultaneously explains a lower
mean lift value and less responsive disturbance rejection.

Discussion
We have demonstrated how properly configured RL agents can
effectively learn control of nonlinear stochastic physics with
which conventional methods struggle. Despite the seemingly
chaotic nature of the turbulent environment used for training, our
results indicate that RNNs enhance the ability to learn accurate
system dynamics. Further, the inclusion of flow sensors, as
inspired by biological systems, showed potential for enhanced
aerodynamic control in turbulence.

We found that the performance achieved by the TD3 agents
was very similar to that of a conventional PID controller
(Table 1). This result was surprising, as the TD3 agent should be
able to better handle the non-linearities of the system dynamics
than the inherently linear PID controller. The poor performance
of the TD3 algorithm (in comparison with LSTM-TD3) may be
explained by the partial observability of our system. It is likely
that observing inertial and sparse flow measurements at a single
time-step does not adequately define the state; the probability
distribution of state transitions is dependent on the surrounding
flow which is chaotic and impossible to fully observe in real.
Therefore, without being explicitly given a more comprehensive
state observation, the TD3 agents are unable to infer the

Fig. 4 Training performance of reinforcement learning algorithms with varying observations. The respective shaded regions represent best and worst
performing agent of each case at each episode. a The learning curves for the three respective cases, plotting episodic mean accumulated reward. b The
change in standard deviation throughout learning plotted as a metric for disturbance rejection.

Table 2 Statistical comparison of lift force with and without
flow sensing

Case Standard deviation
of lift (mN)

Mean accumulated reward

No control 305± 20 N=A
I (Load) 191± 20 �1696±492
II (Pressure) 199± 33 �1860± 596
III (Both) 176± 11 �1716±452
These values were averaged over five agents trained for each of the respective cases, and were
calculated over a 4000 time step horizon, which corresponds to approximately 1 minute of
testing or four-times the length of a training episode. Uncertainty shown is equal to the standard
deviation in the presented value across five separate training sessions. Supplementary Fig. 2
shows examples of the load signal over a 60 s interval for the three different observations.
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underlying state and effectively learn the underlying physics. This
difficulty to learn the underlying physics of the problem would
help explain the large variation in both training and end per-
formance for the TD3 agents (Fig. 3).

We showed that LSTM-TD3 agents were able to achieve effective
control of the system aerodynamics by analyzing the available
observations sequentially, and outperformed both PID controllers
and TD3 agents. In fact, the LSTM-TD3 agents were able to
decrease the standard deviation in lift by more than three-times the
reduction achieved by PID control. Further, despite being trained
in five separate randomized processes, the final performance of the
LSTM-TD3 agents is nearly as consistent as the five trials used to
average the fixed PID controller. This demonstrates the ability to
learn accurate estimations of the state-probability distribution
functions. Due to the similarity of the two algorithms, the addition
of recurrent LSTM cells is very likely the reason for the difference in
performance between the TD3 and LSTM-TD3 agents. The
potential performance-enhancing nature of LSTMs is well-
established in many settings, including flow-control42,46. When
included in an RL agent, recurrent networks, such as those
including LSTM cells, are able to learn latent states and patterns
underlying the received observations. Because of the black-box
nature of these methods, it is only possible to speculate what
aspects of the physics were learned through the addition of LSTM
cells. However, the fundamental mechanism through which LSTM
cells can typically improve performance is by integrating temporal
information to improve state estimates. Therefore, the increase in
performance associated with the LSTM cells is likely due to
improved state estimates which would effectively increase the
observability of the partially-observable process.

Flow sensing was shown to slightly improve mitigation of tur-
bulent disturbances for our system, although it resulted in a larger
bias in the averaged value than inertial information alone. Still,
when provided flow and inertial information the RL agents did
learn more consistently and achieved superior disturbance rejec-
tion than when given partial information (Fig. 4). Further, the fully
trained control policies given both flow and inertial information
varied less in all metrics, suggesting more stable estimates of system
dynamics. It is also noteworthy that agents observing only flow
measurements showed robust control improvement through
learning; that is, agents were able to learn to control inertial
dynamics from sparse flow sensing alone. While the load cell used
for testing completely defines the inertial state of the system in the
lifting direction, the pressure sensors used to make flow observa-
tions are relatively sparse and do not completely define the aero-
dynamic state in the lifting direction. It is likely that the
performance of flow-informed agents would increase further given
additional or improved flow sensing capabilities, while the inertial
aspects of the lifting force cannot be defined further than the direct
measurement used here. This warrants further exploration of flow
sensor types and configurations.

Though the RL controllers outperformed a conventional linear
control scheme, there are several drawbacks to model-free rein-
forcement learning methods. Training RL agents is intensive in
terms of both time and data. Each RL agent was trained for 200
episodes which took approximately 150 min per agent. Since we
averaged the performance of five agents for each algorithm or
case shown, the data presented here represents over 50 wind-
tunnel hours between training and testing the policies. There are
also inherent difficulties associated with troubleshooting “black-
box” controllers such as RL agents. The algorithms are sensitive
to many hyperparameters that control the neural network
structure and training procedure, and tuning these hyperpara-
meters in an experimental setting relies on intuition, experience,
and patience. The hyperparameter tuning process itself required
hundreds of hours of additional training and testing not shown

here. Further, it is possible that a given set of hyperparameters
may be suitable for a subset of tasks but not truly generalizable.
Consistent and deliberate experimental design helps constrain
troubleshooting to the algorithmic aspects of training. Even with
this, it should not be expected that these agents trained in a single
set of conditions will hold policies generalizable across Reynolds
numbers or testing geometries. To create truly generalizable RL
policy capable of controlling an aerodynamic system ready for
real-world deployment, the agent would need to train in various
conditions and would need to expand its capabilities to control all
forces and moments in three-dimensions.

While model-free reinforcement learning methods impress-
ively learn dynamics of highly nonlinear and chaotic systems
without any prior knowledge, it should be noted that model-
based reinforcement learning and other non-linear control
methods can be more data-efficient. Model-based methods do
require prior sampling of system dynamics and can be more
computationally intensive, but many are similarly able to adapt
and learn when exposed to new conditions. Implementing known
flow physics into model-based reinforcement learning methods or
non-linear controllers could lead to superior performance with
reduced data requirements.

The generic testbed and methods developed here may serve to
inform future implementations of flow-informed RL for control of
aerodynamic systems in extreme turbulence. While our experi-
ments focus on specifically controlling turbulent disturbances
along a single axis, this system is simply a representative proof-of-
concept for multi-dimensional unconstrained aerodynamic inter-
actions. These methods can be expanded or adapted to systems
with higher degrees of freedom by augmenting state observations
and adjusting reward signals. While it is possible for RL methods to
be used for full control and navigation of autonomous systems47,48,
the most direct and practical application of aerodynamic control
for UAVs is in flow-informed inner-loop attitude control for fixed
wing vehicles. By reducing the effect of turbulent disturbances,
drones canmaintain more stable flight in more extreme conditions.
Though training RL agents to achieve full control of free-flight
systems can be challenging experimentally due to the trial-and-
error nature of the learning process, flow-informed agents even
have the potential to learn to take advantage of natural flow
structures through energy-efficient soaring behaviors20,47,49. This
technology could also allow wind turbines to safely operate at an
increased range of conditions by reducing loads from potentially
damaging gusts through actuation of blade pitch3,5,7. In the case of
static systems such as wind turbines, off-board remote sensing
upwind could further enhance performance. We believe that the
potential of this work can be realized through several next gen-
eration technologies such as flow-informed wind turbines with
built-in gust mitigation capabilities, bioinspired UAVs capable of
maintaining steady flight in a windy urban environment, and other
unrealized aerodynamic applications that have been too chaotic for
engineered systems.

Methods
Wing system design and manufacturing. The wing system featured a
NACA0012 airfoil, which is a common standardized airfoil shape. The dynamics of
this airfoil shape in a bluff-body wake at similar Reynolds number has been the
subject of previous study50. The body of the wing was 3D printed using a com-
bination of materials, and was designed to be modular and allow for various sensor
configurations (Fig. 1c). The central section, which housed the primary electronics
and secured the system to its mounting, was printed with micro carbon fiber filled
nylon (Markforged Onyx) and was reinforced with carbon fiber for added strength
and rigidity. The spanwise sections designed to house the individual pressure
sensors were also printed with micro carbon filled nylon, but were not reinforced.
The sensor housing sections were printed with large slots, so that different pressure
taps or probe types could be used. These pressure tap slots and the pitot-static tube
were printed with an SLA printer (Formlabs Form3) for improved surface feature
accuracy. The pressure ports were placed at locations 0.4%, 0.7%, 1.5%, and 6% of
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the chord length from the leading edge on both the pressure and suction sides of
the wing. The sections between sensors were printed with clear PLA. The sections
were aligned and conjoined by a set carbon fiber spars, which added rigidity. The
trailing edge flaps were cut out of insulation foam and covered with an adhesive-
backed coating for protection.

The wing had a total chord length of 25 cm, with 5 cm trailing edge flaps. This
gave a Reynolds number over the wing of approximately Rec � 110; 000. The
spanwise length of the wing was 1 m, with a total of 9 sensor locations. There was
exactly 10 cm between each sensor location, with one of the locations being
centered on the wing. The wing was mounted on a fairing which was set back with
an angle of 60° to reduce aerodynamic interactions between the fairing and the
wing. The fairing was reinforced with carbon fiber and aluminum, and was
connected to a set of air bearings (New Way) which are aligned vertically with the
tunnel to define the lifting direction. The air bearing system allowed for nearly
frictionless motion along a single axis while constraining all other directions. The
constrained fairing was mounted directly to a single-axis load cell (Interface SM-
50), which passed signal through an amplifier (Interface Model SGA) with a 50 Hz
low pass filter, and was read by a DAQ (NI USB-6008). The pressure values were
measured by a set of nine ultra-low range digital pressure sensors (Honeywell
RSCDRRM2.5MDSE3) which communicated to a microcontroller (Teensy 4.0).
The microcontroller also controlled the high speed brushless servo motors (MKS
HBL6625) which drove the trailing edge flaps. Due to mechanical restraints, the
actuation for the servo motors has maximum/minimum position of +40°/−40°.
Both the microcontroller and the DAQ communicate with a desktop computer
which receives states and sends actions. The full control loop ran at approximately
67 Hz with the serial communications being the biggest bottleneck.

Generation and characterizations of turbulence. All quantitative results pre-
sented are from experiments performed in Caltech’s John W. Lucas Wind Tunnel
(LWT). The LWT is a closed-loop wind tunnel, with test section dimensions of
130 cm ´ 180 cm. The turbulence used for training and testing formed in the wake
of a large, asymmetric bluff body mounted to the wind tunnel with bungee cords.
The bluff body can be described as a large diameter cylinder (30 cm), with a normal
flat plate mounted asymmetrically to the front giving the full body an effective
diameter of 53 cm (Fig. 1d). The cylinder spanned the entire width of the tunnel,
while the flat plate had a width of only 60 cm. This was done to encourage vortex
dislocation, which added irregularity in vortex shedding38. The bungee cord
encouraged oscillations due to the vortex shedding, which we observed to be
present and irregular. The bluff body was mounted 170 cm upstream of the wing
system with a vertical offset of 48 cm. Sparse elastic bands aligned horizontally were
mounted across the test section directly upstream of the bluff body, to further
increase the turbulence intensity of the flow.

A hot-wire anemometer (TSI IFA-300) was used to characterize the mean
velocity, turbulence intensity, and frequency spectrum of the flow near the wing
system. The hot-wire anemometer was mounted approximately 2 cm upstream of
the leading edge of the airfoil, and measurements were taken for 120 s at 1000 Hz.
The turbulence intensity was measured with the hot-wire anemometer to be 10.6%.
The power spectra was calculated with ThermalPro software, using the entire 120 s
run averaged over sets of 8192 datapoints (frequency resolution of 0.122 Hz).

Reward functions for training. Reinforcement learning agents learn to achieve
tasks by choosing actions that maximize a numerical reward function. Choosing the
reward function is a critical part of experimental design for RL implementations, as it
sets the primary directive of learning. The goal of our experiments was to reduce the
standard deviation of the lifting force, and we tested several different reward functions
to achieve this goal. The final reward function used in this work was set to

Ri ¼ � Liþ1
� �2

where Ri is the reward associated with the action taken at time step i, and Liþ1 is the
lifting force observed at the time step iþ 1. The reward was a function of the lift at the
following time step rather than the current time step, because this value is the direct
result of the previous action. Since RL agents are designed to maximize reward
signals, we used the negative square of this value to encourage net-zero lifting force
and discourage deviations. Under these conditions, a perfect agent would achieve a
maximum reward equal to zero. Although this reward function may seem overly
simplistic, it was chosen out of several tested all of which featured additional terms
that did not improve performance. We note that this reward function was even used
for the agents trained with flow sensor values only. The agents in this case had no
direct knowledge of the lift while making decisions, and it was measured and saved
separately from the state observations. These flow-only agents were only affected by
the actual lift measurements through off-line training with the reward as shown.

Reinforcement learning algorithms. Both the TD3 and LSTM-TD3 fall in a
category of RL algorithms known as actor critic methods. As the name suggests
actor critic methods consist of two parts, the actor and the critic. The actor portion
holds the direct control policy of the agent; it is called at each time step, with
observations as inputs and actions as outputs. The critic portion is used to estimate
the value of each available action given a state. The value of an action is equal to the
expected cumulative future reward31. In most modern applications, both actors and

critics take the form of artificial neural networks. The critic networks become
approximators for the value function, and the actor network becomes an
approximator for an optimal control policy. The agent learns by first training the
value function estimation of the critic based on past state-action-reward experi-
ences. The actor is then trained using the critic network to choose the actions
which the critic estimates will have the highest expected value. Actor critic methods
are known to have reduced variance in updates, which accelerates learning and
makes them well-suited for real-world applications31. The TD3 (provided in
Algorithm 1) and LSTM-TD3 (provided in Algorithm 2) algorithms build on this
basic framework with several modifications to improve performance.

Algorithm 1. TD3 algorithm used for aerodynamic control41,43.
Initialize critic networks Qθ1

; Qθ2
, and actor network πϕ with random

parameters θ1; θ2; ϕ
Initialize target networks θ01  θ1; θ

0
2  θ2; ϕ

0  ϕ
Initialize replay buffer B
for n ¼ 1 to Ne do

for t ¼ 1 to T do
Observe state ot
Select action with exploration noise:
at  clipðπϕðotÞ þ ϵt ;�1; 1Þ; ϵt�Nð0; σ2Þ
Observe reward rt

end for

Store transition tuples st ; at ; rt ; stþ1
� �� �T�1

i¼1 in B
for j ¼ 1 to Ns do

Sample N transitions ðs; a; r; s0Þ from Bea clipðπϕ0 ðs0Þ þ ϵ; �1; 1Þ; ϵ � clipðNð0;eσ2Þ; �c; cÞ
y r þ γmini¼1;2 Qθ0 s

0; eað Þ

Update critics θi  minθi N
�1∑

ðy � Qθi
ðs; aÞÞ2; jy � Qθi

ðs; aÞj≤ δ
δ � ðjy � Qθi

s; að Þj � 1
2 δÞ; else

(
if j mod d then

Update ϕ by the deterministic policy gradient:
∇ϕJ ϕ

� � ¼ N�1∑∇aQθ1
s; að Þja¼πϕ sð Þ∇ϕπϕðsÞ

Update target networks
θ0i  τθi þ 1� τð Þθ0i
ϕ0i  τϕi þ 1� τð Þϕ0i

end if
end for

end for

Algorithm 2. LSTM-TD3 algorithm used for aerodynamic control42.
Initialize critic networks Qθ1

; Qθ2
, and actor network πϕ with random

parameters θ1; θ2; ϕ
Initialize target networks θ01  θ1; θ

0
2  θ2; ϕ

0  ϕ
Initialize replay buffer B
for n ¼ 1 to Ne do

Initialize past history hl1  0
for t ¼ 1 to T do

Observe state st
Select action with exploration noise:
at  clipðπϕ st ; h

l
t

� �þ ϵt ;�1; 1Þ; ϵt�Nð0; σ2Þ
Update history:
hltþ1 ¼ hlt � ðst�l ; at�lÞ

� �
∪ ðst ; atÞ

Observe reward rt
end for

Store transition tuples hlt ; st ; at ; rt ; stþ1
� �� �T�1

i¼1 in B
for j ¼ 1 to Ns do

Sample N transitions ðst ; at ; rt ; stþ1Þ from Bea clip πϕ0 stþ1; h
l
tþ1

� �þ ϵ; �1; 1
� �

; ϵ � clip N 0;eσ2� �
; �c; c� �

y rt þ γmini¼1;2 Qθ0 stþ1; ea; hltþ1� �
Update critics θi  minθi N

�1∑
y � Qθi

st ; at ; h
l
t

� �� �2
;
��y � Qθi

ðst ; at ; hlt Þ
��≤ δ

δ �
��y � Qθi

st ; at ; h
l
t

� ���� 1
2 δ

� �
; else

8<:
if j mod d then

Update ϕ by the deterministic policy gradient:
∇ϕJ ϕ

� � ¼ N�1∑∇aQθ1
st ; at ; h

l
t

� �ja¼πϕ sð Þ∇ϕπϕðst ; hltÞ
Update target networks
θ0i  τθi þ 1� τð Þθ0i
ϕ0i  τϕi þ 1� τð Þϕ0i

end if
end for

end for

We chose the original TD3 algorithm to start our tests because it is known to
among state-of-the-art methods in RL and has been shown to outperform earlier
methods in simulated tasks51. Further, the original TD3 algorithm was used
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previously effectively learn control in the first experimental application of RL for
explicit control of fluid dynamics43. The LSTM-TD3 algorithm was chosen as a
direct successor to the TD3 algorithm, which explicitly addresses the problem of
partially observable systems42. Gradient clipping was added to both algorithms, to
limit the size of updates and encourage training stability. Additionally, as suggested
by a previous implementation of RL for experimental fluid mechanics, a Kalman
filter was applied to both load and pressure data which was shown to considerably
improve learning43. The hyperparameters used for both TD3 and LSTM-TD3 can
be found in Table 3. We used densely-connected layers for both algorithms, with
ReLU activation functions on the hidden layers and hyperbolic tangent for the
output. The TD3 algorithm networks had just one hidden layer, and LSTM-TD3
had a separate input layer before the LSTM, then just one hidden layer after the
concatenation of the LSTM output and current feature input.

We chose hyperparameters based on metrics of peak performance and training
stability. We used a methodical approach when selecting values however the search
was necessarily coarse due to the time intensive nature of training. A more fine
parameter search was not practical for our setting as each one of these tests took three
hours, and there are many hyperparameters to consider. It was similarly impractical
to perform repeated tests for most hyperparameters. Given these limitations,
choosing parameter values required some subjective interpretation of agents’
performance, especially when several values appeared to perform similarly well.

The algorithms were trained episodically. Each episode began with a policy
evaluation phase. During this phase, a fixed control policy was used to choose
actions based on observations for a set number of time steps. This data was then
saved for later evaluation of training. After the evaluation phase, the data
collection period begins, which consisted of the agent with the same fixed
control policy interacting with the environment for a set number of time steps,
however, Gaussian noise is injected into the actions chosen by the policy to
encourage exploration. Once the set number of time steps had been reached, all
interactions and rewards from the data collection period are inserted into a
replay buffer. Then the agent pauses interaction to train its neural networks. The
critic network is trained by recalling interactions from a replay buffer that
contains previous interactions from about 50 episodes of training. The actor
network is then updated to maximize the value of actions based on the critic
network value estimates. This policy evaluation, data collection, and training
process completed a single episode. We chose to stop training after 200 episodes
because we found that the LSTM-TD3 algorithm approached optimal
performance around episode 100 but wanted to show a longer horizon to
demonstrate the stability advantages of the algorithm.

Data availability
All raw experimental data is available on GitHub, along with an open-source access
guide. Additional data may be available on request. https://github.com/peterirenn/
ExpectingTurbulence.git.

Code availability
All code used for this work is available on GitHub and is supported by open-source
Python libraries. https://github.com/peterirenn/ExpectingTurbulence.git.
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