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A general framework for quantifying uncertainty
at scale
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In many fields of science, comprehensive and realistic computational models are available

nowadays. Often, the respective numerical calculations call for the use of powerful super-

computers, and therefore only a limited number of cases can be investigated explicitly. This

prevents straightforward approaches to important tasks like uncertainty quantification and

sensitivity analysis. This challenge can be overcome via our recently developed sensitivity-

driven dimension-adaptive sparse grid interpolation strategy. The method exploits, via

adaptivity, the structure of the underlying model (such as lower intrinsic dimensionality and

anisotropic coupling of the uncertain inputs) to enable efficient and accurate uncertainty

quantification and sensitivity analysis at scale. Here, we demonstrate the efficiency of this

adaptive approach in the context of fusion research, in a realistic, computationally expensive

scenario of turbulent transport in a magnetic confinement tokamak device with eight

uncertain parameters, reducing the effort by at least two orders of magnitude. In addition, we

show that this refinement method intrinsically provides an accurate surrogate model that is

nine orders of magnitude cheaper than the high-fidelity model.
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During the past few decades, science has been revolutio-
nized through computing. First, model-based computing
(“simulation”)1 has allowed us to investigate complex

phenomena that are not accessible to theoretical analysis alone,
and now data-centric computing2,3 is enabling us to more
effectively explore, understand, and use large amounts of data
originating from experiments, observation, and simulation.
Building on these important advancements, we are now entering
a new phase in which the focus lies on transitioning from merely
interpretive and qualitative models to truly predictive and
quantitative models of complex systems through computing.

One obstacle on the path toward predictive physics-based
models is uncertainty. Whether stemming from incomplete
knowledge of the given system, measurement errors, inherent
variability, or any other source—uncertainty is intrinsic to most
real-world problems, and this aspect needs to be included in
respective modeling efforts. Accounting for, understanding, and
reducing uncertainties in numerical simulations of real-world
phenomena is performed within the framework of Uncertainty
Quantification (UQ)4,5. In the present work, we assume that
uncertainty enters the underlying model through a set of scalar
inputs (parameters characterizing the state of the system, the
initial or boundary conditions, or other aspects of the system
under consideration), whose cardinality is referred to as the
stochastic dimension or, simply, the dimension of the UQ pro-
blem. Another key task in predictive physics-based simulations
affected by uncertainty is understanding the impact of input
uncertainty in the simulation’s output of interest, known as
(global) sensitivity analysis (SA)6,7. Identifying the inputs with
the highest sensitivity in turn facilitates, among other things, a
posteriori dimension reduction (parameters with low sensitivities
are fixed) and model simplification (redundant parts of the model
can be removed).

It is clear, in principle, that UQ and SA are fundamental tasks
for numerical simulations of real-world phenomena and highly
desirable in a wide range of applications. In practice, however,
concrete implementations of these ideas are often hampered by
the substantial or even prohibitive computational cost that comes
with large ensembles of model evaluations, especially in large-
scale, computationally expensive problems8–11. This is because
the uncertain inputs are generally modeled as random variables
whose realizations are propagated through the underlying model
to compute outputs of interest. And when a single evaluation is
computationally expensive, performing large numbers of such
simulations becomes prohibitive. Consequently, the tension
between the level of realism of a given model and the associated
computational cost tends to prevent UQ/SA studies in many cases
of interest. One possible way out is to resort to (non-intrusive)
reduced models12, but typically at the expense of sacrificing – to
some degree—accuracy, reliability, and predictability. Moreover,
constructing reduced models in computationally expensive
applications can be prohibitive in the first place due to the cost of
acquiring the training data.

In the following, we will describe an alternative solution to this
challenging problem. Our goal is to show that our recently
developed sensitivity-driven dimension-adaptive sparse grid
interpolation strategy13,14 provides a general framework for UQ
and SA studies in practically relevant science and engineering
applications at scale. This includes fields like (computational)
fluid dynamics15—which is one of the first fields in which UQ
and SA became prominent—combustion in rocket engines16,
climate modeling17, materials science18, tsunami and earthquake
simulations11,19, computational medicine20,21, or, relevant at the
time of the writing of this article, the mathematical modeling of
epidemics, in particular, the Coronavirus Disease (COVID-
19)22–24, to name just a few. Any of these examples, and many

more, could be used to make the case, but here, we will focus on
one of the key physics problems in fusion research, namely how
to quantify and predict turbulent transport in magnetic con-
finement experiments25,26.

The quest for fusion energy is based on the notion that the
physical processes which power the stars (including the Sun) can
be mimicked on Earth and used for electricity production. For
this purpose, one creates very hot plasmas, i.e., ionized gases of up
to about 100 million degrees, and places them in strong magnetic
fields of doughnut-shaped devices called tokamaks and stellara-
tors. The toroidal magnetic field forces the electrically charged
plasma particles onto helical orbits about the field lines and thus
establishes magnetic confinement. The latter is not perfect,
however, since the resulting (strong) spatial temperature and
density differences induce turbulent flows in the plasma. Quan-
tifying, predicting, and controlling this turbulent transport is a
prerequisite for designing optimized fusion power plants and is
therefore considered a key open problem in fusion research. Over
the last two decades or so, comprehensive and realistic simulation
tools have been developed for this purpose. One of them is the
GENE code27, which has a world-wide user base and will be
employed extensively in the present work. Quantifying the tur-
bulent transport under specific experimental conditions is
challenging28, with computational costs typically ranging from
104 to 105 core-hours, and sometimes even significantly exceed-
ing those numbers. The resulting outputs of interest, that is, time-
averaged turbulent fluxes depend on several dozen of physical
parameters which characterize the properties of the plasma as
well as of the confining magnetic field. Obviously, this is a perfect
example of a situation in which it is almost impossible to
approach the UQ/SA problem via brute-force approaches due to
the so-called curse of dimensionality29, i.e., the exponential
growth of the required computational effort with the number of
uncertain inputs.

To combat or at least delay the curse of dimensionality, we can
exploit the fact that real-world problems often exhibit structure.
And in the context of UQ and SA, this implies that even though
the number of uncertain inputs can be large, usually only a small
subset of them are really important for the underlying simulation,
in the sense that they produce significant variations in the out-
put(s) of interest. In addition, assuming that nonlinear effects
exist in the way subsets of uncertain inputs interact with each
other, these interactions are often anisotropic, i.e., the interaction
strength varies significantly. Having information about the
importance of uncertain inputs and the strength of their inter-
action is clearly advantageous for UQ/SA since, for example, the
probabilistic space in which the underlying uncertain parameters
live can be sampled accordingly, thus potentially decreasing the
number of required samples significantly. In general, however,
this information—typically obtained via SA—is available only a
posteriori, after the simulations have been performed. In contrast,
our sensitivity-driven dimension-adaptive sparse grid interpola-
tion approach explores and exploits this structure, online, via
adaptive refinement.

In the present article, we will show that our structure-
exploiting method enables UQ and SA in large-scale, realistic,
nonlinear simulations, which goes beyond what most existing
methods offer. We note that our framework is applicable to many
large-scale computational science and engineering simulations
that are typically computationally too expensive for standard
methods but at the same time critical for decision making and
other practically relevant tasks. As a representative of such as an
application, we will study multi-dimensional UQ and SA in first-
principles-based fully nonlinear turbulence simulations of fusion
plasmas. In a realistic and practically relevant simulation scenario
of turbulent transport in the edge of the DIII-D fusion
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experiment with more than 264 million degrees of freedom and
eight uncertain inputs, our approach requires a mere total of 57
high-fidelity simulations for accurate and efficient UQ and SA. In
addition, since our method is based on interpolation, a byproduct
is an interpolation-based surrogate model of the parameters-to-
output of interest mapping. The obtained surrogate model is
accurate and nine orders of magnitude cheaper to evaluate than
the high-fidelity model.

Results
A framework for uncertainty propagation and sensitivity
analysis in large-scale simulations. Let d 2 N denote the
number of uncertain inputs modeled as random variables dis-
tributed according to a given multi-variate probability density, π.
The input density stems from, e.g., experimental data analysis,
expert opinion, or a combination thereof. The high-fidelity
simulation code calculates an output of interest, which, for sim-
plicity, is assumed here to be a scalar quantity, noting that our
approach can be trivially employed in the multi-variate case as
well by, e.g., treating each output component separately. UQ and
SA generally require ensembles of high-fidelity model evaluations
at samples distributed according to π. In our sensitivity-driven
dimension-adaptive sparse grid interpolation strategy13,14, these
samples are points living on a d-dimensional (sparse) grid that is
constructed sequentially via adaptive refinement. What enables
UQ and SA at scale is our strategy for adaptive refinement.

Sparse grid approximations are constructed as a linear
combination of judiciously chosen d-variate products of one-
dimensional approximations. This linear combination is done
with respect to a multi-index set L � Nd comprising d-variate
tuples ¼ ð‘1; ‘2; ¼ ‘dÞ 2 Nd called multi-indices. Each multi-
index ℓ uniquely identifies a product defined on a d-variate
subspace. Here, the underlying approximation operation is
interpolation defined in terms of (global) Lagrange polynomials,
which can be trivially mapped to an equivalent spectral projection
approximation. We note that our approach is hierarchical,
meaning that the results corresponding to a multi-index ℓ can
be reused at its forward neighbors ℓ+ ei, where i= 1, 2,…, d, and
eij= 1 if i= j and eij= 0 otherwise.

We construct L sequentially via our sensitivity-driven dimen-
sion-adaptive refinement procedure. In dimension-
adaptivity30,31, L is split into two sets, the old index set, O, and
the active set, A, such that L ¼ O∪A. The active set A contains
the candidate subspaces for refinement, whereas the old index set
O comprises the already visited subspaces. In each refinement
step, we ascertain the importance of individual inputs and of their
interactions to guide the adaptive process. To this end, we
determine the sensitivity information—with respect to the output
of interest—of all uncertain inputs in each candidate subspace for
refinement by decomposing its associated variance into contribu-
tions corresponding to individual inputs and contributions
corresponding to interactions between inputs. Note that when
normalized by the variance, these contributions would respec-
tively represent first-order and interaction Sobol’ indices for
sensitivity analysis. Our algorithm, however, employs unnorma-
lized indices because the variance is constant and therefore does
not change the ordering of these indices. Moreover, the variance
in subspaces in, e.g., the latter stages of the refinement process is
usually small, in which case such a division would be close to the
indeterminate operation 0/0. We compare these unnormalized
indices with user-defined tolerances—one tolerance for each
unnormalized index—to compute a sensitivity score. The
sensitivity score is an integer, initially set to zero, which is
increased by one whenever a user-defined tolerance is exceeded.
These tolerances can be viewed as a (heuristic) proxy for the

accuracy with which we want the algorithm to explore the
directions associated with the unnormalized sensitivity indicators.
Upon computing the scores for all candidate subspaces, we refine
the subspace with the largest sensitivity score noting that if two or
more subspaces have identical scores, we select the one with the
largest sum of unnormalized sensitivity indicators. Note that for a
problem with d uncertain inputs, we have 2d− 1 indices in total:
d for each individual input, d(d− 1)/2 for pairs of input
interactions and so forth up the index measuring the sensitivity
of the interaction of all d inputs. When d is small to moderate,
e.g., d ≤ 15, we can exhaustively compute and use all
2d− 1 sensitivity indices in each refinement step and thus
prescribe 2d− 1 associated tolerances. For larger values of d,
however, 2d− 1 is prohibitively large. We can, nonetheless,
exploit that in most practical applications, it is unlikely that
interactions beyond two or three parameters are important and
therefore account for these interactions only in our refinement
procedure. Furthermore, if the prescribed tolerances do not
provide the desired accuracy, they can be sequentially decreased
at no additional cost since our approach is hierarchical. We note
that (global) sensitivity analysis, which is central to our
refinement policy, reflects the properties of the underlying
high-fidelity model, which means that our method does not
depend on the specific implementation of the model. Rather, the
method will explore and exploit the properties of the model with
the goal of preferentially refining the important stochastic
directions. For example, if there are d= 20 uncertain input
parameters in total but only three are important and, further-
more, only four interactions are important as well, our approach
will exploit this structure and construct a multi-index set having
more multi-indices in the directions corresponding to the three
important individual parameters and four interactions. In
contrast, if all 20 inputs are important, the multi-index set will
likely have a large cardinality, containing multi-indices in all 20
directions. We additionally note that our method can be trivially
incorporated in the underlying simulation pipeline since it only
requires prescribing the simulation inputs by, e.g., accessing the
parameters/configuration file, and computing the value of the
output of interest. In this way, the framework can be easily used
on a wide range of computing systems, ranging from laptops to
large supercomputers.

At the end of the adaptive process, the sensitivity-driven
method yields (i) statistics such as the mean and variance of the
output of interest, (ii) the sensitivity indices of all individual
parameters and either of all interactions—if d is moderately large
—or of a subset of interactions, and (iii) an interpolation-based
surrogate model for the parameters-to-output of interest map-
ping. Figure 1 depicts a visual summary of the sensitivity-driven
dimension-adaptive sparse grid framework through an example
with d= 3 uncertain inputs (θ1, θ2, θ3), which requires prescribing
2d− 1= 7 tolerances. Therein, θ3 is the most important
parameter, θ1 is the second most important, and θ2 is the least
important parameter. Moreover, θ1 and θ3 interact strongly.
Notice that the sensitivity-driven approach constructs a multi-
index set that reflects this structure.

Simulation of turbulence in the near-edge region of fusion
devices. To demonstrate that our sensitivity-driven approach
enables UQ and SA at scale, we employ it in the context of
nonlinear turbulent transport in magnetic confinement devices,
such as tokamaks or stellerators. This is a paradigmatic example
in which UQ and SA are clearly needed but in which most
standard approaches are infeasible due to the large computational
cost of the associated simulations. The experimental error bars of
various input parameters (such as the spatial gradients of the
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density and temperature of a given plasma species) can be rela-
tively large, on the order of a few ten percent, which makes the SA
task especially valuable since understanding the impact of these
uncertainties is critical. Moreover, ascertaining the impact of
variations in parameters that characterize the confining magnetic
field is crucial as well (e.g., for design optimization). We note that
the current sparse grid framework has been employed for UQ and
SA in linear simulations in fusion research (linear in the five
phase-space variables that characterize the underlying gyrokinetic
model) in previous efforts13,32. Linear simulations are often used
to gain valuable insights regarding some general trends or para-
meter dependencies. However, here we go far beyond and con-
sider the much more complex numerical simulations of nonlinear
turbulent transport, which are necessary to make reliable quan-
titative predictions. These simulations represent chaotic processes
in space and time, in which a large number of degrees of freedom
are usually strongly coupled in a highly nonlinear fashion, and are
computationally much more expensive (about four orders of
magnitude higher in our case). Our main goal here is to show that
our sparse grid method enables UQ and SA in such applications
as well.

As a practically relevant example of nonlinear turbulent
transport in magnetic confinement devices, we focus on the
near-edge region of fusion experiments, which is recognized as
crucial for setting the overall performance of these devices. To
achieve core temperatures and densities which are sufficiently
high to yield self-heated (“burning”) plasmas in future power
plants, it is necessary to create and sustain a region of steep
gradients in the edge, known as the pedestal; see Fig. 2.

The formation of the pedestal is a very complex process, and its
understanding is still incomplete at this point. A known key
element in this context is plasma turbulence, which develops
within the pedestal due to the very large spatial changes of density
and temperature, inducing turbulent transport and hence
contributing to its self-regulation. An important driver for this
kind of dynamics is a plasma micro-instability called the Electron
Temperature Gradient (ETG) mode, which tends to operate on
sub-mm scales in planes perpendicular to the background
magnetic field. Quantifying the impact of ETG turbulence on
the pedestal structure is of high practical relevance, as it can aid in
the design of configurations with improved energy confinement.

We consider a numerical setup modeling a specific pedestal of
the DIII-D tokamak33 and investigate the edge plasma at a
normalized radius of ρ= 0.95. Simulations with the gyrokinetic
turbulence code GENE27 show that ETG modes are the main
drivers of turbulent transport under these conditions. The
employed grid in five-dimensional position-velocity space con-
sists of 256 × 24 × 168 × 32 × 8= 264,241,152 degrees of freedom.
The simulations are performed using 16 compute nodes, i.e., a
total of 896 cores on the Frontera supercomputer at the Texas
Advanced Computing Center at The University of Texas at
Austin34. With this setup, the average run time exceeds 8000
core-hours; the smallest was about 4000 core-hours, while the
largest run time exceeded 14,000 core-hours. We refer the reader
to the Methods section for more details about the employed
gyrokinetic model and simulation code GENE.

The experimental parameters necessary to determine the
transport levels caused by ETG modes are the spatially local
values of electron temperature Te (I) and density ne (II), together
with their normalized inverse scale-lengths ωTe

(III) and ωne
(IV).

We also consider the electron-to-ion temperature ratio τ (V) and
account for the effects of plasma impurities via an effective ion
charge Zeff (VI). Basic properties of the magnetic geometry are
characterized via the safety factor q (VII) and the magnetic shear
ŝ (VIII). This leaves us with a total of eight uncertain parameters,
summarized in Table 1, which are modeled as uniform random
variables. Their respective nominal (mean) values are showed in
the second column. Moreover, their left and right bounds
(columns three and four) are as follows: the first two are varied by
10% around their nominal value whereas the remaining six inputs
—including the two inverse scale-lengths—are varied by 20%
around their nominal value; these variations reflect representative
experimental error bars. We note that the larger bounds (±20%)
for the inverse scale-lengths ωTe

and ωne
compared to the lower

bounds (±10%) used for their respective local values reflects the
fact that the inverse scale-lengths are not directly available but
must be computed from measured profiles. The GENE output is the
electron heat flux calculated over a sufficiently long time interval
to collect statistics (see the Methods section for more details). The
output of interest, Qhi-fi, is the time-averaged electron heat flux
across a given magnetic surface, measured in megawatts (MW).
In the following, we will show that our sensitivity-driven

Fig. 1 Visual illustration of the sensitivity-driven dimension-adaptive sparse grid framework for uncertainty quantification and sensitivity analysis at
scale. The framework is demonstrated in an example with d= 3 uncertain inputs (θ1, θ2, θ3). The goal of the sensitivity-driven approach is to explore and
exploit the fact that in real-world simulations, only a subset of the uncertain inputs are important and that these inputs interact anisotropically.
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approach enables an efficient UQ and SA in these simulations
which would otherwise be impossible with standard methods.

Accurate uncertainty propagation and sensitivity analysis at a
cost of only 57 high-fidelity simulations. The employed toler-
ances in our sensitivity-driven approach are 163 × 10−4, which
were sufficiently small for our purposes. Here, 163 denotes a
vector with 63 unity entries, where 63= 28− 1 is the total
number of sensitivity indices used in each refinement step.
Remarkably, our approach requires only 57 high-fidelity

simulations to reach the prescribed tolerances. This low number
is due to the ability of the sensitivity-driven approach to explore
and exploit that, as depicted in Fig. 3, only four (i.e., ωTe

, ωne
, Te,

and τ) of the total of eight uncertain parameters are important,
with two parameters—ωTe

and ωne
—being significantly more

important than the other six parameters. Furthermore, the four
important parameters interact anisotropically with the other
inputs. The strongest interaction occurs between the two most
important individual parameters, ωTe

and ωne
, and the second

strongest interactions is between ωTe
and τ. These findings are

Fig. 2 Turbulent transport in the near-edge of tokamaks. From left to right: in the tokamak design, a hot hydrogen plasma is confined in a doughnut-like
shape with the aid of strong magnetic fields (figure courtesy of EUROfusion). However, the magnetic confinement is not perfect: turbulent fluctuations
driven by micro-instabilities cause heat losses from the hot core toward the colder edge. In so-called high-confinement (H-mode) discharges, one can
induce the formation of a near-edge region characterized by reduced transport and steep gradients. The properties of this pedestal are influenced by the
residual turbulent transport, which can be calculated, e.g., by means of the GENE code.

Table 1 Summary of the eight uniform uncertain parameters considered in the numerical experiments.

Uncertain input parameter Nominal value Left uniform bound Right uniform bound

Electron temperature Te[keV] 0.3970 0.3573 0.4367
Electron density ne [1019m−3] 4.4923 4.0428 4.9412
Inverse electron temperature scale-length ωTe

186.0000 148.8000 223.2000

Inverse electron density scale-length ωne
88.0000 70.4000 105.6000

Electron-to-ion temperature ratio τ 1.4400 1.1520 1.7280
Effective ion charge Zeff 1.9900 1.5920 2.3880
Safety factor q 4.5362 3.6289 5.4434
Magnetic shear ŝ 5.0212 4.0169 6.0254

The second column shows the nominal (mean) value of the eight parameters. The corresponding left and right uniform bounds are shown respectively in the third and fourth columns.

Fig. 3 The sensitivity indices of the eight uncertain parameters. The magnitudes of the first-order sensitivity indices and indices due to interactions are
depicted in the three-dimensional bar plot. The four pie charts break down the magnitude of the interactions involving the four most important parameters,
i.e., wTe

;wne
; Te, and τ into percentages showing the respective non-negligible interactions (the sensitivity indices corresponding to an interaction between

two input parameters θi and θj are denoted by Sθi ;θj ) and all other, negligible interactions, denoted by S⋅,others.
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consistent with generic qualitative expectations. The remarkable
feat here is that our approach was able to explore and exploit this
inherent structure non-intrusively. Moreover, the estimates for
the mean and variance of the output of interest are E½Qhi�fi� �
0:7530 MW and Var[Qhi-fi] ≈ 0.2571MW2, respectively.

To put into perspective the cost reduction in terms of high-fidelity
simulations, a standard full tensor grid-based method with only
three points per dimension, e.g., one for the center of the domain
and two other for the extrema entails a total of 38= 6561 high-
fidelity simulations. While this number might not be considered
high for model problems, it requires roughly 53 million core-hours
for the scenario under consideration, which is computationally
prohibitive. In contrast, our approach required about 460,000 core-
hours in total, i.e., a factor of 115 less in comparison, which was
computationally feasible. In general, in large-scale applications it is
unrealistic to perform more than a handful of runs, which is in par
with what our method typically requires.

To better understand how our algorithm explored the 8D input
space, Fig. 4 plots all pair-wise two-dimensional projections of the
57 sparse grid points obtained at the end of the refinement
process. Notice that the projections involving either ωTe

or ωne
—

the two most important input parameters—contain the most grid
points, showing that indeed these directions have been explored
more extensively by our method. In contrast, the projections
involving the unimportant parameters, especially the two least
important parameters in the considered scenario, ŝ and Zeff,
contain the least amount of grid points.

Performing UQ and SA in realistic turbulent transport
simulations in fusion devices is relevant since in virtually all
experiments, it is generally very difficult to robustly explain the
observed behavior and to pinpoint the most important para-
meters. Our method, in contrast, allows us to systematically
consider all uncertain inputs, which makes such an analysis more
robust. Furthermore, our algorithm can explore the entire
parameter space, including regions that are not accessible by
current experiments when seeking to, e.g., optimize turbulent
transport. In general, UQ and SA are fundamental tasks for many
real-world simulations, which can be performed at scale via our
framework.

An efficient surrogate model for the input-to-output of interest
mapping. Our method intrinsically provides an interpolation-
based surrogate model of the parameters-to-(time-averaged)-heat
flux mapping. To ascertain its efficiency in the scenario under
consideration, we draw 32 pseudo-random test samples from the
eight-dimensional input uniform distribution and use them to
evaluate both the high-fidelity model provided by GENE and the
obtained sparse grid interpolation surrogate. Note that the large
computational cost of the high-fidelity model prohibits using a
large number of test samples.

Figure 5 compares the high-fidelity results with the predictions
obtained using our surrogate model, denoted by QSG[MW].
Notice first that the values of the heat fluxes at the 32 test samples
vary broadly, from roughly 0.1–2.6 MW, indicating that these

Fig. 4 The pair-wise two-dimensional projections of the 57 sparse grid points used to explore the eight-dimensional input space. The two-dimensional
projection planes correspond to all input pairs {θi, θj} where θi 2 fTe; ne;ωTe

;ωne
; τ;Zeff; qg and θj 2 fne;ωTe

;ωne
; τ; Zeff; q; ŝg.
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samples are well distributed in the input domain; for a more
comprehensive visualization, we also depict two examples—one
of a low and the other of a high ETG heat flux. We see that the
predictions yielded by the surrogate model closely match the
high-fidelity values, suggesting that the surrogate model is
accurate. To quantify its accuracy, we compute its mean-
squared error (MSE) and obtain MSEðQhi�fi;QSGÞ ¼
1
32∑

32
n¼1 Qhi�fi;n � QSG;n

� �2
¼ 3:0707 ´ 10�4, which confirms that

the surrogate is indeed accurate. Moreover, its average evaluation
cost is cSG= 9.4046 × 10−3 s, which is nine orders of magnitude
smaller than the average evaluation cost of the high-fidelity
model.

For a more detailed perspective on the prediction capabilities of
the surrogate model, Fig. 6 plots the value of QSG at four test
samples, two for low-flux values and two for high-flux values, as
the number of sparse grid points used to construct the surrogate
model increases from 12 to 57. We observe that all four
predictions converge toward a fixed heat-flux value. Even more,
when using 36 grid points or more, the predicted heat-flux values
vary insignificantly, indicating that the prediction uncertainty of

our surrogate model is small. For reference, we have also
visualized the high-fidelity results, which are closely matched by
the predictions of our surrogate model. We can therefore
conclude that the obtained surrogate model, constructed at a
cost of only 57 high-fidelity evaluations, is also very efficient.

In the context of fusion research, the intrinsically provided
interpolation-based surrogate model can be used to predict
profiles based on given heat-flux values. This, in turn, can enable
the prediction and optimization of future devices, which
represents one of the most important goals of computational
plasma physics. Moreover, in a broader context, this surrogate
can be used in subsequent optimization or multi-fidelity35 studies.

Discussion
UQ and SA are essential for obtaining accurate, predictive, and
more robust numerical simulations of real-world phenomena.
However, in many cases, the computational cost of a single
simulation tends to be large, which renders most standard
methods computationally infeasible. In the present article, we
have demonstrated that these challenges can be overcome with

Fig. 5 High-fidelity heat fluxes Qhi-fi versus heat fluxes QSG predicted by the sparse grid interpolation surrogate at 32 pseudo-random test samples.
The surrogate model is accurate for both high- and low-flux values. For a more detailed visualization, we also plot the high-fidelity heat flux (on the left) as
well as the time trace of the simulated heat flux (on the right), depicted in blue, and the prediction obtained with the sparse grid surrogate model, depicted
in red, for two samples: #32 at low flux and #28 at high flux.

Fig. 6 Predicted heat fluxes for four test samples. The number of sparse grid points used to construct the surrogate model increases from 12 to 57. The
four samples were chosen such that two correspond to low-flux values (#32 and #29) and two correspond to high-flux values (#12 and #28). The dashed
dotted lines plot the predicted heat-flux values (i.e., QSG) obtained using our sparse grid surrogate model. For reference, the corresponding high-fidelity
heat-flux values (i.e., Qhi-fi) are visualized as well using solid lines.
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our recently developed sensitivity-driven dimension-adaptive
sparse grid interpolation framework. This method explores and
exploits the structure of the underlying problem in terms of lower
intrinsic dimensionality and anisotropic coupling of the uncertain
input parameters. The framework is fully non-intrusive and
requires only prescribing the values of the input parameters and
computing the output of interest. Furthermore, the method is
generic and applicable to a broad spectrum of problems, and it
can be used on a wide range of computing systems, from laptops
to high-performance supercomputers.

We have demonstrated the power and usefulness of our fra-
mework in the context of fusion research. Our focus was on the
challenging and practically relevant question on the nature of
nonlinear turbulent transport in the edge region of tokamak
devices. In a scenario with eight uncertain parameters and more
than 264 million degrees of freedom, for which a single simula-
tion required (on average) more than 8000 CPU hours on 896
compute cores on the Frontera supercomputer, our framework
required a mere total of 57 high-fidelity simulations for UQ and
SA. In addition, it intrinsically provided an accurate
interpolation-based surrogate model of the parameters-to-output
of interest mapping that was nine orders of magnitude cheaper
than the high-fidelity model. Note that in the context of the
simpler linear gyrokinetic simulations concerning turbulence
suppression by energetic particles, recent research efforts have
shown that the sensitivity-driven approach can be effectively used
as a surrogate model for optimization32 or as a low-fidelity model
in a multi-fidelity study36.

Since our method is based on globally defined interpolation
polynomials, its main drawback is that it is generally not
applicable to problems characterized by discontinuities or sharp
gradients in the parameters-to-output of interest mapping. A
possible remedy is an extension to instead using basis functions
with local support, e.g., wavelets, which is subject to our ongoing
research. We also note that even though dimension-adaptive
algorithms have been shown to be effective and accurate in many
previous studies, their accuracy can usually be ascertained only
empirically in generic settings. Initial steps toward proving con-
vergence have been done, for example, in ref. 37 for elliptic partial
differential equations with finite-dimensional affine diffusion.
Another goal for our future research is to equip our algorithm
with robust data-driven methods to quantify prediction uncer-
tainty without limiting its generality.

Methods
Sensitivity-driven dimension-adaptive sparse grid interpolation. Let f hi�fi :

X ! Y denote the underlying high-fidelity model. The domain X � Rd is the set
of the d 2 N uncertain inputs θ ¼ ½θ1; θ2; ¼ ; θd �T and the domain Y � R is the
range of the scalar-valued outputs y= fhi-fi(θ). We note that the presented meth-
odology can trivially employed for multi-variate outputs as well by, e.g., applying it
to each output component separately. We make use of the following two
assumptions: the set X of uncertain inputs has a product structure, i.e.,
X¼ Nd

i¼1X i, and the input density, π, has a product structure as well, that is,

πðθÞ ¼ Qd
i¼1 πiðθiÞ, where X i is the image of the univariate density πi associated

with input θi. In other words, the d uncertain parameters are assumed to be
independent. However, we note that this assumption can be relaxed, by using, for
example, a (possibly nonlinear) transformation that makes the inputs independent,
such as a transport map38.

Let ¼ ð‘1; ‘2; ¼ ‘dÞ 2 Nd denote a multi-index and let L � Nd be a set of
multi-indices. The d-variate sparse grid approximation of fhi-fi is defined as

Ud
L½f hi�fi�ðθÞ ¼ ∑

‘2L
Δd
‘ ½f hi�fi�ðθÞ; ð1Þ

where

Δd
‘ ½f hi�fi� ¼ ∑

z2f0;1gd
ð�1Þjzj1Ud

‘�z½f hi�fi�ðθÞ ð2Þ

are the so-called hierarchical surpluses, with jzj1 ¼ ∑d
i¼1 zi . The d-variate surpluses

Δd
‘ ½f hi�fi� are a linear combination of d-variate approximations Ud

‘�z½f hi�fi� which

in turn are obtained by tensorizating d one-dimensional operators U i
‘i�zi

:

Ud
‘�z½f hi�fi�ðθÞ ¼

Od

i¼1
U i
‘i�zi

� �
½f hi�fi�ðθÞ: ð3Þ

The multi-index set L must allow the computation of all terms in the hierarchical
surpluses (2). Such a multi-index set is called admissible or downward closed, i.e., it
does not contain “holes".

To fully specify the sparse grid approximation (1), we need three ingredients: (i)
the one-dimensional approximation operators U i

‘i
for i= 1, 2,…, d, (ii) the grid

points with which we compute these 1D approximation, and (iii) the multi-index
set L. In our method, the underlying operation is Lagrange interpolation,
implemented in terms of the barycentric formula for improved numerical stability.
We note that our approach can also be employed for other approximation
operations, such as spectral projection or quadrature. The interpolation points are
weighted (L)-Leja points. For a continuous function g : X i ! R, we define the
univariate interpolation polynomial U i

‘i
associated to ℓi as:

U i
‘i
: C0ðX iÞ ! PP‘i

; U i
‘i
½g� ¼ ∑

‘i

n¼1
gðθnÞLnðθÞ; ð4Þ

where fθng‘in¼1 are weighted (L)-Leja points computed with respect to the density πi:

θ1 ¼ argmax
θ2X i

ffiffiffiffiffiffiffiffiffiffi
πiðθÞ

p

θn ¼ argmax
θ2X i

ffiffiffiffiffiffiffiffiffiffi
πiðθÞ

p Yn�1

m¼1

ðθ � θmÞ
�� ��; n ¼ 2; 3; ¼ ; ‘i;

ð5Þ

and fLnðθÞg‘in¼1 are Lagrange polynomials of degree n− 1 satisfying the
interpolation condition Ln(θm)= δnm, where δnm is Kronecker’s delta function.
When πi is a uniform density with support ½a; b� � R, as in our numerical
experiments, we set θ1= (a+ b)/2. We employ (L)-Leja sequences for four main
reasons. First, they are an interpolatory sequence, meaning that n (L)-Leja points
uniquely specify a polynomial of degree n− 1. Note that (L)-Leja sequences are
arbitrarily granular and therefore other growth strategies can be employed as well.
Second, (L)-Leja points are hierarchical, meaning that evaluations from previous
levels can be reused. In our context this means that adjacent levels differ by only
one (L)-Leja point. Third, (L)-Leja sequences lead to accurate interpolation
approximations39. These three properties make (L)-Leja sequences an excellent
choice for higher-dimensional interpolation approximations. Finally, (L)-Leja
points can be constructed for arbitrary probability densities.

Let P‘ denote the set all d-variate degrees p= (p1, p2,…, pd) with 0 ≤ pi ≤ ℓi− 1
for i= 1, 2,…, d. In addition, denote by θp ¼ ðθp1 ; θp2 ; ¼ ; θpd Þ the d-variate (L)-
Leja point associated with a d-variate degree p. The multi-variate interpolation
approximation (3) associated to the multi-index ℓ reads

Ud
‘ ½f hi�fi�ðθÞ ¼ ∑

p2P‘

f hi�fiðθpÞLdpðθÞ; ð6Þ

where the d-variate Lagrange polynomial LdpðθÞ is computed as

LdpðθÞ ¼
Qd

i¼1 Lpi ðθiÞ, which follows from the independence assumption of the
uncertain inputs.

To fully define the sparse grid interpolation approximation (1), we need to
specify the third and most important ingredient, the multi-index set L, which we
determine online via our sensitivity-driven dimension-adaptive strategy. We note
that adaptive sparse grid approximations were used in previous research as well.
One of the first works in this direction40 formulated an anisotropic sparse grid
collocation method for solving partial differential equations with random
coefficients and forcing terms. In addition, in ref. 41, both uniform and adaptive
polynomial order refinement were used to assess the convergence of non-intrusive
spectral or interpolation-based techniques.

We begin by determining the equivalent spectral projection representation of
the multi-variate interpolation operators (6):

Ud
‘ ½f hi�fi�ðθÞ ¼ ∑

p2P‘

f hi�fiðθpÞLpðθÞ ¼ ∑
p2P‘

cpΦpðθÞ; ð7Þ

where ΦpðθÞ ¼
Qd

i¼1 ΦiðθiÞ are orthonormal polynomial with respect to the input
density π and cp are the corresponding spectral coefficients. For example, if π is the
uniform distribution, as in our numerical experiments, Φp(θ) are Legendre
polynomials. To determine the spectral coefficients cp, we simply solve
∑p2P‘

cpΦpðθkÞ ¼ Ud
‘ ½f hi�fi�ðθkÞ for all (L)-Leja points θk associated to the multi-

index ℓ. Once we have determined the spectral coefficients cp, we can rewrite the
hierarchical interpolation surpluses (2) in terms of hierarchical spectral projection
surpluses:

Δd
‘ ½f hi�fi�ðθÞ ¼ ∑

p2P‘

ΔcpΦpðθÞ; Δcp ¼ ∑
z2f0;1gd

ð�1Þjzj1 cp�z; ð8Þ

with the convention Δc0= c0. We rewrite hierarchical interpolation surpluses in
terms hierarchical projection surpluses (8) because the latter allow to trivially
compute the desired sensitivity information which we use to drive the adaptive
process. Specifically, from the equivalence between spectral projections and Sobol’
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decompositions42 introduced in43, we have

Δd
‘ ½f hi�fi�

�� ��2
L2 ¼ ∑

p2P‘

Δc2p

¼ Δc20 þ ΔVar‘½f hi�fi�

¼ Δc20 þ ∑
d

i¼1
ΔVari‘½f hi�fi� þ ∑

d

i;j¼1
ΔVari;j‘ ½f hi�fi� þ � � � þ ΔVar1;2;¼ ;d

‘ ½f hi�fi�;
ð9Þ

where

ΔVari‘½f hi�fi� ¼ ∑
p2ΔJ i

Δc2p; ΔJ i ¼ fp 2 P‘ : pi≠0 ^ pj ¼ 0;8j≠ig; ð10Þ

ΔVari;j‘ ½f hi�fi� ¼ ∑
p2ΔJ i;j

Δc2p; ΔJ i;j ¼ fp 2 P‘ : pi≠0 ^ pj≠0 ^ pn ¼ 0;8n≠i ^ n≠jg; ð11Þ

and so forth. ΔVari‘½f hi�fi� represents the unnormalized Sobol’ index associated

with this input. Similarly, ΔVari;j‘ ½f hi�fi� represents the unnormalized Sobol’ index
corresponding to pairs of uncertain inputs, i.e., interactions of two inputs. And so
on until the unnormalized Sobol’ index ΔVar1;2;¼ ;d

‘ ½f hi�fi� corresponding to the
interaction of all d uncertain parameters. Therefore, the L2 norms (9) provide
exhaustive sensitivity information about all d uncertain inputs and all interactions
in the subspace associated with ℓ.

We compute the equivalent hierarchical spectral projection surpluses (8) and
their L2 norm (9) for all candidate multi-indices ℓ for refinement. We then use the
unnormalized Sobol’ indices given by the L2 norms (9) to compute our refinement
indicator, which is an integer s‘ 2 N, referred to as the sensitivity score. Initially,
sℓ= 0. Since (9) comprises 2d− 1 unnormalized Sobol’ indices in total, we
prescribe 2d− 1 user-defined tolerances tol ¼ ðtol1; tol2; ¼ ; tol2d�1Þ which are a
heuristic for the accuracy with which we want the algorithm to explore the d
individual directions and all their 2d− d− 1 interactions. We compare the mth
term in (9) with tolm and if this tolerance is exceed, sℓ is increased by one. In other
words, if an individual parameter or an interaction are important in a candidate
subspace for refinement – as compared to the prescribed tolerance – the sensitivity
index will reflect this information. Therefore, sℓ can be at most 2d− 1. We note that
when d is large, 2d− 1 will be prohibitively large making the computation of all
2d− 1 sensitivities in (9) infeasible. Nevertheless, in most applications it is unlikely
that pairings beyond few, e.g., two, three parameters are important and therefore
(9) can be truncated to comprise only these interactions.

We refine the multi-index with the largest sensitivity score noting that if two or
more multi-indices have identical scores, we select the one with the largest variance
ΔVarℓ[fhi-fi]. Refining a multi-indices means that it is moved to the old index set O
and all its forward neighbors ℓ+ ei with i= 1, 2,…, d that maintain L admissible are
added to the active set A. The refinement ends if either the prescribed tolerances tol
are reached, if A ¼ ; or if a user-defined maximum level Lmax is reached. For
example, we used Lmax ¼ 20 in our numerical experiments.

Upon termination, statistics such as expectation and variance of the output of
interest, as well as sensitivity indices can be straightforwardly estimated as follows.
Let N 2 N denote the cardinality of L and let ℓm= (ℓm,1, ℓm,2,…, ℓm,d) denote the

mth multi-index in L, where ℓ1= (1, 1,…, 1). Furthermore, let PL ¼
p‘m :¼ ð‘m;1 � 1; ‘m;2 � 1; ¼ ; ‘m;d � 1Þ : ‘m 2 L

n o
denote the set of multi-

variate degrees of the equivalent global spectral projection basis. We can rewrite (6)
as

Ud
L½f hi�fi�ðθÞ ¼ ∑

p‘m 2PL
Δcp‘m

Φp‘m
ðθÞ ¼ ∑

N

m¼1
Δcp‘m

Φp‘m
ðθÞ; ð12Þ

where the spectral coefficients Δcp‘m
are computed analogously to (8). To simplify

the notation in the following, denote P�
L ¼ PL n fp‘1 g. We estimate the

expectation and variance of the high-fidelity model using these coefficients as44

E½f hi�fi� ¼ Δcp‘1
; Var½f hi�fi� ¼ ∑

p‘m 2P�
L
Δc2p‘m

¼ ∑
N

m¼2
Δc2p‘m

: ð13Þ

In addition, the first-order Sobol’ sensitivity indices corresponding to individual
parameters are computed as7

Sθi ¼
Vari½f hi�fi�
Var½f hi�fi�

; i ¼ 1; 2; ¼ ; d; ð14Þ

where Vari[fhi-fi] denotes the contribution of ith input to Var[fhi-fi],

Vari½f hi�fi� ¼ ∑
p2J i

Δc2p; ð15Þ

where J i ¼ fp‘m 2 P�
L : p‘m;k

¼ 0; 8k≠ig. Analogously, indices corresponding to

interactions of two parameters θi and θj are computed as

Sθi ;θj ¼ Sθj ;θi ¼
Vari;j½f hi�fi�
Var½f hi�fi�

; Vari;j½f hi�fi� ¼ ∑
p2J ij

Δc2p; i ¼ 1; 2; ¼ d � 1; j≥ iþ 1; ð16Þ

where J ij ¼ fp‘m 2 P�
L : p‘m;k

¼ 0; 8k≠i ^ k≠jg, and so forth for all other

interactions. Finally, the obtained sparse grid approximation intrinsically yields a
surrogate model for the parameter-to-output of interest mapping as well.

High-fidelity gyrokinetic simulation of plasma turbulence. Gyrokinetic theory25

provides an efficient description of low-frequency, small-amplitude, small-scale
turbulence in strongly magnetized plasmas. Here, the fast gyromotion is removed
from the equations, and electrically charged particles are effectively replaced by
respective rings which move in a weakly inhomogeneous background magnetic
field and in the presence of electromagnetic perturbations. This process reduces the
kinetic description of the plasma from six to five dimensions (three spatial and two
velocity space coordinates of the gyrocenters) and, even more importantly, removes
a number of extremely small, but irrelevant spatio-temporal scales from the
problem.

In gyrokinetics, each plasma species s is described by a distribution function
Fs(X, v∥, μ, t) whose dynamics is governed by the following equation:

∂Fs

∂t
þ _X � ∇Fs þ _vk

∂Fs

∂vk
¼ C: ð17Þ

Here, X is the gyrocenter position, v∥ is the velocity component parallel to the
background magnetic field B= Bb, and μ is the magnetic moment (a conserved
quantity in the collisionless limit). C denotes a collision operation describing inter-
and intra-species interactions. In our numerical experiments, we used a linearized
Landau-Boltzmann collision operator. The corresponding equations of motion for
a gyrocenter of a particle with mass m and charge q read

_X ¼ vkbþ B
B�
k

v∇B þ vκ þ vE
� �

; ð18Þ

_vk ¼ �
_X

mvk
� μ∇Bþ q∇�ϕ
� �� q

m
_�Ak; ð19Þ

where v∇B= (μ/(mΩB)) B ×∇ B is the grad-B drift velocity, vκ ¼ ðv2k=ΩÞ ∇ ´ bð Þ?
is the curvature drift velocity, and vE ¼ ð1=B2ÞB ´∇ð�ϕ� vk�AkÞ is the generalized
E × B drift velocity. Here, Ω= qB/m is the gyrofrequency, and B�

k is the parallel

component of the effective magnetic field B� ¼ Bþ B
Ω vk∇ ´ bþ ∇ ´ b�Ak

� �
.

Finally, �ϕ and �Ak are the gyroaveraged versions of the electrostatic potential and
the parallel component of the vector potential, which are self-consistently
computed from the distribution function. Assuming a static background
distribution function FB,s(X, v∥, μ), which allows for the decomposition
Fs(X, v∥, μ, t)= FB,s(X, v∥, μ)+ fs(X, v∥, μ, t), ϕ can be calculated via the Poisson
equation, which—expressed at the particle position x—reads

∇2
?ϕðxÞ ¼ � 1

ϵ0
∑
s
qsn1;sðxÞ ¼ � 1

ϵ0
∑
s

2πqs
ms

Z
B�
k f sðx; vk; μÞdvkdμ; ð20Þ

while A∥ is obtained by solving the parallel component of Ampère’s law for the
fluctuation fields:

�∇2
?AkðxÞ ¼ μ0 ∑

s
jk;sðxÞ ¼ μ0 ∑

s

2πqs
ms

Z
B�
kvkf sðx; vk; μÞdvkdμ: ð21Þ

Expressions for connecting fs(X, v∥, μ) and fs(x, v∥, μ) can be found in the
literature25. Note that in these formulas, the time dependence has been suppressed
for simplicity.

Our high-fidelity model of plasma turbulence is the Eulerian gyrokinetic code
GENE27, which solves the coupled system of Eqs. (17), (20) and (21) on a fixed grid
in five-dimensional phase space using a mix of spectral, finite difference, and finite
volume methods. In order to adapt the simulation volume to the dominant
influences of the background magnetic field, GENE employs a field-aligned45

coordinate system (x, y, z): x and y are the two directions perpendicular to the
magnetic field whereas z parametrizes the position along B.

When simulating ETG turbulence, the scale separation between turbulent and
ambient characteristic spatial lengths is usually large, allowing us to simulate only a
relatively small volume around a given field line. This is the so-called flux-tube
limit, which is widely used in studies of plasma turbulence, including the present
work. Variations of background fields in the direction perpendicular to the
magnetic field across the simulation domain are neglected and replaced by constant
gradients. Furthermore, periodic boundary conditions are used for both
perpendicular directions x and y, which are therefore numerically implemented
with spectral methods (we will refer in the following to the corresponding Fourier
modes as kx and ky).

The magnetic geometry used for all our simulations has been constructed
modeling the DIII-D tokamak, using a Fourier decomposition of the magnetic
surface at ρ= 0.95 of an experimental magnetohydrodynamic equilibrium. This
allows us to specify the values of the safety factor q (the number of toroidal transits
per single poloidal transit a given field line winds around the torus) and magnetic
shear ŝ ¼ ðx=qÞ ðdq=dxÞ independently from the flux surface shape, which is kept
fixed in all our numerical experiments. Plasma profiles are chosen representative of
a pedestal. The absolute value of density and temperature ne and Te, as well as the
corresponding normalized inverse scale-lengths ωTe

¼ �ðR0=TÞ ðdT=dxÞ and
ωne

¼ �ðR0=nÞ ðdn=dxÞ, have been considered uncertain. Here R0= 1.6 m
indicates the major radius of the tokamak. Collisionality is computed consistently
with the plasma parameters, and we also include a non-unitary Zeff ¼ ∑iniZ

2
i =ne,

where the sums are over all ion species, to account for impurities. Similarly, the
consistent value of βe ¼ 2μ0neTe=B

2
0 is adopted to describe electromagnetic
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fluctuations. Finally, we have considered a deuterium-electron plasma and assumed
an adiabatic response for the ions, i.e., n1,i=− neqiϕ/Ti, j∥,i= 0 while retaining a
non-unitary value of τ= ZeffTe/Ti, such that we need to simulate only the evolution
of the electron distribution function.

All high-fidelity runs have been carried out using a box with
nkx ´ nky ´ nz ´ nvk ´ nμ ¼ 256 ´ 24 ´ 168 ´ 32 ´ 8 degrees of freedom. Moreover, we

set ky,min ρs= 7 and Lx≃ 2.7 ρs, where ρs= cs/Ω is the ion sound radius and cs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
is the ion sound speed. In velocity space, a box characterized by −3 ≤ v∥/

vth ≤ 3 and 0 ≤ μT/B ≤ 9 has been used. The employed GENE grid resolution ensures
that the underlying simulations—including runs for the extrema of the parameter
space, which yield the smallest and largest turbulent transport levels—are
sufficiently accurate.

For a given set of input parameters fne;Te;ωne
;ωTe

; q; ŝ; τ;Zeff g, GENE explicitly
evolves in time fe (considering a local Maxwellian for FB) allowing turbulence to
fully develop until reaching a quasi-steady-state. The steady state of the system is
simulated long enough to collect sufficient statistics, typically for a few R0/cs units.
Throughout the simulation, the turbulent heat flow is evaluated as

QðtÞ ¼
Z

∂S
qðtÞ � ∇x dΣ; ð22Þ

where dΣ is the surface element of the surface ∂S, in our case the flux surface at
ρ= 0.95, and q(t) is the instantaneous energy flux induced by the generalized E × B
advection, i.e., accounting for both electrostatic and electromagnetic perturbations:

q ¼
Z

1
2
mv2vEf ed

3v: ð23Þ

Simulated fluxes are averaged over the quasi-steady-state phase of the run and the
result provides the high-fidelity output of interest Qhi-fi in our numerical
experiments. The value of Qhi-fi is computed in terms of physical units because that
is ultimately the physical quantity that is relevant for practical applications. We
note however that the input parameters in GENE are normalized using parameters
that include also temperature and density, which are uncertain in our scenario. It is
therefore necessary to account for that and show results in dimensional units as
otherwise the results would be incorrect. Hence, the value of Qhi-fi is converted to
physical (S.I.) units prior to be being used in our sparse grid algorithm.

Data availability
The data to reproduce our results are available at https://github.com/ionutfarcas/general-
uq-framework.

Code availability
The implementation of the sensitivity-driven dimension-adaptive sparse grid approach is
publicly available at https://github.com/ionutfarcas/sensitivity-driven-sparse-grid-
approx. The codes to reproduce our results are publicly available at https://github.com/
ionutfarcas/general-uq-framework. In addition, the GENE code used for the nonlinear
gyrokinetic simulations is available at https://genecode.org/.
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