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Exploring robust architectures for deep artificial
neural networks
Asim Waqas 1✉, Hamza Farooq 2,4, Nidhal C. Bouaynaya3,4 & Ghulam Rasool1,4

The architectures of deep artificial neural networks (DANNs) are routinely studied to

improve their predictive performance. However, the relationship between the architecture of

a DANN and its robustness to noise and adversarial attacks is less explored, especially in

computer vision applications. Here we investigate the relationship between the robustness of

DANNs in a vision task and their underlying graph architectures or structures. First we

explored the design space of architectures of DANNs using graph-theoretic robustness

measures and transformed the graphs to DANN architectures using various image classifi-

cation tasks. Then we explored the relationship between the robustness of trained DANNs

against noise and adversarial attacks and their underlying architectures. We show that

robustness performance of DANNs can be quantified before training using graph structural

properties such as topological entropy and Olivier-Ricci curvature, with the greatest reliability

for complex tasks and large DANNs. Our results can also be applied for tasks other than

computer vision such as natural language processing and recommender systems.
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The architecture or structure of a deep artificial neural
network (DANN) is defined by the connectivity patterns
among its constituent artificial neurons. The mere presence

or absence of a connection between two neurons or a set of
neurons may provide a useful prior and improve the predictive
performance of a DANN. A range of architectures has been
developed over years to tackle various machine learning tasks in
computer vision, natural language processing, and reinforcement
learning1–5. In general, the process of the development of DANN
architectures is manual, iterative, and time consuming. AutoML
and neural architecture search (NAS) attempt to use machine
learning and search the design space of DANNs for architectures
that may yield maximum test data accuracy. After the selection of
a suitable DANN architecture for the given task, the optimal
values of the connections (parameters or weights) are found using
the training dataset and the well-known gradient descent or one
of its variant algorithms6,7. Recently, considerable research efforts
have been focused on automating the laborious task of DANN
architecture design and development using techniques of autoML
and NAS8–11. However, all such efforts are primarily focused on
improving the test accuracy of the DANN on the given task. In
the real world, DANNs face the challenging problem of main-
taining their predictive performance in the face of uncertainties
and noise in the input data13,14. The noise can be in the attributes
of the input samples (attribute noise), and it can be in the asso-
ciated class label (label noise). DANNs exhibit intrinsic robust-
ness to label noise, and the test accuracy of DANNs drop only
marginally against the tens of percentage increase in the label
noise15–17. So, the term “noise” in this work refers to the more
hostile sample noise, called the attribute noise. The challenge of
noise in the attributes of data is further exacerbated for mission-
critical application areas, such as clinical diagnosis, autonomous
driving, financial decision-making, cyberspace, and defense.
Although we have used computer vision for hypothesis testing in
this work, we believe that the proposed concepts are equally
applicable to other fields mentioned above. Ideally, a real world
deployment-ready DANN should be robust to or equivalently
maintain its predictive performance against two different types of
noise, natural and malicious. The natural noise is related to the
out-of-distribution generalization. Such noise is caused by the
day-to-day changes in input data, e.g., changes in the hardware or
software configurations used for processing input data. The
malicious or adversarial noise is generated by an adversary for
fooling the DANN into producing an erroneous decision18. The
adversarial attacks can be at training time (poisoning attack) or at
inference time (evasion attack)19. The attacks themselves can be
targeted in the feature-space18 or in the problem space20. The
attacker can have a perfect knowledge (white-box attacks), limited
knowledge (gray-box attacks), or zero knowledge (black-box
attacks)20. Here, the knowledge θ= (D, X, f,w) is a set that may
contain training data D, features X, model f, and its parameters w.
Black-box attacks are strict subset of white-box attacks, and
white-box attacks perform better than other attacks against a
DANN21. This means that gradient-based attacks outperform
gradient-free attacks21. Following these facts and the Kerckhoffs’
principle22, in this work, we have employed white-box attacks
assuming attacker’s perfect knowledge at inference time. More-
over, this work focuses on evaluating the inherent robustness of
DANNs to identify the architectures that have a natural relative
immunity to adversaries and insults. Mechanisms on improving
the robustness of DANNs is not covered in this work.

It has been shown with the help of Percolation theory that the
architecture or structure underlying a network of any real-world
system may play a key role in defining its robustness to various
insults and attacks23. Graph-theoretic measures, such as network
topological entropy and Ollivier-Ricci curvature, successfully

quantify the functional robustness of various networks24. Exam-
ples include studying the behavior of cancer cells, analyzing the
fragility of financial networks, studying the robustness of brain
networks, tracking changes attributable to age and autism spec-
trum disorder (ASD), and explaining cognitive impairment in
Multiple Sclerosis (MS) patients25–28. Recently, the relationship
between the architectures of DANNs (quantified by various
graph-theoretic measures before training) and their predictive
accuracy (available after training) has been established8,9. Various
graph-theoretic measures (e.g., path length and clustering coef-
ficient) calculated from the architectures of DANNs are quanti-
tatively linked to their accuracy on various image classification
tasks. However, the relationship between the graph-theoretic
measures related to the robustness (e.g., entropy and Ollivier-
Ricci curvature) of the architecture of DANNs and their perfor-
mance against natural and adversarial noise has never been
explored. Establishing such a relationship will allow the autoML
and NAS research community to design and develop robust
DANNs without training and testing these architectures.

Graph-theoretic measures that are related to the vulnerability
and robustness of networks can be categorized into graph con-
nectivity measures, adjacency spectrum measures, and Laplacian
spectrum measures29. Based on the graph properties such as
Ollivier-Ricci curvature, betweenness centrality, and shortest path
length between nodes, more advanced network measures have
been recently proposed. For example, graph and node-based
multifractal analysis30,31, and fitness-based network efficiency for
heterogeneous nodes32 quantify the topology and robustness of
complex networks. In this work, we study graph-theoretic prop-
erties of the architectures of DANNs to quantify their test-time
robustness. Specifically, we use the graph measures of topological
entropy and curvature of the architecture of DANNs as robust-
ness metrics. We have considered all three aforementioned
categories of graph-robustness measures in our experiments. Our
choice of reporting the curvature and entropy as the robustness
measures of DANNs is based on empirical evidence presented in
this paper. We make two distinct research contributions to the
robustness analysis of DANNs: (1) We establish a quantitative
relationship between the graph-theoretic robustness measures of
entropy and curvature of DANNs (available before training) and
the robustness of these DANNs to natural and adversarial noise
(evaluated after training DANNs). Previous studies explored
graph measures that relate to the performance of DANNs, but the
robustness of DANNs through graph-robustness measures has
never been studied. We show that graph entropy and curvature
are related to DANNs’ robustness, and these structural measures
can identify robust architectures of DANNs even before training
for the given task. (2) We show that the relationship between the
graph robustness measured using entropy and Ollivier-Ricci
curvature and the robustness performance of DANN against
noise and adversarial attacks becomes significantly stronger for
complex tasks, larger datasets, and bigger DANNs. Given that the
sizes of DANNs and the complexity of tasks/datasets are growing
significantly for many real-world applications, the strong
entropy-robustness relationship assumes greater importance. The
autoML/NAS design problems where the robustness of DANNs is
vital, our analysis can help identify robust architectures without
the need to train and test these DANNs under various noisy
conditions.

In Fig. 1, we provide an overview of the proposed approach.
Figure 1a illustrates how graph-theoretic measures are often
applied in Network Science (NetSci) to study various real-world
networks. The illustrated examples include biological systems,
such as brain networks, economic systems, such as financial
networks, and social systems such as social networks. Path length,
graph connectivity, efficiency, degree measures, clustering
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coefficient, centrality, spectral measures (curvature, entropy), and
fractal analysis are the graph-theoretic measures that researchers
have employed for studying real-world networks25–28,33,34.

Figure 1b illustrates our proposed methodology. Our approach
consists of five steps: (1) build random, scale-free, or small-world
networks or graphs using classical families of graphs, (2) calculate
graph-theoretic measures of these random graphs in the graph
domain and select a small subset from the entire design space for
further analysis, (3) convert selected random graphs into archi-
tectures of DANNs (e.g., MLPs, CNNs, ResNets, EfficientNets),
(4) train, validate and test these DANNs under different natural
noise and adversarial conditions, and (5) analyze and link the
robustness of architectures (measured with graph-theoretic
properties) to the performance of trained DANNs against nat-
ural noise and adversarial attacks. We hypothesize that the graph-
theoretic measures that quantify the robustness of networks/
graphs in the NetSci domain will also provide insight into the
robustness of DANNs in the deep learning domain. We provide
empirical evidence to support our hypothesis. We use the term
DANN for deep artificial neural networks, graphs for unweighted
directed acyclic graphs, and network for various networks as used
in the network science (NetSci) domain.

Results
Graph design space. Being a sub-field of autoML, NAS is the
process for searching suitable architectures of neural networks for
a given task35. Design space is a component of NAS and is
composed of a set of architectures of neural networks36. We use
two graph measures, average path length (L) and clustering
coefficient (C), for exploring the graph design space. Extensively
used in prior works37–39, these measures smoothly span the
whole design space of the random graphs as illustrated in Fig. 2.

We generate 2.313 Million (M) candidate random graphs using
Watts–Strogatz flex (WS-flex) graph generator for a range of C
and L values as illustrated in Fig. 2a. We chose WS-flex because
its graphs are superset of graphs generated by three classical
methods including, WS, Erdős Rényi (ER), and Barabási-Albert
(BA)37,40,41. We downsample 2.313 M candidate WS-flex graphs
into coarser bins of 3854 and 54 graphs (Fig. 2b, c), where each
bin has at least one representative graph. We visualize our can-
didate graphs using their average path length (L), clustering
coefficient (C), and entropy (H). Entropy is a graph-theoretic
measure for robustness and we visualize our design space span-
ned by (C, L,H), as depicted in Fig. 2d, e. Figure 2a, e also depicts
the extreme cases of complete and sparse graphs. For a complete
graph, we have (C, L,H)= (1.0, 1.0, 4.1).

We transform the downsampled 54 graphs into DANNs using
the technique of relational graphs proposed by You et al.9. The
same 54 graphs are transformed into multiple types of DANNs
including, multilayer perceptrons (MLPs), convolutional neural
networks (CNNs), and residual neural networks (ResNets).
Because of the flexibility and generalizability of the relational
graphs, our graphs-to-DANNs transformation framework can be
translated into diverse architectures, including MLPs, CNNs,
ResNets, EfficientNets, etc. We use four image classification
datasets of varying complexity to train and evaluate DANNs built
using 54 different graph structures. These datasets include
Canadian Institute For Advanced Research for ten classes
(CIFAR-10), hundred classes (CIFAR-100), Tiny ImageNet, and
ImageNet42–44. The robustness of trained DANNs is quantified
by subjecting these models to various levels and types of natural
and malicious noise. We used three types of additive noise,
Gaussian, Speckle, and Salt&Pepper. For malicious noise, we
employ three different adversarial attacks with varying severity

Fig. 1 Exploring robustness of Deep Artificial Neural Networks (DANNs) with graph-theoretic measures. a In network science (NetSci), real-world
systems such as brain networks, financial networks, and social networks are studied using graph-theoretic measures to quantify their robustness and
fragility. bWe use graph-theoretic measures established in NetSci to study graphs of architectures of DANNs. Using graph-theoretic robustness measures,
we can find robust architectures for DANNs without exhaustively training and evaluating many DANNs.
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levels. These include Fast Gradient Sign Method (FGSM)45,
Projected Gradient Descent (PGD)46, and Carlini Wagner
(CW)47.

Performance trends of DANNs. Figure 3 presents predictive
performance of different MLPs, CNNs, and ResNets built using
54 selected graphs and trained on four different image classifi-
cation datasets. Performance evaluation of the trained DANNs is
done using randomly selected 30 different sets of clean, adver-
sarial, and noisy images. The test accuracy numbers presented in
Fig. 3 are average values across all tests.

MLPs on CIFAR-10: Panel 1 of Fig. 3 presents test accuracies
of 54 MLPs under different conditions. The average clean test
accuracy is 66.3 ± 0.46%, which drops to 33.6 ± 0.64% under PGD
attack and to 32.3 ± 1.9% for the CW attack. With FGSM attack
levels of ϵ= [0.001, 0.005, 0.015, and 0.04], the test accuracy
drops to [62.2 ± 0.72, 46.6 ± 0.6, 20.7 ± 0.54, 4.34 ± 0.44%]. For
low noise level of natural or additive noise (σ 2

noise = 0.1), test
accuracy under Gaussian noise is 58.1 ± 0.50% and under speckle
noise 57.8 ± 0.52%. For high noise level (σ2noise = 0.6), the test
accuracy under Gaussian noise is 51.2 ± 0.55%, and under speckle
noise 48.1 ± 0.55%. Under Salt&Pepper noise (salt vs. pepper=
0.5), the test accuracy is 57.06 ± 0.5%.
CNNs on CIFAR-10: Panel 2 of Fig. 3 shows the average test

accuracies of 8-layer CNNs built from the same 54 candidate
graphs. We observe that the average clean test accuracy for CNNs
is 84.19 ± 1.26%, dropping to 8.07 ± 1.43% under PGD attack, and
to 34.35 ± 3.12% under CW attack. We noticed similar trends for
various levels of FGSM attacks, as well as for the Gaussian,
speckle, salt&pepper noise.

CNNs on CIFAR-100: In panel 3 of Fig. 3, we present CNNs
trained on CIFAR-100 dataset. The average test accuracy is
62.49 ± 2.24% for clean test dataset, which reduces to
6.35 ± 0.64% for the PGD attack, and 22.83 ± 0.94% for the CW
attack. With FGSM attack levels of ϵ= [0.0001, 0.001, 0.01], the

test accuracy is [61.19 ± 2.30%, 51.32 ± 2.06%, and
10.71 ± 0.83%]. For Gaussian noise levels of σ2noise = [0.001,
0.01, 0.05], the test accuracy of CNNs is [53.75 ± 2.01%,
45.29 ± 2.12%, 23.76 ± 1.66%]. For speckle noise levels of
σ2noise = [0.01, 0.05, 0.1], the test accuracy is [52.54 ± 2.00%,
40.82 ± 2.11%, 27.79 ± 2.10%]. For salt&pepper noise, the test
accuracy is 15.14 ± 1.81%. The drop in test accuracy for all cases
is significantly more than that of CIFAR-10 dataset.

ResNet-18 on Tiny ImageNet: The panel 4 of Fig. 3 shows 54
different ResNets trained on Tiny ImageNet. The average clean
test accuracy is 54.08 ± 2.54%, 27.45 ± 2.90% under PGD attack,
and 16.00 ± 2.10% under CW attack. For the FGSM attack levels
of ϵ= [0.0001, 0.001, and 0.004], the accuracy is [52.53 ± 2.85%,
39.86 ± 2.78%, 15.97 ± 2.04%]. For Gaussian noise levels of
σ2noise = [0.1, 0.6], the test accuracy is [36.81 ± 1.96%,
20.44 ± 2.47%]. For speckle noise levels of σ2noise = [0.3, 0.6],
the test accuracy is [30.73 ± 2.31%, 19.34 ± 2.53%]. For salt&-
pepper noise, the test accuracy is 33.00 ± 2.24%.

ResNet-18 on ImageNet: Panel 5 of Fig. 3 presents ResNets
trained using ImageNet. Due to the large number of images
available for training, the average clean test accuracy of all 54
ResNets-18 was 66.0 ± 0.62%, a significant improvement over
Tiny ImageNet experiments (54.08 ± 2.54%). Under PGD attack,
the test accuracy drops to 22.75 ± 1.39%, and to 16.78 ± 1.54%
under CW attack. For the FGSM attack levels of ϵ= [0.0005,
0.002, 0.003], the accuracies are [43.47 ± 1.40%, 10.96 ± 1.09%,
5.27 ± 0.65%]. Similar trends are observed for the additive
Gaussian and speckle noise under the σ2noise = [0.001, 0.01,
0.1]. For salt&pepper noise, the test accuracy drops to
25.39 ± 2.35%.

Comparison of MLPs vs. CNNs on CIFAR-10: We observed
that CNNs achieve higher accuracy on the clean test data as
compared to MLPs on CIFAR-10 dataset. However, under
adversarial conditions (FGSM, PGD, and CW attacks), the drop
in the performance of CNNs is significantly higher than MLPs as

Fig. 2 The graph design space for generating random graphs. a–c Show 2.313 M candidate graphs from Watts–Strogatz flex generator downsampled to
3854 and 54 graphs. d, e Show 3854 and 54 graphs in a 3-D space spanned by clustering coefficient (C), path length (L), and entropy (H). Samples of the
complete and sparse graphs are identified in (a) and (e).
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shown in panels 1 and 2 of Fig. 3. The test accuracy drop is ~76%
for CNNs compared to ~33% for MLPs under PGD attack. For
the CW attack, the accuracy drop for CNNs is ~50% compared to
~34% for MLPs. The same trend was observed for all severity
levels of the FGSM attack. Generally, as expected CNNs
outperform MLPs under clean test conditions; however, MLPs
are more robust to adversarial perturbations as compared to
CNNs. We argue that the observed fragility of CNNs is linked to
their weight sharing and shift-invariant characteristics, which was
previously noted by Zhang et al.48.

Robustness analysis. Our work is a cross-pollination between graph
theory and deep learning. We attempt to link the robustness of
graphs underlying the architectures of DANNs to their performance
against noise and adversarial attacks. On the graph theory side, we
use entropy and Ollivier-Ricci curvature to quantify the robustness of

graphs. These graphs, in turn, are used to build architectures of
DANNs. On the deep learning side, we train these DANNs and
quantify their robustness using test accuracy against various types of
noise and adversarial attacks. Entropy and Ollivier-Ricci curvature
have been extensively studied in the NetSci. These measures have
been shown to capture the robustness of cancer networks24,25, track
changes in brain networks caused by age and ASD27, explain cog-
nitive impairment in patients with Multiple Sclerosis28, identify
financial market’s fragility26, and detect communities in complex
social networks33. We study the robustness of DANNs and establish
the statistical correlation of the observed robustness with entropy and
curvature. The correlation results for entropy of graphs and robust-
ness of DANNs for different datasets are given in Figs. 4, 5, and 6.
The correlation results between the robustness of DANNs and graph
measures such as curvature, average degree, and global efficiency are
provided in Supplementary Notes 3, 4, and 5, respectively.

Fig. 3 Test accuracies of different Deep Artificial Neural Networks (DANNs). The DANN models were trained and evaluated using image classification
datasets under noisy conditions. Each box represents 54 different DANNs trained on the indicated dataset, i.e., 5-layer multilayer perceptrons (MLPs)
trained on CIFAR-10, 8-layer convolutional neural networks (CNNs) on CIFAR-10, 8-layer CNNs on CIFAR-100, residual neural networks (ResNet-18) on
Tiny ImageNet and ImageNet. Distribution bars for box plots are defined in the legend. DANNs are evaluated on clean images, adversarial examples
(FGSM, PGD, CW attack), and noisy images (Gaussian, Speckle, Salt& Pepper noise). The severity levels for the FGSM, Gaussian, and Speckle noise are
indicated on respective boxes. We observe a consistent decline in the predictive performance of all DANNs as the severity levels of adversarial attacks or
natural noise increase.
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ResNet-18 on ImageNet and Tiny ImageNet: Fig. 4 presents 54
ResNet-18 DANNs trained on ImageNet and tested on clean
images, adversarial examples generated with FGSM, PGD, and
CW attacks, and images with additive Gaussian, speckle, and
salt&pepper noise. Each sub-plot shows entropy (H) of the
underlying graph structure and the test accuracy of correspond-
ing ResNet-18 under various conditions. The Pearson product-
moment correlation coefficient values between entropy and
accuracy along with p values are shown on each sub-plot. There
was a very strong positive correlation between the two variables,
r= 0.73, n= 54, p < 0.05 for the clean test dataset. We note
similar behavior under PGD and CW attacks, that is, a strong
correlation between entropy and accuracy exists, r= 0.69 for
PGD and r= 0.85 for CW, p < 0.05 for both. Similarly, strong
positive correlation trends exist for various severity levels of
FGSM attack, Gaussian, speckle, and salt&pepper noise. The
correlations in these experiments are all statistically significant
(p < 0.05). In general, across all types of adversarial attacks and
noises, the DANNs corresponding to graphs with higher entropy
showed stronger robustness and vice versa. Additional results are
provided in Supplementary Figs. S3 and S4.

Figure 5 presents test accuracy vs. entropy plots for 54 ResNet-
18 models trained using Tiny ImageNet and tested under various

noisy conditions. We observe a strong positive correlation
between entropy and predictive performance under all noise
conditions, except Gaussian noise where the correlation is
moderate. However, there is a notable decrease in the Pearson
product-moment correlation coefficient values in all noise
categories compared to the same DANNs when trained and
tested on ImageNet. As Tiny ImageNet is a subset of ImageNet
with only 200 distinct classes instead of 1000, the observed
decrease in the correlation may be linked to the reduction in
complexity of the task, i.e., 200 classes instead of 1000.

CNNs on CIFAR-100 and CIFAR-10: In Fig. 6a, b, we present
accuracy vs. entropy plots for the 54 8-layer CNNs trained on
CIFAR-100 and CIFAR-10 datasets and tested under various
noisy conditions. For the CIFAR-100 experiments, we observe
very strong correlation between entropy and predictive perfor-
mance except for CW (r= 0.40, p < 0.05), PGD (r= 0.39,
p < 0.05) adversarial attacks, and salt&pepper noise (r= 0.47,
p < 0.05). For CIFAR-10 dataset, there is a strong correlation
between entropy and predictive performance except for the PGD,
CW attacks and salt&pepper noise, which were not statistically
significant.

We opine that the weak correlation between graph entropy and
DANNs’ performance under PGD and CW attacks is due to the

Fig. 4 Test accuracy vs. entropy for ResNet-18 on ImageNet. Test accuracy is shown on the vertical axis and entropy (H) of the underlying graph is shown
on the horizontal axis. The dots represent an average value calculated over five runs. The type and severity level of noise is shown on the top of each
subplot. Sub-plots also show trendlines and Pearson correlation coefficients (r) with p-value. We note significant positive correlation between graph
entropy and the performance of the Deep Artificial Neural Networks for all cases.

Fig. 5 Test accuracy vs. entropy for ResNet-18 on Tiny ImageNet. Test accuracy is shown on the vertical axis and entropy (H) of the underlying graph is
shown on the horizontal axis. The dots represent an average value calculated over five runs. We note a strong positive correlation between entropy and the
accuracy of Deep Artificial Neural Networks for all types of noise cases.
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strong nature of PGD and CW attacks on relatively simple
classification tasks of CIFAR compared to Tiny ImageNet and
ImageNet. This opinion was strengthened from the evaluation
results of the CNNs on a more straightforward classification task
of CIFAR-10. We observe that the correlation of entropy with the
predictive performance of CNNs reduces for all categories.
Moreover, the entropy’s correlation with accuracy under CW
attack becomes negative. Under PGD attack and salt&pepper
noise, it becomes insignificant with p > 0.05 as highlighted by the
red text in respective subplots of Fig. 6. Additional results are
provided in Supplementary Figs. S5 and S6.

Effect of task and model complexity. We observed that DANNs’
robustness, evaluated under noisy conditions, and the robustness
of underlying graph structures, quantified using entropy, are
strongly correlated. Moreover, this correlation has a strong
dependence on the complexity of the model and/or the dataset. In
our settings, the model complexity refers to the number of
parameters in the model, and the task complexity refers to the
number of classes in the dataset. As the complexity of the task
and/or model increases, the correlation between robust perfor-
mance and entropy of DANNs increases, as shown in Fig. 7.

In Fig. 7a, models evaluated for the 10-class and 100-class tasks
are 8-layer CNNs. For 200-class and 1000-class tasks, ResNet-18
models were evaluated. We note that for the same 8-layer CNNs,
increasing the complexity of the task (from 10 classes of CIFAR-
10 to 100 classes of CIFAR-100) results in increase in the

correlation values as noted by the Student’s t-test (t=−2.31,
n= 34, p < 0.05). The same holds true for increasing the task
complexity from 200 classes of Tiny ImageNet to 1000 classes of
ImageNet and using the same ResNet-18 models (t=−4.66, n=
23, p < 0.05). Comparing two different models evaluated on
separate tasks, we notice insignificant increase in the correlation
values (i.e., p > 0.05) as in the case of 8-layer CNN models
evaluated on CIFAR-100 dataset versus ResNet-18 models
evaluated on Tiny ImageNet dataset. While Student’s t-test is
used to compare two related samples, we used the F-test to see the
equality of the two unrelated populations (CNNs vs. ResNet-18s)
for performance variance on separate tasks. We observe that there
is significance difference between variances of the two analyzed
sets of experiments, F(14, 14)= 2.61, p < 0.05. In Fig. 7b, we
present the effect of increasing the model complexity measured
by the number of parameters against the entropy-robustness
correlation. We observe that for the same CIFAR-100 dataset, as
the model complexity increases from ~0.3 M parameters in
ResNet-29 to ~1.3 M in CNN, the entropy-robustness correlation
increases significantly (t=−6.8, n= 23, p < 0.05). Similarly, the
entropy-robustness correlation increases significantly (t=−5.85,
n= 27, p < 0.05) when model complexity increases from ~0.5 M
parameters in ResNet-41 to ~1.3 M in CNN for CIFAR-100 task.
We also note that this increase in significance is large when
difference between the number of parameters between models is
large. Our analysis of DANNs’ robustness show that a correlation
exists between graph entropy and robustness of DANNs, and this

Fig. 6 Accuracy vs. entropy for Convolutional Neural Networks (CNNs). CNNs were trained on a CIFAR-100 and b CIFAR-10 datasets and tested under
various noisy conditions. The dots represent average test accuracy over 30 runs. The Pearson correlation r and corresponding p values between entropy
and accuracy are also presented for each noise condition. The red text color shows correlation values that are not significant. For the same 8-layer CNNs,
the entropy-robustness correlation values increase with the task complexity, that is, relatively higher correlation values are observed for CIFAR-100 as
compared to CIFAR-10 dataset for all noise conditions.
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correlation has a strong dependence on the complexity of task
and model.

We summarize our results and robustness analysis here. The
graph structural entropy of complex DANNs, like ResNets, is a
strong indicator of their robustness against all of the analyzed
additive noise and adversarial attacks on complex tasks such as
1000-class ImageNet. As we reduced the task complexity to 200-
class Tiny ImageNet, the entropy-robustness relationship
decreased for all categories of noise and adversarial attacks.
Similarly, graph entropy of relatively simple DANNs, like 8-layer
CNNs, is a strong indicator of robustness against relatively simple
adversarial attacks, like FGSM, and all types of additive noise on
the CIFAR-100 task. But under strong adversarial attacks, such as
PGD and CW, the entropy-robustness relationship reduces for
8-layer CNNs. Similar trends were observed when testing the
same 8-layer CNNs on the CIFAR-10 task. The only limitation we
encountered in our analysis was that of MLPs trained and
evaluated over CIFAR-10 dataset, as given in the Supplementary
Note 2 and Supplementary Fig. S2.

Discussion
In this work, we have shown that graph structural properties such
as entropy and curvature can quantify the robustness of DANNs
before training. We calculated entropy and curvature of a set of
random graphs, which were later transformed into architectures

of different types of DANNs. The DANNs were trained and their
robustness was evaluated using different types of natural and
adversarial noise. We noted that the robustness of trained
DANNs was highly correlated with their graph measures of
entropy and curvature. We also noted that the said correlations
were even stronger for relatively large models and complex tasks.

Currently various autoML and NAS techniques are being
developed to search for accurate model architectures for the given
datasets and/or tasks10–12,49,50. We argue that for many mission-
critical applications, the robustness of these models is equally or
in some cases more important than accuracy. However, there are
currently no assured ways of estimating the robustness of DANNs
in the graph design space except training and testing the candi-
date DANNs in the deep learning domain. We suggest that the
users of autoML/NAS techniques should incorporate entropy and
Ollivier-Ricci curvature information into their search framework.
Using the graph representation of DANNs within the defined
search space, the structure and associated topological properties
of DANNs, such as entropy and curvature can be studied. Inte-
grating these structural measures with the existing performance
criterion shall enable the autoML/NAS algorithms to quantita-
tively and qualitatively select robust DANNs instead of exhaus-
tively searching through all possible candidates. The users and
autoML/NAS algorithms can directly identify and choose the
most robust model out of all the models that meet the accuracy

Fig. 7 Effect of task and model complexity on entropy-robustness relationship. a Entropy-robustness correlation coefficient (vertical axis) is plotted
against the number of classes (horizontal axis) in datasets. As the task becomes complex, entropy becomes significantly more correlated to the robustness
of Deep Artificial Neural Networks (DANNs). b The entropy-robustness correlation coefficient is plotted against the number of model parameters for
different DANNs (ResNet-29, ResNet-41, and CNNs) using CIFAR-100 dataset. For the same task, as the number of model parameters increases, the
entropy-robustness correlation increases significantly (p < 0.05).
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criteria set by the user. Such a practice would allow users or
autoML/NAS algorithms to choose accurate as well as robust
DANNs keeping in view the application area of the machine
learning model. In Supplementary Note 9, we have given an
algorithm as a guideline for selecting the robust architecture of a
DANN for a given design space.

We have focused our analyses in this work on the computer
vision application. However, there are a plethora of other
applications and tasks where robustness quantification of
DANNs is important51–54. A possible future direction is to
extend the presented analysis to more complex applications
(e.g., natural language processing, graph data, and Deep Chip
industry55–59) and larger models (e.g., Transformers, and
Vision Transformers60,61). Given our current analysis, we
anticipate that for the larger datasets, complex tasks, and huge
models, the graph robustness measures will be even more
relevant and will help users/autoML/NAS algorithms find
robust DANN architectures.

Methods
We start by presenting the techniques we employed for generating random
graphs in the graph theory domain. Next, we describe the graph-theoretical
properties used in our experiments to study random graphs. These graph
measures are needed to study the structural information of the random graphs.
Next, we provide details on transformations for building DANN architectures
from random graphs and training these DANNs for various computer vision
classification tasks. Finally, we present the multiple conditions, including
natural noise and adversarial attacks that we used to evaluate the trained
DANNs and quantify their robustness.

Generating random graphs. Random graphs are extensively used in percolation
studies, social sciences, brain studies, and deep learning to understand the behavior
of natural systems and DANNs8,39,40,62,63. We used random graphs, called rela-
tional graphs, employed recently in deep learning9.

Relational graphs: A recent study used relational graphs and showed that
the performance of a DANN can be quantified using its graph properties such
as clustering coefficient and path length9. The relational graphs are generated
through the WS-flex graph generator. WS-flex is a generalized version of the
WS model having same-degree constraint relaxed for all nodes. Parameterized
by N nodes, K average degree, and P rewiring probability, we represent these
graphs by WS-flex(N, K, P). For the graph generator, we use notation g(θ, s),
where g is the generator (for example, WS-flex), θ represents parameters
(N, K, P), and s is the random seed. It is important to note that WS-flex(N, K, P)
graph generator encompasses the design space of all the graphs generated by
the three classical families of random graph generators, including WS, ER, and
BA9,37,40,41.

Graph-theoretic measures. Average path length (L). It is a global graph measure
defined as the average shortest path distance between any pair of graph nodes. It
depicts the efficiency of the graph with which information is transferred through
the nodes64. Small values of L indicate that the graph is globally efficient, and the
information is effectively exchanged across the whole network and vice versa. Let G
be an unweighted directed graph having V, a set of n vertices {v1, v2, . . . , vn} ∈V.
Let d(v1, v2) be the shortest distance between v1, v2 and d(v1, v2) = 0 if v2 is
unreachable from v1. Then, average path length L is defined as,

L ¼ 1
nðn� 1Þ∑i≠j dðvi; vjÞ: ð1Þ

Clustering coefficient (C). Clustering coefficient is a measure of the local con-
nectivity of a graph. For a given node i in a graph, the probability that all its
neighbors are also neighbors to each other is called clustering coefficient. The more
densely interconnected is the neighborhood of a node, the higher is its measure of
C. Large value of C is linked with the resilience of the network against random
network damage65. The small-worldness of networks is also assessed by C66. For a
node i with degree ki, clustering coefficient Ci is defined as,

Ci ¼
2di

kiðki � 1Þ ; 0≤Ci ≤ 1: ð2Þ

where di is the number of edges between the ki neighbors of node i.
Graph spectral measures. The spectral measures focus on eigenvalues and

eigenvectors of the associated graph adjacency and Laplacian matrices. We use
topological entropy and Ollivier-Ricci curvature.

● Topological entropy (H). Entropy of graph G having adjacency matrix AG,
is the logarithm of the spectral radius of AG, i.e., logarithm of the maximum

of absolute values of the eigenvalues of AG
67.

H ¼ logðλAG
Þ: ð3Þ

● Ollivier-Ricci curvature (ORC). It is the discrete analog of the Ricci
curvature68,69. From the many alternatives of Ricci curvature70, we use the
definition presented by Farooq et al. 27 (see Fig. 6 of ref). Let (X, d) be a
geodesic (a curve representing the shortest path between two points on a
surface or in a Riemannian manifold) metric space having a family of
probability measures {px: x∈ X}. Then, ORC κORC(x, y) along the geodesic
connecting x and y is,

κORCðx; yÞ ¼ 1�
W1ðpx ; pyÞ
dðx; yÞ ; ð4Þ

where W1 is the earth mover’s distance (Wasserstein-1 metric), and d is the
geodesic distance on the space. Curvature is directly proportional to the
robustness of the network. The larger the curvature, the faster will be the
return to the original state after perturbation. Smaller curvature means
slow return, which is also called fragility27.

Robustness and Fragility. We now provide the notion of robustness and fragility
used in this paper. Fluctuation theorem71 gives the concept of measuring a
network’s potential of returning to its “relaxed” and unperturbed state when
subjected to some random perturbation. Let pγ,α(t) denote the probability that
under some perturbation γ at time t, the observable mean deviation of the network
from its relaxed state is greater than α. The rate R at which a dynamic system
returns to its original state after perturbation is given by the following function,

R :¼ lim
t!1

� 1
t
log pγ;αðtÞ

� �
: ð5Þ

Here, a large value of R denotes a prompt return to relaxed state after a small
perturbation(γ), called the network robustness, whereas, a small R means slow
return from a large perturbation(γ), called the network fragility. In the field of
thermodynamics, entropy is closely related to the rate function R from large
perturbations71,72. Fluctuation theorem71,73 states that, given random
perturbations to the network, change in system entropy ΔH is positively correlated
to change in robustness ΔR, and negatively correlated to change in fragility ΔF,
(since ΔR≔−ΔF).

ΔH ´ΔR> 0; ð6Þ

ΔH ´ΔF ≤ 0: ð7Þ
Entropy ΔH and curvature ΔκORC are also positively correlated (see Equation

(7) of Tannenbaum et al. 24), that is,

ΔH ´ΔκORC > 0: ð8Þ
From Eqs. (6) and (8), we see that graph curvature and robustness are also
positively correlated,

ΔκORC ´ΔR> 0: ð9Þ
Equations (6) and (9) are the primary motivation in this work to study the
curvature and entropy of deep neural networks.

From graphs to DANNs. Let G= (V, ε) be a graph having node-set V= {v1, v2, .
. . , vn}, where node v has feature vector xv, and edge set ε= {(vi, vj)∣vi, vj∈ V}. The
neighborhood of node v is defined as N(v)= {u∣(u, v)∈ ε}. To transform the graphs
into DANNs, we adopt the concept of neural networks as relational graphs9. In
relational graph, a single node represents one input channel and one output
channel. Edge in the relational graph represents a message exchange between the
two nodes it connects. The message exchange is a message function having node
feature xv as input and a message-aggregation function as output. The aggregation
function takes a set of messages as input and gives an updated node feature as
output. One iteration of this process is one round of message exchange. At each
round, each node sends messages to its neighbors, receives messages from all the
neighbors, and aggregates them. At each edge, message transformation occurs
through a message function f(.), followed by summation at each node through an
aggregation function F(.). The ith message exchange round between nodes v and u
can be expressed as,

xðiþ1Þ
v ¼ FðiÞðff ðiÞv ðxðiÞu Þ;8u 2 NðvÞgÞ: ð10Þ

You et al. have shown that Eq. (10) is the general definition of message
exchange that can be used to instantiate any neural architecture9. We generate
MLP, CNN, ResNet-18, and ResNet-29 for each of the 54 random graphs generated
from the WS-flex generator. We have illustrated the graph-to-DANN
transformation for a 64-node complete graph, generated from the WS-flex
generator, to a 5-layer MLP, 8-layer CNN, and ResNet-18 models in the
Supplementary Note 1 and Supplementary Fig. S1.

The same 54 WS-flex random graphs were transformed into a total of 216
DANNs having 54 neural networks in each of the four categories (MLP, CNN,
ResNet-18, and ResNet-29). MLPs were trained on CIFAR-10 dataset, whereas, the
CNNs were used for training on CIFAR-10 and CIFAR-100 datasets. The same
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ResNets-18 were used for training on ImageNet and Tiny ImageNet datasets. The
baseline architectures have a complete graph structure for each architecture
category. To ensure the consistency of our results, we trained each MLP and CNN
five times and ResNets one time on respective datasets. The results reported in this
paper are average values calculated for thirty different inferences over random test
inputs for each MLP and CNN, whereas, five random test inference runs for each
ResNet. List of frameworks and hyperparameters used in our experiments are
provided in Supplementary Note 6. The compute resources and wall clock times
are given in Supplementary Note 7.

Datasets. We used four different image classification datasets for our experiments
that allowed us to train DANNs of different sizes on tasks that varied in their
complexity. We used 10-class CIFAR-1042 dataset to train MLPs and CNNs.
CIFAR-10042 dataset having 100 classes was used to train CNNs and ResNet-29.
Both datasets have 50,000 training images and 10,000 validation images. To further
scale our experiments, we trained ResNet-18 on the Tiny ImageNet43 dataset
having 200 classes. Each class in Tiny ImageNet has 500 training images and 50
validation images. We also trained ResNet-18 on the ImageNet44 dataset having
1000 classes, 1.2 M training images and 50,000 validation images.

Robustness analysis. We assessed the robustness of DANNs against natural
additive noise and malicious noise (adversarial attacks). First, we evaluated the
models using clean test images from respective datasets. Then we fed DANNs with
different test images corrupted with additive noise and adversarial attacks. It is
important to note that we chose the severity levels of adversarial attacks and
additive noise so that the predictive performance of DANNs is at the minimum
greater than 3%. We observed at higher levels of noise, the performance would
naturally drop to 0%, which was not helpful in our analysis. Moreover, different
severity levels work on different datasets owing to the inherent features and
attributes of the data.

Performance evaluation under adversarial attacks. We evaluated DANNs using
adversarial examples generated from three different types of attacks, (1) FGSM45,
(2) PGD46, and (3) CW47.

Consider a valid input x0 and a target class y0. It is possible to find x through
non-random perturbation to x0 that changes a DANN’s prediction to some other y;
such x is called an adversarial example. Given a loss function J(x;w), x0 be the input
to the model having parameter w, the adversarial example x is created by the
adversarial attack as,

FGSM : x ¼ x0 þ ϵ � signð∇xJðx0;wÞÞ; ð11Þ

PGD : xtþ1 ¼ ΠxþBfxt þ α � signð∇xJðxt ;wÞÞg; ð12Þ

CW : min
x

k x � x0k2 þ c �maxfðmax
i≠j

fgjðxÞg � gtðxÞÞ; 0g: ð13Þ
In Eq. (11), ϵ is the severity level of the attack and should be small enough to

make the perturbation undetectable. In Eq. (12), xt is an adversarial example after
t-steps, α is the step-size, Πx+B refers to the projection operator for each input x
having a set of allowed perturbations B chosen to capture the perceptual similarity
between images. In Eq. (13), c > 0 is the attack magnitude, i is the input class, and j
is the target class. FGSM and PGD have the l∞-distance metric, whereas CW, a
regularization-based attack, has l2-distance metric in our analysis.

For the FGSM attacks, we used eighteen severity levels, ϵ= [0.0001, 0.0005,
0.001, 0.0015, 0.002, 0.0025, 0.003, 0.004, 0.005, 0.01, 0.015, 0.02, 0.025, 0.04, 0.045,
0.06, 0.08, and 0.3]. For the PGD attacks on CIFAR datasets, we used
maxðBÞ ¼ 0:008, α= 2/255, and t= 7. For the Tiny ImageNet dataset, we used
maxðBÞ ¼ 0:002, α= 2/255, and t= 10, and for the ImageNet dataset, we used
maxðBÞ ¼ 0:001, α= 2/255, and t= 10. For the CW attacks on CIFAR datasets, we
used c= 0.007 and steps= 100. For the Tiny ImageNet dataset, we used c= 0.01,
steps= 100, whereas for the ImageNet dataset, we used c= 5e−7 and steps= 100.

Testing under additive noise. We used three different types of noise to generate
corrupt images for all the datasets, (1) Gaussian, (2) speckle, and (3) salt&pepper noise.
For each noise type, we used different levels of corruption quantified by the variance
and monitored the performance drop. The noise variance used in our experiments for
the Gaussian and speckle noise types are σ2= [0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
and 0.6]. For the salt&pepper noise type, we used the maximum ratio of salt vs.
pepper= 0.5, where salt changes a pixel value to 1 randomly, and pepper changes a
pixel value to 0 randomly, in the input image. Sample images for each dataset used in
our experiments, with noise types and levels are shown in Supplementary Note 8,
Supplementary Figs. S8 and S9.

Statistical analysis. We conducted various statistical tests to ascertain the sig-
nificance of our analysis. We computed the Pearson product-moment correlation
coefficient to assess the relationship between adversarial accuracy and the graph
robust structural properties. We also computed the Pearson product-moment
correlation coefficient between different structural graph-theoretic measures as
shown in Supplementary Fig. S7. For reference, Pearson product-moment corre-
lation coefficient r ranges from −1 to +1, where larger the absolute value of r, the
higher is the degree of correlation and stronger is the relationship between

variables, and vice versa. Specifically, the absolute values of r= 0 indicates no
relationship, 0 < r ≤ 0.3 indicates weak relationship, 0.3 < r ≤ 0.4 indicates a mod-
erate relationship, 0.4 < r ≤ 0.7 indicates strong relationship, r > 0.7 indicates very
strong relationship, and r= 1 indicates perfect relationship. We used the Student’s
t-test to establish that the average of the correlations between entropy and
robustness for two types of datasets as well as two model types are statistically
different. This analysis established how entropy is related to the increase in model
size and task complexity. The significance level in all these analyses is set to 95%,
i.e., p < 0.05 indicates statistically significant values.

Data availability
The datasets used in this study are publicly available on following links: CIFAR-10 and
CIFAR-100 (https://www.cs.toronto.edu/~kriz/cifar.html), Tiny ImageNet (https://www.
kaggle.com/c/tiny-imagenet/overview), and ImageNet (https://www.image-net.org/). The
source data of figures are given in Supplementary Data. Correspondence should be
addressed to A.W.

Code availability
For the simulations in deep learning domain, we have used PyTorch machine learning
library, primarily developed by Facebook’s AI Research lab. The base-code for relational
graph experiments (https://github.com/facebookresearch/graph2nn/) is under the MIT
License with copyright(c)Facebook, Inc. and its affiliates. The calculations in graph
domain and graph theoretic measures have been coded in Matlab software. Both of these
code-packages (in PyTorch and Matlab) are published in the GitHub repository
associated with this paper (https://github.com/Waasem/RobDanns).
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