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Nature-inspired architected materials using
unsupervised deep learning
Sabrina Chin-yun Shen1,2 & Markus J. Buehler 1,3✉

Nature-inspired material design is driven by superior properties found in natural architected

materials and enabled by recent developments in additive manufacturing and machine

learning. Existing approaches to push design beyond biomimicry typically use supervised

deep learning algorithms to predict and optimize properties based on experimental or

simulation data. However, these methods constrain generated material designs to abstracted

labels and to “black box” outputs that are only indirectly manipulable. Here we report an

alternative approach using an unsupervised generative adversarial network (GAN) model.

Training the model on unlabeled data constructs a latent space free of human intervention,

which can then be explored through seeding, image encoding, and vector arithmetic to

control specific parameters of de novo generated material designs and to push them beyond

training data distributions for broad applicability. We illustrate this end-to-end with new

materials inspired by leaf microstructures, showing how biological 2D structures can be used

to develop novel architected materials in 2 and 3 dimensions. We further utilize a genetic

algorithm to optimize generated microstructures for mechanical properties, operating directly

on the latent space. This approach allows for transfer of information across manifestations

using the latent space as mediator, opening new avenues for exploration of nature-inspired

materials.
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Natural materials have been optimized over millions of years
of evolution, creating a rich source of design inspiration
for modern engineering. Biological materials are largely

composed of organic and ceramic materials, which are typically
considered to be weaker than metals. Even so, evolution has suc-
ceeded in creating materials that are both strong and tough out of
these basic building blocks by architecting at multiple scales1–4.
Resultant architected and hierarchical materials, such as lamellar
structures in conch shells5,6 or beta-sheet crystals in spider silk7,
can have mechanical properties rivaling those of steel and certainly
surpassing their synthetic counterparts8,9. This motivates the
nature-inspired design paradigm: innovation can be accelerated
by harnessing nature’s design principles through biomimicry and
beyond and by exploiting these principles in novel designs further
optimized for societal needs.

Manufacturing of complex architected materials has been
enabled by recent developments in additive manufacturing tech-
nology, and hierarchical nature-mimicking materials have subse-
quently been created for diverse applications10–15. In the next
generation of nature-inspired materials, machine learning is often
used to push bioinspiration beyond mimicry without brute force
computation, harnessing underlying design principles in nature
toward specific applications. Algorithms such as multilayer per-
ceptrons (MLPs), convolutional neural networks (CNNs), recur-
rent neural networks (RNNs), gaussian processes (GP), and genetic
algorithms have been used to predict and optimize properties
including strength16,17, toughness17,18, failure mode19, yield stress,
and yield strain20. While these methods are powerful for opti-
mizing within a set of constraints, they are limited by human
intervention in data labeling, which defines predetermined design
spaces. Further, they yield “black box” outputs that can only be
indirectly manipulated through changes in machine learning
architecture, training parameters, or cost functions. Thus even
while requiring immense amounts of experimental or simulation
data to train, each model is severely restricted in its application
space. Alternatively, unsupervised generative methods like gen-
erative adversarial networks (GANs) make use of unlabeled
data and, once trained, can produce infinite novel outputs21. The
development of a latent space that can be explored, enables the

generation of new designs without user input constraints, pushing
the envelope of human understanding in design inspiration. These
designs can also be tested, scored, and manipulated for function-
ality in various applications.

GANs train via pseudo-supervised learning tasks: two distinct
internal neural networks, a generator and a discriminator, are
trained against each other in a zero-sum game such that the
generator becomes skilled at generating convincing samples as the
discriminator becomes skilled at distinguishing between real
input data and artificially generated data. This architecture allows
the training of generative models for various fields, including
domain-specific data augmentation, generation of art or life-like
images, and image-to-image translation21,22.

The generator model in a GAN operates by seeding the gen-
erative algorithm with a fixed-length vector drawn randomly
from a Gaussian distribution. The multidimensional vector space
(say N-dimensional) from which it is drawn functions as a latent
space onto which, after training, each piece of data from the
original distribution can be mapped as a single point defined by
an N × 1 vector. In this way, the GAN learns features of the
original dataset and the latent space serves as a compression of
relevant data distributions. Then, in generative steps, new points
in latent space can be constructed into higher dimensional
outputs23 in the form of the training data (novel images, for
example), and the latent space becomes an infinite design space
for novel samples. This makes GANs a powerful method
for drawing desirable features and distributions from existing
data and recomposing them into new data, such as generating
deceptively realistic portraits of human faces24.

GANs can be successfully applied to materials engineering. For
example, a GAN was trained to generate over 400 2D material
architectures that approach theoretical upper bounds on com-
posite moduli25. Here we apply GANs to bio-inspired design for
the first time using StyleGAN, a generative image modeling
network constructed to enable scale-specific feature control, and
therefore especially equipped for the design of hierarchical
structures such as those found in nature 26. StyleGAN uniquely
operates with both the z-latent space typical of a GAN and an
intermediate w-latent space, which is calculated from z with

Fig. 1 Generative adversarial network (GAN) training and processing of outputs. a Overview of the leaf image generation and dataset, including GAN
implementation and image generation process. De novo leaf-based “unit cells” are produced via binary processing, island removal, and XY-mirroring of
individual generated images. Examples shown represent continuously varying microstructures that can be derived from the latent space. Supplementary
Movie 1 provides further insight into such variations. b Representative images for the three major structural families found in the generated leaf-inspired
architectures. c Randomly seeded leaf images can be mined for specific properties, such as low or high density, which corresponds to mechanical
properties.
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a learned mapping network (structure shown in Fig. 1a). The
w-vector is input into the generator at multiple different layers,
enabling disentanglement of features. As such, different w-vectors
can also be input into different layers of the generator to generate
“mixed” outputs24,27. The expanded latent space created repre-
sents an expansive design space that encompasses all structural
cues from the training data and potentially beyond. In addition to
unique designs, continuously evolving architectures can be gen-
erated and stacked through small steps in the continuous latent
space to build varying or three-dimensional materials, which can
be further modeled and manufactured with 3D printing.

Several other computational tools for automated and tileable
microstructure design have been recently introduced, such as
a framework for two-scale topology optimization28, tileable
microstructures from families of related structures29, tileable
microstructures derived from Voronoi diagrams induced by star-
shaped metrics30, 3D star-shaped tile sets emerging from a
discrete growth process in a lattice31, computationally mapping
auxetic, conventional, and transitional unit cells into cellular
solids32, and using combinatorial search over topologies to
obtain parametric cubic patterns with isotropic elastic materials33.
These methods have generated fascinating metamaterials with
applications in topology optimization28, controlled elasticity29,33,
shape-matching32, and others. Our method builds on key ideas
from these and possesses alternative benefits. For example, rather
than pre-computing unit cells with combinatorial search28,33, or
pre-defined “families”29,32,34, using StyleGAN as an automated
generator operating on a continuous latent space enables on-the-
fly generation of various smoothly transitioning unit cells. This
further enables gradient stacking in the z-direction for complex
three-dimensional structures. Additionally, using an algorithm to
generate structures inspired by natural materials may capture
statistical variations or other nuances that are favorable for spe-
cific applications, such as by enhancing delocalized buckling.
Mathematical abstractions or human design, alternatively, can
sometimes be critical engineering tools but may not capture such
nuances35–37.

Here, we demonstrate these concepts end-to-end by training
StyleGAN on a dataset of leaf micrographs and generating de
novo architected leaf-inspired materials in several different ways.
Leaves represent interesting natural materials that, while hier-
archically structured, are typically bound to 2D geometries by
evolutionary limitations such as transpiration processes38. Using
StyleGAN as a platform, we explore the extrapolation of leaf
geometries into three dimensions, and demonstrate several tools
for generating, designing, and optimizing architected nature-
inspired materials.

Results and discussion
Leaf-inspired material unit cells. Training the StyleGAN archi-
tecture on leaf micrographs such as those shown in Fig. 1a
constructed a 512-dimensional latent space in which every point
corresponds to a leaf image. Novel images were accessed through
seed values, which were used to generate random 512 × 1 vectors
to initiate the trained generator network. Binary processing,
island removal, and XY-mirroring of individual leaf images with
OpenCV produced symmetric leaf-inspired material “unit cells”
that emulate the structure of two-dimensional open-celled foams.
Figure 1a depicts this process (more detail is shown in Supple-
mentary Fig. 1) and shows several examples of generated leaf
images, along with their corresponding unit cells. Some images
display only the midrib and secondary veins of a leaf, while others
also display tertiary and/or quaternary veins, and their corre-
sponding unit cells reflect these varying levels of hierarchy in
their microstructures. This indicates that the model is able to

simulate hierarchical properties present in the training data and
shows, at a coarser scale, the model’s ability to generate con-
tinuously varying structures.

A library of 1000 randomly seeded leaf images and their
corresponding unit cells was generated from the trained
StyleGAN model. These unit cells could be visually grouped
into three major families (Fig. 1b), which each contained
numerous images with slight variations and multiple levels of
hierarchy. Additional sample microstructures can be found in
Supplementary Fig. 2. Generally, more detailed leaf images
yielded more densely architected unit cells, enabling the creation
of distinctly hierarchical architectures. Figure 1c shows the
density distribution of the unit cell library. While a bimodal
distribution is apparent, there are entries that span nearly the full
spectrum of densities between 0–1. Material architectures can
therefore be generated at any desired density, which is especially
important because the relative density (ρ/ρs) of cellular materials
largely dictates their mechanical properties as described by the
relationship:

E
Es

¼ C
ρ

ρs

� �2

ð1Þ

where E is the effective modulus of the foam, Es is Young’s
modulus of the cell wall material, ρ is foam density, and ρs is cell
wall material density39.

From here, the various leaf-inspired unit cells serve as building
blocks for crafting a multitude of architected materials. At its
simplest, unit cells can be tiled in X and Y directions to produce
large-area two-dimensional architected materials. The mirroring
operation performed in generating unit cells guarantees that they are
symmetrical and tileable, including between closely related units, to
enable the creation of gradient structures. Figure 2a depicts several
examples of tiled “leaf-inspired” unit cells, and Fig. 2b depicts
physical 3D-printed samples. The cell wall thickness of individual
unit cells can also be varied in post-processing to generate graded
2D materials.

The mechanical analysis confirmed that the tiled 2D architec-
tures behave like open-celled foams, as expected39,40. Figure 2c
shows the stress-strain curves of two handpicked 2D architectures
tiled from seed values 441 and 863, which had similar architectures
but lower and higher relative densities, respectively, 3D-printed in
an elastic material. Both curves show three distinct regions; a linear
elastic region corresponding to the elastic bending of cell walls, a
plateau of deformation at near-constant stress corresponding to the
buckling of cell walls, and a sharp increase in stress as cell wall
materials is crushed together.

Image manipulation. The infinite images that can be generated
from the latent space serves as an expansive and continuous
design space from which to produce leaf-inspired architectures.
While this is indeed beneficial, for specific applications, methods
to search or manipulate the design space to find architectures
with desirable properties are necessary. Two such methods, image
projection/encoding and image mixing are described below.

Image projection involves designating a target image and
backpropagating through the generator model to find a latent
vector w that most closely matches it. Target images are projected
onto the latent space by optimizing w over many iterations while
penalizing a loss function that quantifies the distance between the
target image and the synthesized image27. Thus, any image can be
generated in a “leaf style”with the trained model, as shown in Fig. 3.
This allows manual input of design cues for generated images, and,
therefore material architectures, which is advantageous when
specific forms, geometries, or hierarchical levels are required.
We further distinguish between the nuances of projection and
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Fig. 2 Unit cell tiling into quasi-2D materials with properties of open-celled foams. a Symmetric leaf-inspired unit cells can be tiled in both X and Y
directions to generate large-area quasi-2D materials. b 3D-printed samples of 2D leaf-inspired architectures, one with a gradient of wall-thickness. c Simple
deformation analysis of two leaf-inspired structures, one with relatively low density and one with relatively high density. Both exhibit mechanical properties
of elastic open-celled foams, with linear elastic wall buckling between points 1 and 2, a plateau of deformation at near-constant stress corresponding to
buckling of cell walls between points 2 and 4, and a sharp increase in stress as cell wall materials are crushed together between points 4 and 5. Because
these samples were printed with an elastic material, the structures are largely recovered as strain returns to zero.
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encoding: As previously discussed, the latent w-vector is input into
multiple layers of the generator, which contributes to feature
separation and multi-level control (generator architecture can be
found in Fig. 1a). Image projection identifies a single w-vector
common to all input layers of the generator, whereas encoding, an
extension of this, allows a different w-vector to be optimized for
each layer. Projection retains more characteristic features of the
generator (i.e., what makes a leaf a leaf), while the encoding allows
greater visual fidelity by enabling the generation of images that do
not have a “pure” latent representation. As a result, projection
sometimes cannot emulate images that deviate too much from
leaf microstructures, while encoding can replicate target images
with higher fidelity at the cost of losing the nuance of
leaf microstructures, although this can be curbed by stopping the
optimization early.

Both these methods are valid tools depending on application
goals. Several projected and encoded images are shown in Fig. 3,
along with their corresponding target and processed “unit cells”.
As evident, projected images have more characteristic leaf-
microstructure-like cells, whereas the encoded images are able
to emulate the target images more closely with some leaf-like
properties. Projecting and encoding appear to be sensitive to a
number of parameters, including shape and color. Fascinatingly,
the model can generate images in black and red, colors which
did not appear in the training data. While color is not especially
important in binary material architecture design, this implicates
the expanse of the latent space and the generative abilities of the
model beyond the properties of the existing data.

Generating guided structures with leaf “styling” can be beneficial
in engineering applications. For example, natural variability
from leaf structures contributes randomness to architected
materials, which can foster delocalized buckling and higher energy
dissipation for failure-resistant structures41. Structural randomness
is present in nearly all cellular materials in nature, including bone
and nacre42.

Leaf images can also be generated by combining desirable
qualities from multiple different images. Termed “style-mixing”
24, this is accomplished by generating an image with multiple w-
vectors specified by seed values, similar to the encoding process
described above. Using the latent code for one “pure” image in
earlier layers of the generator corresponds to copying the
image’s coarse spatial resolutions, and, therefore, high-level
aspects such as the main structure. Downstream layers of the
generator correspond to finer features such as color schemes.
As such, by carefully selecting which latent codes are input to
each layer in the generator, a leaf image can be crafted such that
it contains designated features and qualities, and can be
converted into a desired leaf-like architecture. Style-mixing is
demonstrated in Fig. 4. In particular, note how images largely
take on the architecture from Source B when the w-vector for
layers 0-5 is taken from B, while the images take only color
from Source B when the last layers of the generator use the B
w-vector. Taking middle layers from B somewhat mixes both
color and hierarchical complexity from sources A and B. With
a more comprehensive training dataset, the model may be
trained to control features that are more relevant to material
architecture than color, such as wall thickness. Style-mixing
expands the design space delineated by the model’s latent space,
and further enables directed design through fine-tuning of
generated images or even projected images already engineered
to have specific qualities.

2D materials by design. Not only can leaf-inspired unit cells be
tiled in X and Y directions to create large-area materials, the
StyleGAN latent space can also be used to generate materials with
varying structures and properties. Because two points close to
each other in latent space correspond to similar images, small
steps in latent space create smooth interpolations between fea-
tures, which in the case of material architectures, generates

Fig. 3 Image projection and encoding to guide the generation of leaf-like structures. Examples of using image projection and encoding to guide the
generation of leaf-like structures. The top row (a) depicts the projected target images, and the middle row (b) depicts images generated by the model from
the matching latent vectors found. The bottom row (c) shows processed and mirrored tileable unit cells produced from the generated images in a row (b).
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smoothly evolving structures. With small enough steps, enough
similarity is maintained from one generated structure to the next
that these can also be tiled next to each other while maintaining
continuity. Different movements in latent space output different
material architectures.

Various movements in latent space can be explored by defining
a reduced-dimension coordinate system spanned by three points

in latent space with:

x ¼ ðb� aÞ ð2Þ

y ¼ ðc� aÞ ð3Þ
where x and y are the vectors that define the x- and y-axes,
respectively, and a, b, and c are the latent vectors defining three

Fig. 4 Style-mixing of generated leaf images. Examples demonstrating the style-mixing method. Using the latent code for Source B in earlier layers of the
generator causes heavy influence from B on the image’s higher-level features, such as structure. Using latent code for Source B in downstream layers of the
generator influences finer features such as color scheme.
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selected points, each of which corresponds to a different leaf image
and generated architecture. Then, points in the coordinate system
can be accessed with:

d ¼ aþ x � x þ y � y ð4Þ
where d is the vector defining a new point to be generated, and x
and y are multipliers between 0 and 1.

An example is shown in Fig. 5a. Traversing across this
coordinate plane is equivalent to interpolating between vectors a,
b, and c, thus generating images that are various combinations of
their corresponding images. For example, the architecture depicted
in Fig. 5b was generated by traversing across the “x-axis” from (0,0)
to (1,0) on the coordinate system defined in Fig. 5a. Similarly,
Fig. 5c depicts the latent walk from (0,0) to (0,1). As evident, the
architectures smoothly evolve from one unit cell to another. With
specified unit cell geometries, this presents a method for creating
materials with gradient microstructures. This concept applies to
any walk-in latent space in the designated coordinate plane.
Figure 5d shows the structure generated from the sample trajectory
delineated in Fig. 5a. The leaf image slices output in this trajectory
are shown in Supplementary Movie 1 to demonstrate their smooth
and continuous transitions. Other deliberate designs can be
projected into latent space using this coordinate system, such as
circular motions for periodic designs. In this way, not only can

StyleGAN be used to construct novel materials that mimic natural
designs, it also allows for a transfer of information across
manifestations, using the latent space as the mediator.

In Fig. 5e, we extend this concept and demonstrate Img2Arch-
itecture, a tool to create materials by design using images as stencils
to generate architected materials with designated property distribu-
tions. Further details of the process can be found in Supplementary
Fig. 3. The examples shown use the thin and thick-walled unit cells
previously discussed to demonstrate material architectures that
exhibit patterned buckling. The lower-density unit cells have a lower
effective yield point than the high-density architectures, as shown
with mechanical testing, thus are expected to buckle first under
loading39. As such, materials with controlled bucking are created by
converting images that designate where buckling is desired into
architectures with lower density in the buckling zones. Unit cells
surrounding the pattern are interpolated with a gaussian process to
ensure continuity and smooth transitions, enabled by continuous
variation generated through small steps in latent space. Figure 5e
depicts the image sources, the resulting architectures, the 3D-
printed architectures, and the printed samples under approximately
15% strain. Note how the material architectures deformed where
patterned, however, as especially evident in the rightmost pattern,
the connectivity between unit cells was not always perfect.
Nevertheless, with further optimization of the model and method,

Fig. 5 Reduced-dimension coordinate systems in latent space to generate gradient or smoothly varying structures. a Example of a reduced-dimension
coordinate system, spanned by three points in latent space (P1, P2, and P3). b, c Continuously evolving gradient structures generated with small steps through
the reduced-dimension coordinate system from P1 to P2 (b) and from P1 to P3 (c). d Continuous structure generated by following the segmented sample
trajectory shown in (a). e Samples generated with the Img2Architecture tool, including the source images (top), the generated architectures (second row), the
3D-printed architectures (third row), and the printed architectures under compressive loading (bottom), demonstrating designed buckling.
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this concept may see a potential application in soft robotics with
planned and reversible deformation, mechanical filtration with
reversibly changing pore sizes, and other applications that require
multifunctionality. Simply by selecting different points in latent
space that correspond to unit cells with desirable properties, this
tool can easily be applied to using images as stencils for architected
materials with various applications.

Movements in latent space: 3D architectures. With even smaller
steps in latent space, continuous slices of output images can also be
stacked into 3D structures in an inverse tomography approach.
Thus, unit cell architectures can be smoothly varied as they are
stacked in all three X, Y, and Z directions to create materials
engineered to have varying properties. Modern advances in addi-
tive manufacturing technology then enables the manufacturing of
these complex forms. Figure 6a shows one example where the
highest and lowest density microstructures in the unit cell library
were used to construct a periodically varying architected material
that interpolates between these two extreme density regions. Fig-
ure 6b shows a material generated by smoothly interpolating

between two of the major microstructures previously shown in
Fig. 1, as well as a diagonal slice of the digital render to show
internal connectivity. For further detail, an animation of the slicing
through the entire geometry is shown in Supplementary Movie 2.
As evident, this interpolation enables the generation of a complex
open-celled material that emulates leaf microstructures in three
dimensions. When creating a gradient from one microstructure to
another, the number of steps taken between the microstructures
dictates how smooth the transition is. The 3D structure in Fig. 6a,
for example, took only six transitional steps in the latent space
before repeating the extreme density microstructures, while the
example in 6b was constructed entirely of the linear interpolations
between microstructures over nearly 250 steps each.

In future work, by combining tiling techniques in X, Y, and Z
directions with simple mapping operations, these methods can be
used to create large-scale geometries that vary in all three
directions. Furthermore, with the appropriate training dataset, the
generative model may be able to achieve enough structural variety
and resolution in continuous change to generate structures that
stack into closed-cell foams.

Fig. 6 Inverse tomography stacking into 3D architectures. a Using designed movements in latent space, desired 3D materials can be constructed. Here
the latent space is mined for the highest and lowest density microstructure based on a set of 200 random seeds, and then interpolation between the two
extreme density regions is used to construct a periodically varying architected material that uses these two building blocks as design elements. The
resulting design is 3D-printed. b A 3D model generated by smoothly interpolating between the three major architectures identified in generated images, as
shown in Fig. 1. Shown are a 3D-printed model, and a diagonal cross-section of the digital model to demonstrate connectivity.
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Structure simulations, evaluation, and optimization. Com-
pression simulations with uniaxial deformation were used to
acquire high-throughput mechanical information on generated
structures. In short, 2D coarse-grained models were constructed for
each structure by tiling a hexagonal unit cell of “atoms” per pixel of
material in the image of each structure, shown in Fig. 7a, and these
models were simulated under uniaxial compression with 2D peri-
odic boundary conditions and Lennard-Jones potentials (Fig. 7b).
Coarse-grained models were chosen to simulate mechanical load-
ing because finite element analysis incurred a higher computational
load for our complex geometries. The simulations generated stress-
strain curves for each structure, such as the example shown in
Fig. 7c, from which effective modulus was calculated. Using such
simulations, a large dataset containing 5000 randomly seeded
structures was generated, including density and effective modulus
for each structure. The effective moduli were normalized by
dividing by the modulus of a solid square of material simulated in
the same way, and any structures considered invalid due to lack of
connectivity were labeled with a modulus of 0. The data distribu-
tion is shown in Fig. 7e.

This dataset was split into training (70%), validation (10%),
and testing (20%) sets and used to train a surrogate model to
predict effective modulus from the image of a structure. The
surrogate model, a four-layer convolutional neural network
(CNN) shown in Fig. 7d, was trained over 100 epochs and
achieved an R2 score of 0.971 on the test set. The CNN’s training
curve, displayed in Fig. 7f alongside the model’s predictions on

the test set (Fig. 7g), shows that the model overfits slightly, but
trained quickly and generally performs well.

Finally, a genetic algorithm (GA), summarized in Fig. 8a, was
used to optimize structures generated by the StyleGAN model
based on effective modulus. The GA used the CNN surrogate
model as an evaluator rather than embedding simulations directly
to enhance the speed of the GA and decrease computational cost.
For reference, the trained CNN could predict the modulus of an
individual structure in less than 1 s, while running a simulation
took ~3 min. The GA uniquely operated directly on latent code
from StyleGAN’s intermediate latent space w, using w-vectors as
the “genetic code” to take full advantage of the plasticity of the
StyleGAN generator. Because a w-vector, typically 1 × 512, is
input into the generator at 18 different layers, each “individual” in
the GA’s population was a structure defined by 18 512 × 1 vectors,
or “genes”. This allowed for different vectors to be used in each
layer of the generator, similar to the image encoding and style-
mixing methods previously described.

The GA was initialized by randomly seeding a population of 10
“pure” individuals whose genetic codes each contained 18 identical
“genes”, meaning that these were each individuals the StyleGAN
generator could produce from a single seed value. Then, in each
generation, “parents” were selected from the population with
probabilities based on individual fitness, and “children” were
created from them in three ways: linearly interpolating between the
vectors in each parent’s gene code, performing gene crossover by
randomly choosing which parent to take each of 18 genes from, and

Fig. 7 Compression simulations and subsequent CNN training. a Coarse-grained “atomistic model” of a StyleGAN generated structure for simulation in
LAMMPS. b Coarse-grained model under uniaxial compression in the x-direction. Colormap shows Von Mises stress. c Stress and strain experienced by
the model in (a) during simulated uniaxial compression, along with a demonstration of using the linear elastic region of the stress-strain curve to determine
the effective modulus. Here, the effective modulus is equal to the slope of the linear fit. d Four-layer convolutional neural network used as a surrogate
model to predict the effective modulus of a structure from its image. e Distribution of the normalized data (normalized with the effective modulus of a solid
structure) used to train the convolutional neural network (CNN). f Training curve of the CNN; note that labels were scaled by 100x for model training,
resulting in the large loss values shown. g CNN predictions on the test set plotted against corresponding labels to demonstrate CNN performance.
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imposing point mutations by slightly changing individual vector
entries based on pre-defined gaussian distributions. New “pure”
individuals were also introduced in each generation with random
seeding. A total of 7 new individuals were added to the population
in each generation, after which three random individuals and the
four least fit individuals were removed to maintain a population
size of 10. This large population turnover was designed to
emphasize the exploration of the StyleGAN latent space as
compared to exploitation-focused strategies.

Four different evaluation schemes were investigated for the GA
with two goals: optimizing structures for maximum modulus, and
maximizing modulus while minimizing density to find the optimal
Pareto front. As such, each time the GA was run with a different
evaluation scheme, 50 individuals with the highest modulus and 50
most Pareto-efficient individuals found by the GA were separately
tracked. The first fitness function equated the fitness of each
individual to its effective modulus as predicted by the CNN,
directing the genetic algorithm to find the highest modulus
individuals within the expanded latent space allowing for mixed
genes. To better balance modulus and density, fitness schemes that
equally weighted modulus and density in a single optimization
function, that randomly weighted modulus and density each time
an individual was evaluated, and that optimized for the ratio
between modulus and density were investigated.

The “top modulus” and “Pareto front” populations for each
evaluation scheme after 1000 generations are plotted in Fig. 8b,
including each individual’s CNN-predicted modulus and actual
modulus as found through simulations for validation. Interest-
ingly, the surrogate model generally under-predicted the modulus

of “top modulus” individuals. This may be because the dataset it
was trained on did not include individuals with such high
modulus—in fact, the highest modulus structure in the training
dataset had a normalized modulus of 0.732 with a density of
0.912. Incredibly, nearly every individual in the “top modulus”
population exceeds this modulus, albeit with higher density. Two
of the structures even achieved moduli higher than that of a solid
structure, which may be an artifact of the automated modulus
calculation algorithm rather than reality, but is highly indicative
of successful modulus optimization. The surrogate model
predicted the moduli of the “Pareto front” populations quite well.

Density-squared versus simulated modulus from both “top
modulus” and “Pareto front” populations of the random-weighted
GA, which appeared to have especially good performance based on
visual inspection, are shown in Fig. 8c to show alignment with the
expected behavior of cellular materials described by Eq. 1. Figure 9
displays the top ten modulus structures found by the random-
weighted GA. Interestingly, when operating on the StyleGAN latent
space, the GA was able to extrapolate to higher modulus structures
than the StyleGAN model could originally generate, but was
generally only able to outline the Pareto front of the training data
rather than exceeding it (Fig. 9b). This is further evident upon
inspection of the structures that outline the GA Pareto front
(Fig. 9c), which closely resemble structures in the training data
until moduli higher than those found in the training data are
achieved. This may be a result of the limited dataset originally used
to train the StyleGAN model, which limits the generative ability of
the model. Even heavier emphasis on exploration in the GA or
allowing it to operate longer could potentially allow for the

Fig. 8 Structure optimization with genetic algorithms. a Genetic algorithm (GA) used to optimize structures generated by the trained StyleGAN model.
b Density and normalized modulus of the 50 individuals predicted to have the highest modulus and the 50 individuals predicted to be the most Pareto
efficient for each of the four fitness functions used in the genetic algorithm. Also shown is the actual density and modulus of these individuals as
determined by coarse-grained simulations of uniaxial compression. c Density-squared plotted against modulus for the top modulus and Pareto front
populations found by random-weighted GA. The high r-squared value of the linear fit (dotted blue line) demonstrates that this population follows the
expected behavior of cellular materials described in Eq. 1.
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discovery of more Pareto-optimal structures. Incorporating the
newly generated structures, including high modulus/density
structures, into training data for the CNN and StyleGAN could
similarly improve performance by enhancing both predictive
accuracy and generative ability.

Incorporation of new structures. To explore the interactions of
different structures within the StyleGAN latent space, especially
with the intent to expand the generative design space, the Style-
GAN model was retrained on a combination of the original leaf
dataset and an equivalent number of images of trabecular bone.
The images were equalized, as shown in Fig. 10a, to discourage the
model from focusing on parameters unimportant to structure, such
as color. Upon training, the model was able to generate images that
resembled leaves, images that resembled trabecular bone structures,
and images that appeared to have qualities of both. Critically, these
images yielded new microstructures completely different from
those generated by the model only trained on the leaf dataset.

Figure 10b demonstrates how images generated by this Bone-
Leaf model can also be combined with the style-mixing strategy
previously described. Here, it is especially apparent how bone
images can take on leaf-like qualities, such as internal cellular
structure or vice-versa, such as taking on a more macro-level
trabecular geometry. These images, too, yielded novel micro-
structures. In particular, combining large trabecular geometries
with small-celled leaf geometries enabled the generation of unit
cells with varying degrees of hierarchical structure.

Conclusions
Overall, we have demonstrated a method for how the generative
StyleGAN algorithm can be harnessed towards utilizing patterns in
natural materials for designing engineered materials. Using a leaf
dataset, we generated a library of architected unit cells, demon-
strated methods for further refining generated structures, and

established procedures for using the latent space for the transfer of
information across manifestations in the directed design of 2D and
3D materials. We further performed uniaxial compression simu-
lations to gather high-throughput mechanical information on
generated unit cells, focusing on effective modulus as a proof-of-
concept, and used a genetic algorithm with a CNN-based evaluator
to generate optimized unit cells within the StyleGAN framework.
Many microstructures were found with moduli that surpassed all
microstructures in the training dataset, however, GA-optimized
structures were not generally able to surpass the density-modulus
Pareto front of the training data. This is likely attributable to the
limited leaf dataset StyleGAN was originally trained on, which
limits its generative design space. While “gene crossover” enabled
the generation of some new structures, the leaf StyleGAN model
was generally limited to three main structural families. In contrast,
leaves found in nature are infinitely varying. This indicates the need
for a larger, more comprehensive training dataset to allow the
model access to greater structural variety, in turn expanding its
generative abilities and allowing smoother transitions between very
different structural forms.

We began to demonstrate this with the incorporation of tra-
becular bone images, which yielded unique microstructures with
varying degrees of hierarchy. Further data with better distribu-
tions or higher complexity, including other natural or even syn-
thetic structures, can be incorporated to broaden the model’s
design space, which can then be mined using higher-fidelity
evaluation methods and similar genetic algorithms.

This method can be applied to other classes of materials, such as
auxetic structures, by collecting properties in addition to modulus
such as yield strength, toughness, or Poisson’s ratio from simulated
stress-strain curves or by prompting simulations to output addi-
tional information, as well as by changing the objective function
through which the genetic algorithm searches the latent space. For
applied materials, this may require simulations to be normalized by
or validated with experimental data.

Fig. 9 Random-weighted genetic algorithm results. a Ten top modulus individuals were found by the random-weighted genetic algorithm (RWGA), along
with their density and normalized modulus as determined by atomistic simulations of uniaxial compression. b Top 50 Pareto-efficient solutions found by
the RGWA compared to the density-modulus distribution of the training data. c Eight Pareto-efficient solutions of varying density found by the RGWA.
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Fig. 10 Image generation and manipulation with mixed leaf and trabecular bone. a StyleGAN training and image generation with a combination of leaf
venation and trabecular bone images. Training images were equalized to have similar grayscale coloring and contrast before training StyleGAN. The trained
StyleGAN model was then able to generate images that resemble leaf venation (left), trabecular bone (center), and a combination of the two (right),
yielding novel microstructures (below). b Style-mixing of leaf-like images with high degrees of hierarchy and bone-like images with only coarse geometry,
generating images and corresponding structures with novel architectures and varying degrees of hierarchy.

ARTICLE COMMUNICATIONS ENGINEERING | https://doi.org/10.1038/s44172-022-00037-0

12 COMMUNICATIONS ENGINEERING |            (2022) 1:37 | https://doi.org/10.1038/s44172-022-00037-0 | www.nature.com/commseng

www.nature.com/commseng


In future work, we anticipate developing structural datasets
designed to optimally engage StyleGAN’s generative abilities. We
further intend to refine methods to mine the StyleGAN latent
space efficiently, especially to explore the limits of the latent space
far from the training data, such as by incorporating conditional
generation. Finally, we intend to develop tools for multiscale
analysis of our materials, including tiled macrostructures and
considerations of anisotropy, to enable the automated develop-
ment and inverse design of functional bio-inspired metamaterials
in 2 and 3 dimensions.

Methods
Deep neural network: StyleGAN. The generative model was trained with Nvidia’s
StyleGAN2 architecture24,27. StyleGAN proposes a generator architecture that
utilizes style transfer techniques, which aim to customize the style of an image
while preserving its content, such as in translating a photograph into a painting. In
StyleGAN, a “style” is calculated from each latent vector with a learned affine
transformation, and styles are applied in each convolutional layer of the generator.
As different convolutional layers control features at different scales, the model
automatically learns the separation of high-level features in the data distribution,
such as face shape or hairstyle, in generated images of human faces, distinct from
stochastically controlled details such as freckle placement. This enables fine control
over such style-defining features in generative steps, which in material archi-
tectures, can correspond to different levels of hierarchy. Disentanglement of fea-
tures further allows good interpolation between extremes of a particular feature.
StyleGAN operates on a 512-dimensional latent z-space and corresponding 512-
dimensional intermediate latent w-space.

Dataset development. Leaves were chosen as a source of bioinspiration because
they represent interesting natural materials that are typically bound to 2D geo-
metries by biological limitations. To generate the dataset for initially training
StyleGAN, leaves were collected from the corresponding author’s backyard and
imaged with an AmScope optical microscope. The dataset totaled 95 different
images with varying magnification, color, and resolution.

Image generation and image processing. Image generation was primarily per-
formed using code created by Nvidia for StyleGAN with minor modifications.
Tools for creating a reduced-dimension coordinate system within the latent space
and to traverse through it based on trajectories defined in CSV files were added.
Image processing tools for creating unit cells from leaf images were created using
OpenCV, an open-source library of computer vision programming functions.
Image stacking was performed with NumPy, a library for matrix and other high-
level mathematical functions.

Image projection was performed using code created by Nvidia for StyleGAN.
Image projection uses gradient descent to optimize the w-vector for the target
image. Loss is quantified by using VGG, a deep CNN trained for object
recognition43, as a pretrained feature extractor on the target and generated images,
then calculating the distance between their representations in the high-level feature
space. Image encoding functions similarly to projection while optimizing a
different w-vector for each of the 18 layers of the StyleGAN generator (thus
optimizing a 512 × 18 matrix rather than a 512 × 1 vector).

Img2Architecture functions by normalizing pixels in a grayscale image between
0 and 1, then projecting pixel values onto the vector that spans between two points
in latent space such that 0 corresponds to one point, 1 corresponds to the other,
and values in between interpolate linearly between the two points (using Eqs. 2 and
4 where y= 0). Structures corresponding to each projected point in latent space are
generated, then stacked in a pixel-wise manner such that the image is reconstructed
with varying architecture according to the original image.

STL files for 3D printing were generated using trimesh, a Python library for
loading and using triangular meshes.

Additive manufacturing and testing. Leaf-inspired materials for mechanical
testing were 3D-printed using a Stratasys Connex3 Objet500 printer in the Stra-
tasys digital material FLX-MK-S50-DM, which has a Shore A hardness value of 50.
Other samples were printed using an Ultimaker S3 with TPU (thermoplastic
polyurethane) and PLA (polylactic acid) filament (Fig. 2 and Supplementary Fig. 2)
and an Anycubic Photon Mono X resin printer (Fig. 8).

Mechanical testing was performed using a 5 kN capacity Instron Universal
Testing System. Samples were loaded under compression at 30 mm/min.

Structure simulations. Images of unit cell structures were translated into atomistic
models using python code designed in-house. Uniaxial compression simulations
were performed using LAMMPS (large-scale atomic/molecular massively parallel
simulator), an open-source molecular dynamics program from Sandia National
Laboratories. Each unit cell structure was subjected to minimization and equili-
bration steps before undergoing uniaxial deformation with a timestep of 0.001 ps

and an engineering strain rate of −0.01/ps. Simulations were performed under
NVT (canonical ensemble; constant number, volume, and Temperature) condi-
tions with two-dimensional periodic boundaries. For further details, please see the
LAMMPS script in supplementary materials.

Each simulation generated a stress-strain curve for the corresponding structure.
From the stress-strain curve, the effective modulus of the structure was automatically
calculated by fitting a linear regression to points on the curve up to a strain of 0.02,
and taking the slope of the line to be the effective modulus if the R2 of the linear
regression was greater than 0.998. If not, a line was iteratively fit to a slightly smaller
section of the curve, and the R2 requirement relaxed, until if the R2 value of the linear
fit up to a strain of 0.005 was not greater than 0.945, the structure was assigned a
modulus of 0. This is because, upon visual inspection, nearly all of the structures to
which this applied lacked some internal connectivity, thus invalidating the results of
the simulation. The modulus of 0 was intended to penalize these structures and
indicate to the CNN surrogate model that they were undesirable.

CNN and GA evaluation. CNNs are artificial neural networks commonly applied
to classification or regression problems with image-based data44,45. The CNN was
constructed using PyTorch, an open-source machine learning framework from
Meta AI. It consisted of four convolutional layers, each followed by a ReLU
(rectified linear unit) activation function and MaxPool (maximum pooling) layer.
The outputs from the last MaxPool layer were flattened and followed by two fully
connected layers, each similarly passed through ReLU activation functions, which
finally output a single predicted value for each input image. This architecture was
selected based on performance after exploring variations of such parameters as
layer number, activation functions, and learning rate.

GAs perform global stochastic optimization by utilizing natural selection-
based functions such as genetic crossover, mutation, and survival of the fittest
over multiple generations of “evolution”46. The GA was developed based on the
algorithm proposed via pseudo-code by refs. 47 and 48, especially for the
random-weighted genetic algorithm (RWGA). In each generation of the GA, 2
“children” structures were generated with linear interpolation between “parent”
structures, one “child” was generated with gene crossover, two more “children”
were generated with point mutations of an existing “child” or “parent”, and two
“pure” individuals were introduced. Then, three individuals were randomly
selected for attrition, and the four least fit the remaining individuals were
removed. The genetic algorithm was designed to emphasize exploration,
however, our investigation of GA parameters was not exhaustive. Further
variations on the GA may have enhanced structure optimization or latent space
exploration. For further details regarding the CNN or GA, please see the code in
the supplementary materials.

Trabecular bone dataset. The trabecular bone images comprised SR-microCT
scans of fresh-frozen bovine tibial condyle were taken at the Diamond-Manchester
Imaging Branchline I13-2 at Diamond Light Source (UK) under proposal MG22575,
see references for detail49,50. Images used to train StyleGAN were randomly selected
from two-dimensional slices of five unique samples of trabecular bone.

Data availability
The data that support the findings of this study, including training data, results, and
source data for graphs, are available at https://github.com/lamm-mit/LeafGAN. Please
consult the corresponding author with further questions or requests.

Code availability
All open-source libraries used for image processing, neural network construction, coarse-
grained simulations, etc., are available online.

OpenCV: https://opencv.org/
NumPY: https://numpy.org/
Trimesh: https://trimsh.org/
StyleGAN Encoder: https://github.com/pbaylies/stylegan-encoder
PyTorch: https://pytorch.org/
LAMMPS: https://www.lammps.org/
Custom code that supports the findings of this study, including StyleGAN training

details, image processing code, simulation details, and CNN and GA code are available at
https://github.com/lamm-mit/LeafGAN.
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