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A data-driven digital twin for water ultrafiltration
Jan Kloppenborg Møller 1,4✉, Goran Goranović 1,4✉, Per Brath2,3 & Henrik Madsen1

Membrane-based separations are proven and useful industrial-scale technologies, suitable

for automation. Digital twins are models of physical dynamical systems which continuously

couple with data from a real world system to help understand and control performance.

However, ultrafiltration and microfiltration membrane separation techniques lack a rigorous

theoretical description due to the complex interactions and associated uncertainties. Here we

report a digital-twin methodology called the Stochastic Greybox Modelling and Control

(SGMC) that can account for random changes that occur during the separation processes

and apply it to water ultrafiltration. In contrast to recent probabilistic approaches to digital

twins, we use a physically intuitive formalism of stochastic differential equations to assess

uncertainties and implement updates. We demonstrate the application of our digital twin

model to control the filtration process and minimize the energy use under a fixed water

volume in a membrane ultrafiltration of artificially simulated lakewater. The explicit modelling

of uncertainties and the adaptable real-time control of stochastic physical states are parti-

cular strengths of SGMC, which makes it suited to real-world problems with inherent

unknowns.
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Membrane separation technologies are well established
techniques of removal of unwanted particles from a
solvent e.g. water, milk, wine, blood, fruit juice etc.,

categorized by the size of membrane pores: reverse osmosis
(<1 nm), nanofiltration (1–2 nm), ultrafiltration (2–100 nm) and
microfiltration (100 nm–10 μm)1. The common problem to all is
that permeate flux through membranes diminishes due to parti-
cles that accumulate at the membrane surface (in the form of
solid filtrate, or as concentration polarization of built-up salts), or
penetrate and block the pores, both reversibly and irreversibly
(the latter called membrane fouling). The systems are thus
operated below a critical constant trans-membrane pressure to
minimize the blockage and extend the lifetime of membranes1,2.

The ultra- & microfiltration lack rigorous theoretical descrip-
tion because of complex interactions and associated uncertainties
including variable pore size and geometries, unknown surface
forces of membranes, and nature of filtrate3–11. In current models
of ultra- & microfiltration, Darcy’s linear phenomenological law
(or its quadratic Darcy-Forchheimer extension for turbulent
flows) is expanded by an extra resistance term to account for the
filtrate12, making the flux vs. pressure dependence generally
nonlinear. The flux’ decline is then usually modelled by an
ordinary differential equation (ODE), expressing directly the flux’
differential change, with different power-law exponents of flux
decay associated with different blocking mechanisms12–15.

Hydrodynamic boundary layer theory (based on partial dif-
ferential equations, PDEs), both laminar and turbulent, describes
the cross-flow versions of the above separation techniques, pro-
viding a spatial resolution16. The cross-flow transports away the
accumulated particles or solutes at membrane’s surface thus
increasing the permeate flux, Fig. S1a, Supplementary Note 1.
Finally, various AI methods have been used to model (cross-flow)
membrane filtrations17, including hybrid systems combining
neural networks and physical theory18.

Digital twins present the latest stage of the models of physical
dynamical systems, featuring a continual coupling between the
virtual (modelling) and the physical domains of an experimental
set-up19. Importantly, the critical component of a digital twin is
singled-out to be the feedback (update) between the virtual and
the physical domains,20, enabling (1) predictive control of the
physical system21, and (2) the update of the virtual states of the
system based on data22.

One problem of digital twins is identifying the right virtual
models22. In general, one does not know beforehand the true
model of a physical system—there can in fact be several virtual
representations, each being a different yet good-enough model.
Thus, a ranking of models is needed since one cannot assume a
one-to-one mapping between the virtual and the physical
domains so that the continual updating converges to the true
model. Our digital twin approach addresses the issue by using
stochastic differential equations (SDEs) for the models, differing
from the approach of22. In addition to being physically intuitive,
SDEs enable us to quantify model uncertainties (via diffusion
terms). In fact, our methodology features actual modelling of the
uncertainties to achieve the best fitting parameters from data for
each proposed model. We then use two statistical measures to
statistically rank the models.

The Stochastic Greybox Modelling and Control features two
important novelties with respect to the above mentioned mem-
brane separations theories, which together enable the online
control: (1) we use time-dependent inputs (pressure and cross-
flow, P(t) and Q(t)), which can be programmed to yield a parti-
cular outcome, say minimal energy use, Fig. S1a; and (2) we
model in terms of the state variable(s)—here the thickness of the
accumulated filtrate of which the flux is a function—pliable to
control via P(t) and Q(t). The filtrate evolves stochastically via an

SDE and affects the flux, and the control makes adjustments of
the filtrate to achieve the desired flux. The filtrate is not directly
measured but has to be reconstructed from the combined mod-
elling and the flux measurements. The SDE quantifies various
inherent uncertainties in the system and is able to accommodate
the real-time random variations of the filtrate to make the opti-
mal control corrections. For different models, there are different
optimal solutions.

Our comprehensive article combines several disciplines (data
science, physics, statistics, control theory, experimental design),
but also couples theory to the experiments, a recognized need23.
However, our main focus is on models—their build-up, validation
and use for control purposes—in other words on data-driven
future forecasting. The experiments and their analyses and
interpretations, although useful, are less central and are thus
placed in Supplementary Method 1 and Supplementary Discus-
sion. We advise readers though, especially those coming from
traditional membrane approaches, to read the Supplementary
Methods 1 and 2 as a primer to the next section.

Results and discussion
Experimental design and data. The set-up, Fig. S1b, and the
experiments of Supplementary Notes 1 and 2, are important in so
far that they yield data: as unclean water (the recipe in Table S1)
is passed through an ultrafiltration membrane in a controlled way
via separate pressure (ΔP) and cross-flow (Q) pumps, a thick
flow-retarding filtrate (cake) accumulates at the membrane,
increasing with the pressure and diminishing with the cross-flow.
The flux through the membrane is measured by weight. The idea
is to perform the filtration with minimal energy during real-time
operations.

Our digital twin is restricted to salient features of the filtration
process, rather than featuring detailed computational fluid
dynamics of the entire set-up, unsuitable for control purposes.
Thus, the twin’s essential physical domain is22: measured native
resistance of the membrane, unknown resistance of the
accumulated filtrate, measured flux, and the time-dependent
pressure and cross-flow inputs from programmable functioning
pumps. The virtual domain is: data-driven updatable models of
both the filtrate and the flux as a function of the filtrate, model
parameters and statistical validation, and cost functions. The
domains are coupled by the online control algorithms.

As mentioned, the pressure ΔPt≡ ΔP(t) and cross-flow Qt are
time dependent, and in fact rapidly varying in contrast to usual
constant inputs in membrane science, Fig. 1a. This serves triple
purpose. The first is the model identification: we statistically
probe our system in a wide range of randomized input-output
scenarios (23 in total) to identify model parameters to be valid
across the entire range. Compared to traditional constant inputs
the randomized inputs are statistically more reliable—the
obtained model parameters are robust as both the choice and
the number of data points is significantly larger, ~103− 104, than
in the case of traditional inputs, ~10. The accurate parameters are
particularly important in data-driven models as ours, where the
accent is to predict (as opposed to interpret) industrial operations
that rely on limited processing time of data. Three randomized
input series are shown in Fig. 1a (top row), and the rest are in Fig.
S4a. Details of the randomized experimental design are given in
Methods and further in Supplementary Note 3.

The second is control: our goal is the process control, subject to
predefined constraints. That requires programmability of the
input sequences, akin to the randomized variations. We will see in
the Control section that cross-flow is indeed changing abruptly
(counteracting the randomness of the filtrate) to achieve the
minimal energy consumption. Hence, rapid time-dependent
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variations of the inputs paves the way for programming the
inputs for any desired sequence—the crux of our digital-twin
control.

And the third is time-resolved flux data: in Fig. 1a (bottom
row), shown are flux measurements corresponding to the three
ΔPt and Qt series. The striking feature of the data is the separation
of time-scales, which are not discernible from the usual constant-
input measurements. We see the instantaneous changes in the
flux in response to the abrupt changes in the ΔP/Q (the sudden
peaks in the fluxes of the series 7 and 8), as well as a slower,
diffusive relaxation to the steady state related to the cake build-up
(the flux of series 9). As known, the pressure changes propagate
with the speed of sound, c2= (∂p/∂ρ)s. The relaxation to the

steady-state happens within a correlation time τ; for linear
systems the decay is � expð�t=τÞ24. Our systems are non-linear
and thus more complicated. Note that separate time scales are
also present while reaching an equilibrium: a fast (pressure) vs. a
slow (temperature) equilibration25.

The nearly instantaneous time scale provides justification for
the Darcy’s law algebraic relation between the flux and the
pressure. That is, the flux is a direct function of pressure and not
given as a differential equation.

We note that a set of constant-input measurements were done
prior to the randomization to adjust the level of appropriate
fouling, Fig. S2b, Supplementary Note 2. Once the parameters are
obtained, our models can of course predict for such inputs, Fig. S3.
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Fig. 1 Data and the forecasting method. a The time-dependent input series 7, 8 and 9 (top) and their corresponding flux outputs (bottom). The input is
randomized, but also programmable. The fluxes have two time-scales: the instantaneous one, corresponding to the abrupt changes in ΔP and Q (peaks),
and a slower one, corresponding to the cake build-up (the downward trend). b Schematic of the Kalman filtering used for forecasting (prediction plus
update). The predicted means (thick lines) of the hidden cake, 〈ω〉, and its function, the flux 〈J〉, along with their standard deviations (the shaded areas that
replace the rugged Monte Carlo simulations); J are the flux measurements. The squares are the new values at time tk updated with the measurements at
tk; c The variances; minimizing the updated variance hΔ2ωikjk determines the new position of the state, ωk∣k. The subscript ∣k indicates the update. For details
see Methods, Filtering.
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Stochastic greybox modelling. Stochastic greybox modelling
combines physics with statistics and is mathematically
involved26–28. The formalism is implemented in an R-package,
CTSM-R (Continuous Time Stochastic Modelling for R)29, used
in this study. Combining mechanistic understanding and statis-
tical modelling will in general imply that the chosen models are
simpler than what would be expected from a mechanistic point of
view. Often, some effects are lumped in the description while
model deficiencies are accounted by the stochastic diffusion
terms. On the other hand, the statistical methods give a direct way
of estimating parameters and quantifying uncertainties, both in
terms of parameter uncertainties and prediction uncertainties.

For a given set of observations (time series) of flux
J N ¼ ½J N ;J N�1; ¼ ;J 1;J 0�, we write the observation equa-
tion

J k ¼ Jk þ ek; ð1Þ
valid at discrete time points tk, k= 1, 2,…,N. J k is the
measurement and Jk the true value of the flux at tk, and
ek ~N(0, Sk) the (unknown) individual measurement error
assumed to follow Gaussian distribution with expectation 0 and
variance Sk. We model the flux by time dependent Darcy’s law
equation

Jt ¼
ΔPt

Rm þ RctðωtÞ
� gðωt;ΔPt ;Qt ; t; θÞ; ð2Þ

where ΔPt is time dependent pressure, Rm the constant native
membrane resistance and Rct the time-dependent extra resistance
due to the cake formation. Rct is a function of the hidden state ωt,
the cake ‘thickness’. Note that the Darcy’s law of Eq. 2 is a
particular choice of function g. Jk in Eq. 1 is the discrete value of Jt.

The hidden state ωt, representing the model dynamics of the
cake (or of some underlying physical phenomenon, in general)
evolves by the following state equation, the SDE

dωt ¼ f ðωt ;ΔPt ;Qt ; t; θÞdt þ ~σtðωt ; θÞdWt; ð3Þ
where f is commonly referred to as the drift term and ~σ as the
diffusion term. f is generally a complicated, non-linear function of
its arguments (θ are parameters). ~σ accounts not only for the
physical diffusion, but also for the unknown aspects of the hidden
state not captured by f, since the phenomenon’s true structure
represented by f is often unidentifiable. dW is the differential
Wiener process.

Eqs. 1–3 constitute our stochastic greybox framework.
The (extended) Kalman filtering26,30,31, used for the optimal

updates of stochastic models with noisy data, and the maximum
likelihood estimate, used to determine model parameters and to
statistically validate the models, are expounded in details in
Methods (Filtering, and Likelihood).

Here we briefly sketch the essence of the filtering through
Fig. 1b, c, where the subscript ∣k denotes conditioning on
measurement (‘given k measurements’, Supplementary Note 4).
The stochastic state ω, cake thickness, is not directly measured
and evolves continuously in time; it is predicted by a mean value
and a variance from one time step to the next. The flux J is
modelled as a function of ω. Upon the discreet measurement of
flux in the current step, J k, the state ω is updated in the way that
its variance in the current step conditioned on the measurements,
hΔ2ωikjk (the weighted sum of the state variance from the
previous step and the measurement error of the current step), is
minimized. That determines the updated value of the state, ωk∣k,
and subsequently of the flux, Jk∣k.

We point the reader to an instructive simple modelling
example similar to the real models below, which illustrates the

greybox approach and the use of CTSM-R (Continuous Time
Stochastic Modelling for R) software, (Supplementary Note 5).

The filtration models. Our models are modified (stochastic)
versions of equations of the study32 (shown in Supplementary
Note 6 for convenience. Also, our scaling and units differ from
the literature; parameters are converted in Supplementary Note 7
and displayed in Tables S4 and S5), plus our own choices (σ and
Jss below). Our parametrization is:

● cake resistance Rc(ω) (used in models: M1–M6)

Rct ¼ 1þ ΔPt

Paðωt ;VÞ

� �
ωt ; ð4Þ

where Pa is a compressibility factor and V the total
collected volume. ΔPt is the time dependent pressure input.

● cake-thickness ω (the hidden state) (M1–M6)

dωt ¼ JtðωtÞ � JssðQtÞhðωtÞ
� �

cbdt þ ~σ tðωtÞdWt; ð5Þ
models the stochastic evolution (build-up, break-up) of the
cake. Jss is the steady-state mean flux to which the system
settles, dependent on the cross-flow Qt. cb is the bulk
concentration, and h a relaxation factor defined later. Eq. 5
for the state is a non-linear SDE with varying mean and the
state-dependent diffusion, similar to the Ornstein-
Uhlenbeck process33, Eq. S1 of the Supplementary Note 5.
The state will revert to the mean value and attain a finite
variance in the steady state. One of the aim of the
modelling is to propose and test the functional relation
Jss(Q), which is typically not obtainable directly from
measurements32.

● diffusion ~σ (M1–M6)

~σ tðωtÞ ¼ ωtσt ; ð6aÞ

σt ¼ σ0e
ðσPΔPtþσQQt Þ; ð6bÞ

model the diffusive uncertainty in ω-space, the cake
thickness. In the ordinary 3D space, particles with positive
diffusion coefficient go in both positive and negative
directions. The ω-space is strictly positive - there is no
negative cake; also, no cake implies no diffusion, and larger
cakes fluctuate more (more ways to break off/pile up).
Hence we assume the diffusion coefficient ~σ of the cake to
depend linearly on the cake, Eq. 6a. With the help of Eq.
21b (on page 10) we get a guiding estimate of uncertainty

hΔ2ωiss �
σ2ω2

�2AðωÞ ; ð7Þ

i.e., the steady-state variance depends on ω through both
the diffusion term (~ω2) and the drift term A(ω) (the non-
diffusive term of Eq. 5). A classic example where variance is
explicitly calculated but not modelled is the stochastic
damped oscillator34,35. The state dependence of ~σ was
mathematically resolved by separation of variables in the
log domain, Methods, Lamperti. Finally, the relative
diffusion σt is further assumed to depend on the input
variables ΔPt and Qt; this is to test if there are additional,
implicit, uncertainty trends besides the one modelled with
the linear-cake dependence.

● function h (M1–M6)

hðωÞ ¼ 1� e�
ω
ωc ; ð8Þ

where ωc is a relaxation factor.
● steady-state flux Jss

M1 Jss ¼ const:; ð9Þ
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M2; 5; 6 Jss ¼ eμ0þμ1Qþμ2Q
2
; ð10Þ

M3 Jss ¼
eμ0

1þ eαμðQ�Q0Þ ; ð11Þ

M4 Jss ¼ μ0Q
γ; ð12Þ

model Jss dependence on the cross-flow in four different
ways: as a constant, an exponential polynomial, a switch
function and a power-law function, Eqs. 9–12, respectively.
The exponential dependence is a mathematical conveni-
ence to avoid non-physical results such as negative values
of diffusion coefficients. Our models essentially differ in Jss.
Note that Eqs. 9–12 are our guesses, the fact explored in the
section Steady-state flux.

Parameters and model validation. Parameter estimates and
statistical validation of the models were done on all 23 data series,
i.e. the 23 output series (flux) and the 23 pairs of input series (ΔPt
and Qt). There were in total 89 h of measurements sampled every
5 s, hence 89 ⋅ 3600/5= 64000 data points for flux, pressure and
cross-flow distributed over the 23 data series. All these points are
used for statistical analysis. This exceeds substantially the
ordinary measurements under constant pressure/cross-flow,
which are on the order of 10 data points for the input data (e.g. a
fixed pressure and a few variable cross-flows).

The parameters obtained from CTSM-R (Continuous Time
Stochastic Modelling for R) are shown in Table 1 (and in SI units
in Tables S4 and S5), written in statistical fashion: the mean value
of each parameter spans across the models given as columns.
Approximate 95% confidence intervals (±2 standard deviations)
are given below it, in parentheses. Most parameters are quite well
defined, with the exception of ωC in models M4−M6 where the
presented Wald confidence intervals should not be trusted.

Physically, the filtrate is slightly compressible (~20%; Pa ~ 10),
a part of it quickly formed (ω0≡ ωt=0 ≠ 0), and there are extra ΔP
and Q contributions on diffusion, accounted by non-zero σP and
σQ. For more comments on the parameters see Supplementary
Note 8.

Akaike Information Criterion (AIC) and the root mean square
error (RMSE) statistically rank the models in Table 1 (defined
in Methods, Likelihood).

Model predictions vs. experiments. In Fig. 2 we test the
experimental series 7, 8 and 9 of Fig. 1a against the best model
M6. Here it will be useful to relate to Fig. 1b (and Fig. S5 of the
example), and Table S2 for nomenclature. The three series con-
tain various characteristic features such as the variable sizes of the
prediction intervals of both flux and cake, and reconstructed cake
estimates. The analysis will help interpret other series (see later
Figs. S6–S12, Supplementary Note 9).

The top row of Fig. 2 features the fluxes: the measured J t (in
red) vs. the long-term mean 〈J〉t∣0 (the black line) and its

prediction interval ± 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔ2Jitj0

q
(two standard deviations, in

grey). The bottom row features the time evolution of the
underlying cake thicknesses. Here the long-term predictions are

hωitj0 ± 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔ2ωitj0

q
. Because the cake is not directly measured,

the red line here is the one-step ahead prediction 〈ω〉k∣k−1 (or
〈ω〉t∣t−1 for continuous t), the best estimate of the actual cake in
the absence of its measurement.

In series 7 and 9, we see that J t fall within the prediction
intervals of the M6 (note the grey spikes modelling the red ones),
the model thus being an appropriate description. The same series
show the exponential relaxation of the flux at the beginning
towards a steady value, as the cake builds up. In series 8,
particularly in the second half, the measurements are out of the
grey prediction intervals, hence M6 does not fit the series that
well. Note that the mean flux predictions 〈J〉t∣0 as well as the
prediction interval’s edges are uneven, owing to the time
dependent input.

The mean predicted value of the cake 〈ω〉t∣0 (black line) is the
largest in ser. 7 and the smallest in ser. 8 where it is almost
completely removed by the cross-flow. The reason is the input
series: low �Q, mid ΔP (ser. 7); high �Q, low ΔP (ser. 8) and high �Q
mid, ΔP (ser. 9), Fig. 1a. We remind that the red line here
represents the theoretical reconstruction of the cake, 〈ω〉k∣k−1,
updated on the flux measurements (the closest one gets to the

Table 1 Estimated parameters for the models; the means and the confidence intervals (±2 std).

M1 M2 M3 M4 M5 M6

ω0 0.52 0.52 0.52 0.52 0.49 0.46
(0.51; 0.54) (0.51; 0.53) (0.5; 0.53) (0.51; 0.53) (0.48; 0.51) (0.45; 0.47)

cb 0.00092 0.00144 0.0016 0.00142 0.00136 0.00136
(0.00082; 0.00104) (0.00132; 0.00156) (0.0015; 0.00171) (0.00131; 0.00153) (0.00132; 0.00153) (0.00123; 0.00151)

Pa 11.6 11.62 11.58 11.6 Pa(V) Pa(ω)
(11.17; 12.04) (11.2; 12.06) (11.16; 12.02) (11.18; 12.04)

Jss 0.41 Parameters
of Eq. 10

Parameters
of Eq. 11

Parameters
of Eq. 12

Parameters
of Eq. 10

Parameters
of Eq. 10

(0.38; 0.44)
ωC 0.019 0.019 0.019 0.019 0.019 0.019

(0; 0.141) (0; 0.11) (0; 0.129) (0; 2.66 ⋅ 1011) (0; 1.29 ⋅ 1011) (0; 4.90 ⋅ 108)
σ0 0.0072 0.0072 0.0071 0.0072 0.0072 0.0071

(0.007; 0.0074) (0.007; 0.0074) (0.0069; 0.0073) (0.007; 0.0074) (0.007; 0.0074) (0.0069; 0.0073)
σP 0.116 0.105 0.105 0.106 0.104 0.207

(0.101; 0.131) (0.09; 0.119) (0.091; 0.12) (0.092; 0.121) (0.09; 0.119) (0.191; 0.223)
σQ −0.207 −0.196 −0.191 −0.196 −0.196 −0.204

(−0.22;−0.2) (−0.21;−0.19) (−0.2;−0.18) (−0.22;−0.2) (−0.21;−0.19) (−0.2;−0.18)
df 10 12 12 11 13 13
AIC −520710 −521204 −521298 −521126 −521400 −521878
RMSE 0.176 0.137 0.135 0.138 0.133 0.130

For the values in SI units see Table S5. The last three lines give total number of parameters, or degrees of freedom (df), the Akaike Information Criterion (AIC) for each model and the pointwise distance
between unconditional predictions and observations of the flux, i.e. the root mean square error (RMSE).
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unobservable cake), rather than the cake measurements them-
selves, as in Fig. 1b. We infer that the cake oscillates wildly in
series 7, in sync with the cross-flow input, but much less so in ser.
8 and 9. In ser. 8 the model predicts too large cake’s removal,
underestimating the cake’s (reconstructed) thickness. In ser. 9 the
cake reaches a steady state.

The cake’s 95% prediction intervals seem very large for ser. 7.
The mathematical reason is our model for uncertainty, Eq. 6a,
making the variance large, Eq. 7. Physically, this pertains to the
case of the ordinary diffusion coefficient not being a constant but
a function of the cake thickness (D � 1=2 ~σ2 ¼ Dðω2Þ). The
analogous concentration dependency of the diffusion coefficient
D(c2) can indeed be obtained in ultrafiltration,2. Hence, our
diffusion model is not unrealistic. Besides, the uncertainties also
reflect the variations within the batch of the membranes.

Experimental findings of Supplementary Note 2 likely point to
both irreversible and reversible parts of the filtrate, i.e. to a thin
hardened cake that had to be removed chemically, and an
embedded concentration polarization of the salts (particularly
CaCl2 hydrates), respectively. Both of the phenomena are known to
occur in ultrafiltration,2. It is the reversible parts that are probably
being affected by the input in ser. 7 causing the filtrate’s oscillations.
Thus, flux decays through an increased cake resistance and a
fluctuating osmotic pressure. Our models are unaffected by the
mechanisms though, as both contributions are implicitly accounted
in the Darcy’s resistance Rct, as shown in e.g.12.

Note from Fig. 2 that the large cake’s prediction interval of ser.
7 does not result in as large flux’ prediction interval. The
mathematical reason is that the flux variance depends as ~ 1/ω4,
Eq. 19b (see C below Eq. 21b). The physical reason is the known
phenomenon of permeate flux reaching a constant value
independent of applied pressure as a large cake/gel forms (the
limiting or critical flux). The system becomes mass transfer
dependent and adjusts the cake thickness in response to pressure
changes, leaving the flux essentially unchanged2. From Fig. 2, the
fluxes yield a much narrower range of values, up to ~ 0.7 [L h−1].

Lastly, we report a few general trends and a couple of
deficiencies. By inspecting the cake/CP filtrates across all 23 series

in Figs. S7–S12 against their inputs in Fig. S4a, we notice as in
Fig. 2 that the filtrates as well as their prediction intervals decrease
at higher �Q and lower ΔP (ser. 8, beginnings of ser. 16 and 18),
and increase in the opposite situation, at lower �Q and higher ΔP
(ser. 7, middle of ser. 16 and 19). There are frequent variations in
the filtrate thicknesses for ser. 1–5, due to rapid changes of
concurrent high �Q and high ΔP. Filtrate grows step-wise in ser.
22, in sync with the increasing ΔP and decreasing Q.

Ser. 8 and 6 feature opposite cross-flow inputs, i.e. high and
low �Q, respectively (Figs. 1a and S4a). From Figs. S 7–S 12, all
models M2-6 underestimate the reconstructed cake in ser. 8 but
correctly predict ser. 6; M1 does the opposite: predicts well ser. 8
but underestimates ser. 6. The reason is the nature of models,
Fig. 3. M1 gives a constant value of steady-state flux Jss(Q), i.e. an
average Jss(Q) for all series. Good at high Q (ser. 8), the average
overshoots Jss and thus the cake removal at low Q (ser. 6); M2-6
do the opposite, perform well at low, but overshoot at high Q.

None of the models is perfect, hence the statistical ranking. The
fact that a single series is not predicted correctly (within
confidence intervals) by a model, corresponds to a single point
outlier, say from a linear law/graph, in traditional single constant-
input measurements. With the complex interactions of many
different molecular species (Supplementary Note 2), a theoretical
mismatch is inevitable.

Steady-state flux Jss(Q). Model Eqs. 9–12 represent different
functional dependencies of the steady output flux on the cross-
flow, Jss(Q), and are plotted in Fig. 3. The plots are useful since the
dependence is typically not deducible directly from (few)
measurements32.

Eq. 9 is a baseline model M1, and Eqs. 10–12 different
generalizations of it: Eq. 10 (M2, 5, 6) is quite flexible but the
parametrization imply that it is strictly positive (parameters
μ1= μ2= 0 recover Eq. 9); Eq. 11 (M3) is monotone and reaches
a maximum at some level of Q (αμ= 0 recovers the baseline
model), and finally Eq. 12 (M4) is monotone but less flexible than
the two other models. All the suggested models give large

Series 7 8

Model

h

9
|

|

|

~ ∆
|

/

~ ∆
|

/

Fig. 2 Experiments (ser. 7, 8 and 9) vs. model M6: fluxes (top) and cakes (bottom). J t and 〈ω〉k∣k−1 are within the 95.4% prediction intervals (grey
areas) for series 7 and 9, but outside them for series 8. Note the difference in prediction intervals of the cake/filtrate for the three series, depending on the
interplay between ΔP and Q. See text for details.
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improvements compared to the baseline in both the likelihood
(measured by AIC), as well as in predictive power, measured as
average distance (RMSE) between predicted values and observa-
tions (not using filtering), Table 1.M6 is the best giving the lowest
AIC and RMSE values.

The steady-state is the result of the mass-balance between the
convective and back-diffusive fluxes yielding the unchanging cake
thicknesses and constant permeate fluxes3. The maximum value
of the steady-state flux in ultrafiltration is the earlier mentioned
critical flux; as said, it remains constant when pressure is
increased beyond a certain value as any further increase in the
pressure gets compensated by cake/gel thickening that increases
resistance and lowers the flux back to the initial point2. When
irreversible component exists, as in our system, one expects that
the flux would be insensitive to cross-flow as well.

The models of Fig. 3 predict Jss,max≡ Jcrit ~ 0.41− 0.7 [L h−1].
ModelsM1 andM3 in addition predict a range of constant plateau
values where Jss(Q) does not change (with M1 giving an overall
average value thus being the least accurate). Statistically, the
advantage is with model M6 with Jcrit(Q)≃ 0.65 [L h−1],
presumably reflecting the complicated nature of the filtrate.

Jss depends also on pressure, but we limited our already
detailed analysis to suit cross-flow based control. The pressure
effects are partly lumped into non-zero σP and limit the flux’
range as discussed in the previous section in connection to
prediction intervals of ser. 7.

We conclude that ‘the correct’ virtual model is determined in
relative and not absolute terms. It was thus important that the
statistical experimental design probed the system over a wide
range of input values, leading to reliable model parameters. Each
model can be programmed for control scenarios, but the more
accurate models will effect desired cost functions more precisely
under a random realization.

Control strategies. In this section we minimize the energy pri-
marily consumed by the cake-controlling cross-flow, under the
constraint of obtaining a fixed volume of water. Such a scenario
could be relevant in preexisting industrial operations where
delivery of fixed amount of filtered solvent needs to be automated
under minimal cost.

The control depends on three factors: (1) state-space formula-
tion that enables control of the state, Eq. 18a, and thus the
observable Eq. 2, (2) the Kalman filtering that enables updates
with data, Eq. 20a, and thus corrections of predicted states, and
(3) time-dependent input ΔPt and Qt which can be programmed
to yield a desired outcome.

Our approach to control the underlying stochastic state (cake),
differs from the approaches that include backwashing process, e.g.,
Ref. 36, or employ neural networks37. It is similar to study38, and is to
our knowledge the first in the context of membrane ultrafiltration.

In the present work it was not possible to finalize online
control on the real physical system, so we illustrate the principle
by a realistic simulation in which the cake’s randomness is
modelled by the variance ~σ obtained from the data fitting,
Table 1. We use the modelM3 as it is easier (for experimentalists)
to physically interpret it.

The control problem is

min
Z T

0
SðΔPt ;QtÞdt; ð13aÞ

Z T

0
JtðΔPt;Qt ; tÞdt

� �
¼ V0; ð13bÞ

where we want to find (ΔPt, Qt) that minimize the integral of the
loss function S( ⋅ ), under the constraint of the total expected
volume from the model equations equalling the predefined
volume V0. The loss function is chosen as

SðQtÞ ¼
Z T

t
Q3

t dt ð14Þ

since the main contribution of energy loss was associated with the
pump regulating the cross-flow, its energy proportional to cross-
flow cubed (E ~ ΔpQ ~ ρv2v ~ v3). In general, pressure regulation
also contributes to energy loss, but this was a smaller contribution
in our test trials, Fig. S13 in Supplementary Note 10, and is easily
accommodated into Eq. 14.

Technically, ΔPt and Qt are expanded into orthogonal
(Legendre) polynomials and then the coefficients of the expansion
are found which satisfy the above constraint; ΔPt and Qt are
further constrained in range, see Methods, Expansion.

, (2, 5)d)b) c)

[L/h]

a)

CI( ) CICI( ) CI( )

Fig. 3 Functional dependencies of the steady-state flux, Jss(Q) (Eqs. 9–12 with parameters of Table 1). a A constant function Jss= 0.41 [L h−1] of M1 is
the simplest and the least accurate, representing an average Jss across all 23 series; b power-law dependence Jss ~Qγ of M4 encompassing γ= 1, i.e. a
simple linear relationship Jss= 0.2Q, within the confidence intervals around the obtained mean γ= 0.98. c Logistic function of M3 providing a critical-flux
plateau above Q≃ 1.5[L h−1], and d exponential polynomial of models M2, M5 and M6, statistically the most accurate. The functions of models M2-6 gave
large statistical improvements relative to M1 (CI confidence intervals).
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In our first control scenario, the fixed control, ΔPt and Qt are
fixed at the beginning and not updated with time. We want to see
which optimal control yields an average of 3 L, on the time
horizon of 4 h (the length of experiments). The constraint, Eq.
13b, is included into the objective function, Eq. 13a, by

min
Z T

0
Q3

t dt þ λ

Z T

0
JtðQt ;ΔPt ; tÞdt

� �
� V0

� �2
" #

; ð15Þ

where the Lagrange multiplier λ is the penalty parameter ensuring
that the integral does not veer off the target value V0. λ is tuned
by trial and error (~100). Putting the equations and the
parameters from the model M3 and the expansions from Eqs.
31–33b into Eq. 15, one can solve for the optimal expansion
coefficients using any general purpose optimizer algorithm e.g.
found in R software.

The optimizer gives a constant (highest possible) ΔP and a high
Q that diminishes towards the end of the time interval, Fig. 4a
dashed lines. Under this control, the resulting flux 〈J〉t∣0 and the
corresponding cake 〈ω〉t∣0 are given by the black lines in panels b
and c. Note the steady build-up of the cake as the cross-flow
dwindles. The area below 〈J〉t∣0 is equal to the total collected
volume of water, i.e. ∫〈J〉t∣0dt= 3.

Note that we have used the long-term predictions—the mean
values 〈ω〉t∣0 and 〈J〉t∣0—to get the control that provides desired
average behaviour of the cake and the flux during the 4 h period.

Our second scenario is the adaptive control: on shorter time
scale the flux exhibits random fluctuations away from the
anticipated average value that satisfies the constraint, hence
corrections must be made. Say that at time tk we have collected a
total volume Vk; Vk is now subtracted from the target V0 in the
updated objective function

min
Z T

tk

Q3
t dt þ λ

Z T

tk

JtðQt ;ΔPt ; tÞdt
* +

� ðV0 � VkÞ
 !2" #

;

ð16Þ
and a new optimal strategy calculated. This step is repeated at any
further tk, effectively re-applying Legendre polynomials to ΔPt
and Qt for the remaining time horizon. The series of optimization
problems results in the series of newly obtained (updated)
expansion coefficients. In our case, tk= 2.5 min.

For our stochastic realization, the updated ΔPt and Qt are
shown by the full lines in Fig. 4a. The Qt drifts downwards

meaning that the realized flux is higher than the anticipated 〈J〉t∣0,
so the control tries to lessen the removal of the cake (between
1–3 h; compare with the flux and the cake in (b) and (c), in red);
around 3 h, Qt is suddenly increased to compensate as the flux
veers off lower than anticipated; Qt also goes flat in three
instances as it reaches Qmin set by Eq. 33a. ΔPt remains a high
constant except when Qt=Qmin.

Note that the close up of the adaptive (updated) Jat and ωa
t is

that of Fig. 1b, with shifts due to updates, and hence different
from what the stochastic realization would have been without the
control (Fig. S5c). The adaptive control also makes

R
Jat dt ¼ 3.

Incidentally, two of our series actually produce very close to 3 L
during the 4 h test periods: series 9 and 20. We can thus compare
the controls with two real life experiments producing the same
quantity of water, Table 2. From the last table column, we see that
the ΔPt and Qt sequences of the series 9 and 20 use more energy
than the two control schemes.

Adaptive control is the most efficient of the four, having the
smallest average �Q. Compared to series 9, the adaptive control
uses 66% less energy. Not all stochastic realizations, though, will
yield such savings. Compared to the initially given fixed control,
the updating apparently gives a higher flexibility.

Conclusions
Stochastic Greybox Modelling and Control is a digital-twin
methodology that uses stochastic differential equations (SDEs).
SGMC predicts mean values and variances of (hidden) physical
states, given the uncertain observations of functions of these
states; it reconstructs the states, based on data, and is able to
control them under desired constraints; it also provides statistical
measures to quantify the merits of virtual models. A key aspect is
the time-dependence of input variables, which enables their

Δ

|

Δ

∆
,

h

|
a) b) c)

Fig. 4 Two control strategies: fixed, f, without updates during T= 4 h, and adaptive (updated), a, with updates every tk= 2.5 min; a the fixed and updated
inputs (dashed/full lines) for pressure (magenta) and cross-flow (blue). b The optimized average flux based on the fixed control (black), and the optimized
realized flux based on the updated control (red). c The optimized average cake dynamics based on the fixed control (black) and the optimized realized cake
dynamics based on the updated control (red). The realized variables are on realistically simulated data (the cake variance based on fitting).

Table 2 Comparison of the optimal controls with two
experimental series.

V ΔP
--
Q ∫Q3

Fixed ctrl. 3.00 2.50 2.35 53.74
Adaptive ctrl. 2.97 2.42 1.73 35.64
Ser. 9 3.02 1.93 2.86 105.40
Ser. 20 2.96 1.72 2.45 69.08

V—collected volume (integrated flux), ΔP—average pressure, �Q—average cross-flow, ∫Q3—
consumed energy.
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programmability. Randomized input parameters help identify
models, but are not a necessity in general.

While the greybox models can in principle be used in any
situation where a set of ODEs describe the phenomena at hand,
the approach works best for reduced order models (possibly
lumped) i.e. models where the deterministic part (drift term) of
the stochastic differential equation describes only the most
important phenomena, while the stochastic part (the diffusion
term) then takes care of the deviations from the deterministic
part, i.e. model approximations, measurement errors for the
input/forcing variables and unrecognized input variables. Besides,
there can be computational concerns in very high-dimensional
problems, such as weather systems, where estimating the like-
lihood for the model parameters is rather computationally
intensive. This can hinder early identification of models for timely
concurrent control.

As in any statistical modelling, overfitting can pose a problem.
Including more model parameters on training data does not
guarantee a better score on independent data. One typically cross-
validates the sets (cyclically removes one set and predicts for it
based on the others), as in Ref. 39. We did not attempt that here as
it was not our focus.

SGMC works with time-series and does not provide spatial
resolution, as e.g. computational fluid dynamics simulations do. It
strength lies in quantifying the uncertainties in time-series for
optimal control purposes. Apportioning of uncertainties, con-
ditioning on data and statistical validation makes the method
mathematically involved. Once implemented, however, aspects of
SGMC are proving useful in real-world settings, such as waste-
water treatment plants or wind-energy production38,40,41.

Methods
Experimental design. The original data had a sampling frequency of 1 Hz (every
second), but we lowered it to 0.2 Hz (every 5 s) for easier handling by taking the
average over 5 s intervals. This was mainly to prevent the instances of zero
permeate flux as there were hardly any drops of water passing through membrane
over very short times, requiring a more complicated statistical analysis. The
averaging does not affect our conclusions, as the time resolution is sufficient to
distinguish the instantaneous and the diffusive time scales of the flux as well as
programmable changes in the input series, Fig. 1a.

The pressure ranged between (0.5,3) bar, and the cross-flow between (0.5,3.5) [L
h−1]. The series 1–10, 11–20 and 21–23 are distinguished by temporal changes in
the range of 1/10, 1/4 and 1/2 of an hour, respectively. See Fig. 1a (top of the panel)
and S4a.

There were two parameters to be randomized in the data series: the time
between shifts and the actual values of pressures and cross-flows. The pressure and
cross-flow variables were randomized independently.

We used two beta distributions to randomly control the time shifts, Fig. S4b.
For the series 1–10, the time between shifts is drawn as an (independent) random
number from a gamma distribution with parameter α= 6 and β ¼ 6

230, Fig. S4b,
black line (since the aim of the modelling was long-term predictions, the designed
time between shifts is long compared with the time constant from data so that the
system ideally reaches a steady state every time. Here, the average time between
shift was chosen as 230 s i.e. three times the time constant determined by a fit on
data from pilot experiments).

For the series 11–20, the average time between shifts was changed to 460 s, and
the time between shifts was drawn from a gamma distribution with parameter
α= 12 and β ¼ 12

460, Fig. S4b, red line (by inspecting results of series 1–5, the system
did not seem to settle to a steady state before a new shift, hence the extension).

With respect to ΔP and Q values, the following distributions were used.
Series 1 was designed to span different situations by drawing from a distribution

proportional to the sum of the distances to all points that were visited previously by
the experiment (ΔP and Q are treated independently). Series 2–5 are designed to
span the space locally (in time); the distributions are defined in the same way as
series 1, but only local observations are considered (defined by the time to the next
shift). The 1–5 series was adapted manually to avoid fast fouling. This adaptation
was done by changing cross flow below 0.2 m3/h to 0.2 m3/h and one below 0.4 m3/
h to 0.4 m3/h when pressure was above 1 bar (series 1–3), or above 2.3 bar
(series 4–5).

The series 6–9 were designed to span the space of the inputs such that the bias
of each series is (series#: ΔP,Q): (6: low, low), (7: high, low), (8: low, high), (9: high,
low). In practice this is done by drawing from beta-distributions (modified to

favour large shifts). Series 10 is closer to the centre of the allowed inputs (also
ensured by the modified beta-distributions). The manual adaptations of ΔP and Q
were the same as for series 1–5.

The design of Series 11–20 was also based on modified beta-distributions: Series
11–16 are designed to complete one loop of different situations (e.g. going from low
pressure to high pressure and back again), and series 17–20 to ensure that the
entire phase space is spanned.

Filtering: predictions and updates. Schematic of the Kalman filtering, the process
of enabling time-series forecasting by combining models with actual measure-
ments, is shown in Fig. 1b, c. In panel b, the observable J (flux) and its corre-
sponding hidden state ω (cake thickness) are shown in our novel dual graph
representation. ωB,C and JB,C are the one-step ahead predictions i.e. ωB= ωk∣k−1 and
ωC= ωk+1∣k, JB= Jk∣k−1 and JC= Jk+1∣k; J k are the measurements of flux at time tk,
and ωA, ωk∣k and JA, Jk∣k are the updated values. The subscript ∣k indicates the
conditioning on k previous measurements; if there is no measurement updates, the
symbol is ∣0 i.e. long-term prediction, Table S2.

The cake ω is a random variable, but instead of computing its individual Monte
Carlo realizations (jagged lines from ωA to ωB0 , ωB″ etc.), the mean value 〈ω〉 and
the variance hΔ2ωikjk�1 are computed; 〈ω〉 is obtained via f, i.e. integrating Eq. 3,
and translated via g into 〈J〉, Eq. 2. The update with measurements J k , shifts ωB to
ωk∣k and consequently JB to Jk∣k; ωk∣k and Jk∣k become new initial points for the next
one-step ahead predictions ωC= ωk+1∣k and JC= Jk+1∣k. Note that to calculate
ωC= ωk+1∣k one must effect the k updates: ωk∣k, ωA and all the earlier ones. The
symbol ∣k−1, “given k− 1”, thus tags that k− 1 previous updates have been made.
Different models correspond to different functions f and g. Note that above and in
Fig. 1b, c, conditioned variables are written as e.g. ωk∣k and Jk∣k instead of 〈ω〉k∣k and
〈J〉k∣k, for easier following.

In panel c shown are the variances. The model-predicted variance of the cake,
hΔ2ωikjk�1 (dotted red line), is a function of ~σ and quantifies dispersion of Monte
Carlo realizations in the step k. The corresponding one-step ahead flux variance
hΔ2Jikjk�1 (dot-dash black line) includes also the measurement error Sk (dashed
black line). Both ~σ and Sk are unknown and determined from data in the overall
parameter optimization process. Upon the data update, the updated variance
hΔ2ωikjk (thick red line) becomes smaller than hΔ2ωikjk�1; in fact, it becomes
minimal, and the minimization condition determines the optimal position of ωk∣k.

Formally, when f and g depend linearly on the state ω and the input u we have

f ¼ Aωt þ But ; ð17aÞ

g ¼ Cωt þ Dut ; ð17bÞ
where A, B, C and D are a subset of unknown fitting parameters θ (A < 0 for
stability reasons). With θ determined, the state prediction equations of the linear
Kalman filter are5

dhωitjk
dt

¼ f hωitjk ¼
� � ¼ Ahωitjk þ But ; ð18aÞ

dhΔ2ωitjk
dt

¼ 2AhΔ2ωitjk þ ~σ2; ð18bÞ

where the two ODEs for the mean and the variance now replace the SDE, Eq. 3,
and tk⩽ t⩽ tk+1, i.e. the evolution in time is between two successive measurements
at tk and tk+1. As said, the conditioning index k refers to the fact that the update
with data at tk moves the evolution to new initial points, e.g. ωB→ 〈ω〉k∣k, Fig. 1b.
When k= 0, there are no updates with measurements (Table S2), and the ODEs
evolve from the initial values at t= 0; specifically, Eq. 18a with B= 0 then becomes
the usual ODE for the mean value of the cake, known in membrane science.

In literature, Eqs. 18a and 18b are usually given in the most general matrix
format needed to handle multiple random states, e.g., Ref. 29 (p.26). Our case of a
single (scalar) hidden state allows for insightful reduction. Note that our notation
〈x〉 replaces literature symbols x̂. In the steady-state the above equations yield
〈ω〉ss= But/(−A) and hΔ2ωiss ¼ ~σ2=ð�2AÞ, respectively. The first is the basis for
the input-driven control, and the second is the attainment of the finite variance
(finite uncertainty spread) in the long term.

The output prediction equations are (from Eqs. 1 and 17b, and S16)

hJikjk�1 ¼ Chωikjk�1 þ Duk; ð19aÞ

hΔ2Jikjk�1 ¼ C2hΔ2ωikjk�1 þ Sk: ð19bÞ
The one-step ahead prediction of the flux into the current step, 〈J〉k∣k−1, is a linear
combination of the mean of the state 〈ω〉k∣k−1 from the previous step and the input
uk from the current step. Similarly, the one-step ahead prediction of the variance
hΔ2Jikjk�1 is a linear combination of the variance of the state hΔ2ωikjk�1 from the
previous step (model uncertainty or the process noise) and the measurement-error
variance Sk of the current step (the measurement noise).

Since in the current step tk the measurement J k generally differs from the
predicted 〈J〉k∣k−1, Fig. 1b, the update of the latter with the former is done to get
〈J〉k∣k. This is effected by updating the hidden state, our primary variable, from
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〈ω〉k∣k−1 to 〈ω〉k∣k. Linear interpolation gives the update equations

hωikjk ¼ hωikjk�1 þ Kk J k � hJikjk�1

� �
; ð20aÞ

hΔ2ωikjk ¼ ð1� KkCÞhΔ2ωikjk�1; ð20bÞ
where the factor Kk is the point-dependent Kalman gain

Kk ¼
ChΔ2ωikjk�1

C2hΔ2ωikjk�1 þ Sk
¼ 1

C þ Sk
ChΔ2ωikjk�1

: ð20cÞ

To get Eq. 20b and c, we put Eqs. 1 and 19a into Eq. 20a and minimize the obtained
variance hΔ2ωikjk , see Variances, Supplementary Note 11.

If the measurement error is zero, Sk= 0, the measurements become absolutely
precise; in that case Kk= 1/C, hΔ2ωikjk ¼ 0, hωikjk ¼ J k=C and hJikjk ¼ J k , i.e.
the updated state and observable are made up of the measurement value, the model
being irrelevant for the update. On the other hand, if hΔ2ωikjk�1 ¼ 0 (the
uncertainty in the model is zero i.e. a deterministic ODE, not an SDE, describes the
state), the system’s model becomes absolutely precise; then, Kk= 0,
hΔ2ωikjk ¼ hΔ2ωikjk�1, 〈ω〉k∣k= 〈ω〉k∣k−1 and 〈J〉k∣k= 〈J〉k∣k−1, i.e. the updated state
and observable are those of the pure model and the measurements are disregarded
in the update. Here the values are independent of ∣k, hence 〈ω〉k∣0= 〈ω〉k∣k−1 and
〈J〉k∣0= 〈J〉k∣k−1 i.e. the long-term predictions coincide with the short-term
predictions in the ODE case. Thus, deterministic ODE models are a special case of
the more general SDE approach. In reality, 〈ω〉k∣k is in between the two bounding
values, J k=C and 〈ω〉k∣k−1 (g�1ðJ kÞ and ωB in Fig. 1c, respectively).

All what is said is valid exactly for the linear systems. When f and g are non-
linear (as in our case of ultrafiltration), non-Gaussian distributions arise, and the
filtering is no longer exact since 〈 f(x)〉 ≠ f(〈x〉) in non-linear case. We Taylor-
expand the equations around the Gaussian mean to use the formalism. This is
known as the Extended Kalman Filter (EKF)26. All the equalities are now only
approximately true. For example Eqs. 18a, b become

dhωitjk
dt

� f hωitjk ¼
� �

; tk ⩽ t ⩽ tkþ1
ð21aÞ

dhΔ2ωitjk
dt

� 2AthΔ2ωitjk þ ~σt
2; tk ⩽ t ⩽ tkþ1

ð21bÞ

where At ¼ ð∂f =∂ωÞjω¼hωitjk�1
. Similarly, the coefficient C becomes

Ck ¼ ð∂g=∂ωÞjωk¼hωikjk�1
.

Note that the non-linear character of f is preserved; it is the equation of variance
of the state (via the coefficient A), and the equations of mean and variance of the
flux (via the coefficient C) which are modified. The formal account can be found
in29(p.28).

The entire procedure of the Kalman filtering—the state predictions, the output
predictions and the updates with the Kalman gain—lowers the dispersion of
random processes as predictions are updated with data. In doing so, the method
apportions the optimal weights between the measurement error and the model-
related uncertainty. In other words, if the initial conditions are Gaussian and the
processes linear, the filtered state and output predictions remain Gaussian; if
further the measurement errors are Gaussian, the filtered updates are Gaussian,
too. In such case it is possible to optimally divide the uncertainty between the
measurement error Sk and the process noise hΔ2ωikjk�1 to yield the minimal
variance of the updated state. The filtering ensures the optimal ‘positioning’ of the
modelled state and is essential in control theory where one must constantly correct
predictions with data updates (section Control).

The variance of the updated hidden state is minimized under the Kalman gain,
Eq. 20c. The optimal gain is function of the θ parameters Sk, A etc. Those
parameter values which in addition obtain the maximum of the likelihood are
chosen as the best model parameters (likelihood is not part of the filtering process,
see next section). Different models, with different values of their best parameters,
will yield different Kalman gains, and thus different corrections in data updates.

The (extended) Kalman filtering is part of many data-based predictive statistical
algorithms, e.g.42, and is fully implemented in our user-friendly software CTSM-R
(Continuous Time Stochastic Modelling for R)27,29,43.

Likelihood and statistical validation. The term in the parentheses of Eq. 20a is
called innovation error (or the one-step ahead residual)

ϵk ¼ J k � hJikjk�1; ð22Þ
as it quantifies the difference between the measured and the one-step ahead pre-
dicted value of observable J in step k. The likelihood function is the product of the
Gaussian weighted distributions of the innovation errors

Lðθ;J N Þ ¼
YN
k¼1

exp
�� 1

2hΔ2Jikjk�1
ϵ2k
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π detðhΔ2Jikjk�1Þ

q : ð23Þ

In our single-state case hΔ2Jikjk�1 ¼ hϵ2ki, Eq. S16. Using the logarithm we obtain

ln Lðθ;J N Þ ¼ � 1
2
∑
N

k¼1

ϵ2k
hϵ2ki

þ lnhϵ2ki þ ln 2π

� �
; ð24Þ

where ϵk= ϵk(θ), i.e. the error is a function of parameters. ϵ2kðθÞ are the quadratic
residuals that depend on the non-random terms of the models (Eqs. 22 and 19a),
while hϵ2kðθÞi is the variance measuring the model- and the measurement uncer-
tainties (Eq. 19b).

The optimal parameters maximize the log likelihood (ll) (minimize the terms in
parentheses of Eq. 24) and are found numerically

θ̂ ¼ argmax
θ2Θ

fln Lðθ;J N Þ
� g: ð25Þ

Different models yield different maxima of the likelihood and hence different
parameters. Thus, parameters reflect differences in models, quantified by the
likelihood scores. Modelling of the uncertainty, e.g. Eq. 6a, makes it possible to
assign larger variances to large residuals i.e. weight less the larger errors making the
first term in Eq. 24 smaller, thus increasing the likelihood; otherwise, all errors are
weighted equally (ODE cases), and likelihood decreases.

The likelihood pertains to the short-term predictions, Eq. 22, which are
computationally cheap, and is thus one of the main quantitative measures
(guidelines) in statistics for model comparison (larger the (log)likelihood, better the
model).

Statistical validation is the statistical comparison of model predictions against
all measurements, in our case the 23 time-series of Figs. 1a and S4a. We use two
statistical measures for that purpose: the likelihood based Akaike Information
Criterion (AIC), and the root-mean-square error (RMSE).

The Akaike Information Criterion is given by

AIC ¼ 2k� 2 Lðθ;J N Þ
�

; ð26Þ
where k is the number of parameters, or degrees of freedom (df). A model with
larger number of parameters producing the same log likelihood is poorer. For our
systems with a few parameters (df ~ 10), AIC is essentially twice the negative ll.
Hence, the smaller the AIC, the better the model.

The root-mean-square error is given by

RMSE ¼ 1
N
∑
i
∑
k
ðJ i;k � hJii;kj0Þ2

	 
1=2
; ð27Þ

where i goes over all time-series (data sets), and k over time. N is the total number
of data points. RMSE is the ordinary least-square measure of the goodness of a fit
for an ODE, and compares how much the measurements deviate from the long-
term predicted mean.

In the case of ODEs 〈J〉k∣k−1= 〈J〉k∣0, and so maximizing the ll and minimizing
the RMSE becomes one and the same condition (Eqs. 22, 24, and 27). For SDEs the
two are different. Whereas the ll scores reflect parameters, the RMSE scores reflect
the structure of the model equations and are used here to asses the models’ long-
term predictions. The validation of the models in this article is shown in Tables 1
and S3 for the real and the illustrative models, respectively.

The Lamperti transform. With transform

zt ¼ logðωtÞ ) ωt ¼ ezt ; ð28Þ
Eq. 5 becomes

dzt ¼ cbe
�zt ðJt � Jssð1� e�ezt =ωc ÞÞdt ð29Þ

� 1
2
σ2ðtÞdt þ σðtÞdWt ; ð30Þ

and the state-dependence of the diffusion is removed. The integration then pro-
duces the log-normal distribution of the state.

Expansion of Pt and Qt in a basis set. We expand ΔPt and Qt into Legendre
polynomials and then find the coefficients of the expansion which satisfy the
constraint Eq. 13b. For example, the polynomials representing Qt are (for t0⩽
t⩽ T)

PQðtÞ ¼ a0L0ð~tÞ þ a1L1ð~tÞ þ ¼ apLpð~tÞ; ð31Þ

where ai are coefficients of the Legendre polynomials Lið~tÞ of i-th order, and

~t ¼ 2½t � 1
2 ðT þ t0Þ�
T � t0

ð32Þ

is the time scaled to the orthogonality interval [−1, 1]. Legendre polynomials up to
the 4th order are used.
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We further restrict the range of our control variables ΔPt,Qt by the following
scaling transformation

Qt ¼
RQ

1þ e�PQ ðtÞ þ Qmin; ð33aÞ

ΔPt ¼
RΔP

1þ e�PP ðtÞ þ ΔPmin; ð33bÞ

which limits the values to Qmin⩽Qt⩽Qmin+ RQ and ΔPmin⩽ Pt⩽ Pmin+ RΔP.

Data availability
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