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Harnessing human and machine intelligence for planetary-level
climate action
Ramit Debnath 1,2, Felix Creutzig 3,4✉, Benjamin K. Sovacool 5,6,7 and Emily Shuckburgh1

The ongoing global race for bigger and better artificial intelligence (AI) systems is expected to have a profound societal and
environmental impact by altering job markets, disrupting business models, and enabling new governance and societal welfare
structures that can affect global consensus for climate action pathways. However, the current AI systems are trained on biased
datasets that could destabilize political agencies impacting climate change mitigation and adaptation decisions and compromise
social stability, potentially leading to societal tipping events. Thus, the appropriate design of a less biased AI system that reflects
both direct and indirect effects on societies and planetary challenges is a question of paramount importance. In this paper, we
tackle the question of data-centric knowledge generation for climate action in ways that minimize biased AI. We argue for the need
to co-align a less biased AI with an epistemic web on planetary health challenges for more trustworthy decision-making. A human-
in-the-loop AI can be designed to align with three goals. First, it can contribute to a planetary epistemic web that supports climate
action. Second, it can directly enable mitigation and adaptation interventions through knowledge of social tipping elements.
Finally, it can reduce the data injustices associated with AI pretraining datasets.
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INTRODUCTION
The age of artificial intelligence (AI) has begun and is filled with
opportunities and responsibilities. It is yet to be clearly understood
how AI or machine intelligence can help address present global
challenges, including climate change.
A global digital transformation would need an unprecedented

level of machine intelligence. Making this machine intelligence
sustainable and aligning it with planetary health challenges is a
grand challenge on its own, starting with the rapid reduction of
GHG emissions associated with the internet and currently carbon-
intensive data centers1,2. The literature emphasizes several ways in
which AI can play a crucial role in addressing climate change. It
can provide innovative solutions to mitigate the negative impacts
of greenhouse gas emissions, increase energy efficiency, and
promote sustainable development3 (discussed later in detail).
Addressing climate change through AI is extremely challenging

because of the enormous number of variables associated with this
complex system. For instance, climate datasets are vast and take a
significant amount of time to collect, analyze and use to make
informed decisions that can translate into climate action. Using AI
to account for the continually changing factors of climate change
allows us to generate better-informed predictions about environ-
mental changes, allowing us to deploy mitigation strategies
earlier. This remains one of the most promising applications of AI
in climate action planning. However, while explaining the
potential of AI tools in physics-driven modeling of earth systems
for predicting climate change, Irrgang et al.4 emphasize the need
to rely on clear, physically meaningful research hypotheses, the
geophysical determinism of process-based modeling and careful
human evaluation against domain-specific knowledge to develop

a meaningful AI that can address the challenges of climate science
with classical earth system models.
Moreover, as the embodied impact of some of the current

machine intelligence and AI systems associated with cryptocur-
rency mining, cloud computing, and large-scale machine learning
models is just beginning to be understood, the accelerating
impact of digitalization on consumption and resource extraction
appears to be an increasingly troubling problem. As a result, our
current trajectory of digitalization seems like a double-edged
sword that may increase greenhouse gas emissions, worsening
overall planetary health2.
Furthermore, digitalization’s influence on the natural environ-

ment and social systems is unknown and will require careful
public policy design in many domains5. The desirable design of an
accountable machine intelligence system, reflecting both direct
and indirect effects on societies and planetary health, is a question
of paramount importance that we expand on in this paper from a
design thinking lens. We emphasize the need to co-align an
epistemic web of planetary health challenges with the goals of a
less-biased climate action AI, and debiasing large-scale pretraining
datasets can pave the initial path. Key concepts and definitions
used in this paper are illustrated in Box 1.

An epistemic web of planetary health challenges for climate
action
Climate action through machine intelligence must mean support-
ing climate mitigation and adaptation decisions at a global scale
while avoiding excess emissions. However, the current generation
of machine intelligence systems that drive digitalization has
embedded biases and data justice issues, making them less
trustworthy for transparent decision-making. Thus, for effective
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climate action, there is a need for a less-biased and collaborative
AI that works not in competition with humans but with them to
address such urgent planetary health challenges6,7 —emphasizing
a human-centric/human-in-the-loop AI. Different people must
bring their perspectives and knowledge to developing a less
biased AI. Such a knowledge system could constitute what Jürgen
Renn8 calls an ‘epistemic web’.
In this perspective, we investigate data-centric knowledge

generation for climate action in the context of biased (or less
biased) AI. For this, we envision the co-production of an epistemic
web of planetary health challenges based on Renn’s epistemol-
ogy8, relying on social, semiotic, and semantic networks for
aligning desirable machine intelligence that captures the closely
intertwined dimensions of the present human knowledge that
informs current generation machine intelligence models (see Fig.
1). Individual or collective actors form the basis of a social network

where these actors possess knowledge and are involved in
producing, exchanging, disseminating, or appropriating knowl-
edge. The process of social and communicative exchange
manifests in the form of traditions, rules, conventions, and norms,
as well as in terms of constraints and power structures that
strengthen, weaken, facilitate, or impede ties within social
networks8. These form the basis of the ‘contextualization’ of
global challenges, where, for example, local knowledge and social
norms can derive relevant climate mitigation and adaptation
approaches9. However, existing data injustices represent a mean-
ingful deterrent to realizing more inclusive knowledge and
experience when it comes to climate action1,10–12.
The semiotic network, which communicates meaning, includes

the entire material context of the action, including technological
artifacts generated based on the technological knowledge of
producers8. A recent example is OpenAI’s ChatGPT13, which uses
billions of text parameters from Wikipedia and other internet
sources as its pre-trained dataset. It produces ‘new knowledge’ in
the form of a dialog format. According to Renn8, historically,
semiotic networks are often the starting point for reconstructing
other aspects of the epistemic web. This shapes the motivation of
this article. As more significant and better AI models emerge, we
can align accountable machine intelligence with an epistemic web
of planetary health challenges.
Semantic networks must be reconstructed from external

representations, such as written texts. It uses the fact that
concepts have expressions in language. However, semantic
networks have no one-to-one relation to either concepts or other
cognitive building blocks; one and the same concept may
correspond to different terms in language, while the same term
may represent different concepts8. This has been the basis of
many pre-trained large language models (LLMs) for AI systems,
including foundational models like GPTs. Theoretically, Renn8

argues for deductively organized semantic networks to form
highly organized knowledge systems. We expand Renn’s frame-
work to create a way forward for co-producing a less biased
machine intelligence with an AI-driven epistemic web of planetary
challenges through digitalization actions.
Using the theoretical basis of the epistemic web of planetary

health challenges, we take a deconstructivist approach to analyze
how current pre-trained machine intelligence influences relation-
ships among digitalization, equity, political agency, societal
stability, and climate action. In doing so, we first define the scope
of present machine intelligence systems in climate action,
especially in relation to mitigation and adaptation. Next, we show
that for an epistemic web of planetary challenges, there is a need
to overcome accountability risks associated with biased AI systems
for climate action (see Table 1). This is where the social network
dimension of Renn’s epistemic web (see Fig. 1) becomes
important as a foundation for collective consensus generation
and societal stability. We emphasize that a human-in-the-loop AI
design is critical to such an epistemic web that is free of biased
datasets, biased programming, and biased algorithms (see Fig. 2).
Finally, we emphasize removing the barriers to diversity and
inclusion in the machine intelligence community to create
grounded and reliable training datasets that can sustain an AI-
driven epistemic loop of ‘data from knowledge’ and ‘knowledge
from data’ (see Fig. 3).

Machine intelligence accountability risks for climate action
At present, machine intelligence systems for climate action are at
an early stage of development, and their impact is just beginning
to be understood, which embeds biases in their entire value chain,
making these AI systems less trustworthy for climate action
decision-making14. Drawing inference from the application of AI in
climate modeling (as discussed above), biases can influence
prediction accuracy, reliability, and interpretability, which can

Box 1: Concepts and definitions

Machine intelligence is the result of programming machines with some
characteristics of human intelligence, such as learning, problem-solving, and
prioritization, often enabled through machine learning (ML), which enables a
machine to solve complex problems. ML is an application of AI that operates on
deductive reasoning based on observed data, combining computation, models,
and algorithms to make useful predictions or decisions.
True machine intelligence systems are envisaged to recognize when they have
made mistakes, watch for similar data that could lead to a similar error in the
future, and avoid repeating mistakes. Thus, it will have access to a variety of ML
methods and automation techniques and will intelligently prioritize the
achievement of specific objectives. In the present technological context, machine
intelligence is defined as an advanced form of machine learning with the
addition of prioritization and goals — a stepping stone on the road to true
artificial general intelligence74,75.
We use the terms machine intelligence and AI interchangeably to represent our
present digital age, which is expected to have profound societal and
environmental impacts by altering the job market, business models, governance,
and societal welfare structures24. However, a comprehensive understanding of
desired and unwanted dynamic effects requires more attention, especially as
bigger and better AI models are rapidly emerging.
Digitalization is the integration of digital technologies into societal structures
and the economy. It is considered the backbone of the new machine intelligence
—or AI—driven industrial age, called Industry 4.0 (and beyond). Not all forms of
digitalization are positive, and evidence is emerging that digital devices such as
smart meters or in-home displays and digitally connected or smart homes, could
be more prone to increases in energy consumption and carbon emissions,
vulnerability to hackers, invasions of privacy and surveillance capitalism, and
even higher rates of domestic violence and abuse76–79.
Planetary health challenges6 include climate change, biodiversity loss, air
pollution, water pollution, land use change, and food systems.
The epistemic web is envisaged by Jürgen Renn8, where the present internet
(web) will become a universe of knowledge that parallels human knowledge. In
the Epistemic Web, browsing will be replaced by the purposeful federation of
documents. All data will be metadata, and all documents will be perspectives
into the universe of knowledge. By allowing for greatly enriched links between
documents (incoming as well as outbound links; multi-directional links; transitive
and intransitive links; links with attached semantic labels; links with specified
behaviors), the Epistemic Web will allow documents to describe one another.
Thus, the digitization of current knowledge stores is essential; knowledge must
be accessible, findable, and available for the recursive production of new
knowledge.
Human-in-the-loop AI seeks to accomplish what neither humans nor machines
can on their own. When a machine is incapable of solving a problem, humans
must intervene. This procedure produces an ongoing feedback cycle. This AI
design strategy is increasingly considered a way of creating a less biased AI.
Social tipping points (STPs) are instances in which a significant and rapid shift
occurs in the attitudes, beliefs, behaviors, or values of an entire society or a
substantial portion of it. These tipping points can be precipitated by a variety of
factors, such as technological advancements, cultural movements, political
events, economic shifts, or environmental crises7,29,80–86. These can lead to
transformative changes in social norms, power and political institutions with
long-lasting effects on individuals and societies as a whole. For instance, global
climate strikes are viewed as social tipping events81.
These tipping points are shaped by social tipping elements (STEs) that include
the energy production system, human settlements, the financial system, norms
and values, the information system and the education system.
Data justice is defined as fairness in the way people are made visible,
represented and treated as a result of their production of digital data, making it
necessary to determine ethical paths through a datafying world10.
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seriously affect decisions for climate mitigation and adaptation
actions. For example, if a biased climate model is trained on data
that excludes certain regions or time periods, the predictions may
not accurately reflect the complete scope of climate change.
Similarly, such models may underrepresent certain variables or
factors and provide inaccurate estimations of carbon emissions

from particular industries, leading to an underestimation of the
actual impact of those variables on the climate. Furthermore,
biased climate models can worsen climate impact and response
inequities. If AI models only consider how climate change will
affect a small number of regions or populations, those regions and
people may experience disproportionately negative effects.

Fig. 1 The need for co-aligning a less biased AI with a global epistemic web on planetary challenges. The epistemological basis is derived
from ref. 8.

Table 1. Fairness, Accountability and Transparency (FAccT) accountability risks with biased machine intelligence for climate action.

Sl no FAccT accountability
risks17

Implications for climate action AI design Example scenario

1 Actor-related Lack of contextualization of grounded reality associated
with climate action (biased database). Therefore, the AI
system cannot accurately and reliably predict the impacts
of climate change and climate solutions in the near-term
and long-term.

An AI model performs poor in terms of weather prediction
due to lack of climate and earth system experts in the
modeling team that code for physical mechanics.
Similarly, an AI-driven climate mitigation model cannot
represent social consequences of solutions due to
misrepresentations of social scientists in the modeling
team.

2 Forum-related The machine intelligence model remains a black box
system (a biased algorithm) mirroring hierarchical power
relations and dependencies between different actors.
This power structure impacts political accountability and
decision-making.

Influential actor(s) obfuscate climate change information
for political/business profitability gains through generation
and amplification of misinformation, leading to
polarization and political manipulations. This can
potentially destabilize democracy through political
instability.

3 Relationship-related Biased databases cause a lack of diverse knowledge and
perspectives in climate AI models, making them skewed
towards specific outcomes/groups.

Policymakers rely on an AI system to design emission
reduction scenarios in a Global South city without
consideration of climate change-induced migration and
urban sprawl.
Similarly, a lack of indigenous knowledge in the AI system
systematically excludes local communities from
biodiversity conservation decision-making.
Inaccurate climate modeling and forecasting due to data
biases.

4 Account-related Biased programming makes it harder to differentiate
which actor should account for what, leading to
incompleteness in decision-making.

The climate AI system predicts extreme weather impacts
for Global North countries with 98% accuracy, while for
Global South countries its accuracy is set at 60%.

5 Consequence-related Lack of regulation and procedural measures allows the
climate AI industry to build megasystems for specific
groups that imbalance political accountability and power
structures.

Data privacy is breached using an AI system for millions of
people to track their sustainability behavior and enforce
climate inaction penalties.

R. Debnath et al.

3

npj Climate Action (2023)    20 



Biases can arise from overlapping classes like biased databases,
biased algorithms, and biased programming. For instance, Rich
and Gureckis15 point out three causes of bias in present machine
intelligence systems: small and incomplete datasets, learning from
the results of our decisions, and biased inference and evaluation
processes. These biases reduce the accuracy and reliability of
many present-generation machine intelligence systems for
climate action, making them less accountable, interpretable, and
explainable (see a comprehensive survey of black box models
here16). Fairness, Accountability, and Transparency (FAccT)
researchers present five algorithmic accountability risks17 that
can emerge from such biases. We synthesize these risks with
respect to the design of climate action AI (see Table 1).
While FAccT and AI ethics researchers are beginning to discuss

the potential role of AI in mitigating the aforementioned
accountability issues in climate action3,14,18, the paths to devel-
oping a less biased AI for climate assessment remain uncertain.
From this paper’s scoping of the epistemic web in Fig. 1, we focus
on the need for quality training datasets that represent the diverse
grounded reality of human perspective and experiences (episte-
mic knowledge) with as little bias as possible, which becomes

highly critical in making AI less biased19,20. Also, this feature of
representing the different kinds of human knowledge in the
machine intelligence system is needed when these models will be
relied upon to make decisions about how to deal with climate
change as a planetary health challenge. For example, Gupta
et al.21 define and implement Earth system justice to link the
physical and social aspects of climate change and make sure that
planetary health actions reduce harm, improve well-being, and
reflect both substantive and procedural justice.
Thus, a desirable feature of machine intelligence and AI systems

for climate action is the embedding of epistemic knowledge,
which can be achieved through diverse and representative pre-
training datasets. However, literature shows embedding epistemic
knowledge is not simple, as even the most advanced present
generation AI systems must be made more transparent, explain-
able, and interpretable22. Interpretability means that cause and
effect can be determined in machine learning (ML) models.
Explainability is crucial for piercing the black box of ML models
and understanding how the model works16,23. These two
characteristics are critical for reducing algorithmic accountability

Fig. 2 Envisioning a human-in-the-loop design of a climate action AI. Social structures and collective intelligence provide epistemic
knowledge for climate action AI (Source: Authors).

Fig. 3 Data justice is essential for a climate action AI. Co-producing knowledge for an epistemic web of planetary challenges and less biased
AI by leveraging desired data justice characteristics (Source: Authors).
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risks (see Table 1) and making AI safer for high-stakes climate
action decision-making23.
Another significant impediment is the need for more precise

uncertainty quantification in existing AI systems24. It makes many
current-generation machine intelligence systems overconfident,
and they make mistakes25. Therefore, the current epistemic base
(like the world wide web) for machine intelligence embeds these
limitations and biases that make it less practical for individual and
collective decision-making for climate action. As a result, current
AI systems are less useful for direct applications in climate
mitigation and adaptation.

Aligning human-in-the-loop AI design with climate action
Recent advances in human-in-the-loop machine learning
approaches using large-language models (LLMs) show a way
forward to integrate epistemic feedback loops into black box
models. Human-in-the-loop models refer to machine learning
systems or algorithms that involve human interaction and input to
improve their accuracy. A recent example is Open AI’s ChatGPT13

which uses a human-in-the-loop26 system. In ChatGPT, the AI
system interacts conversationally with the human user. This dialog
format makes it possible to answer follow-up questions, admit
mistakes, challenge incorrect premises, and reject inappropriate
requests13. The machine intelligence element of ChatGPT is in its
model training using reinforcement learning from human feed-
back (RLHF)27 driven by the proximal policy optimization (PPO)
algorithm.
As a starting point for conceptualizing an epistemic web,

Creutzig et al.2 demonstrate a relationship among digitalization,
equity, political agency, climate change and planetary stability. It
emphasizes AI’s direct and indirect impact on climate action. For
example, a direct impact like energy demand for training large
machine learning models in data centers. Indirect impacts like
machine intelligence applications that reduce greenhouse gas
emissions and environmental impact. The digitalization of social
networks via algorithms (i.e., social media platforms) is instru-
mental in creating polarization (through misinformation and
disinformation)28 and shaping political opinion that affects social
equity within and between countries. High levels of inequity and
polarization reduce the feasibility of consensual climate actions,
leading to irreversible social tipping scenarios. They are thus
indirectly relevant for machine intelligence design and its reward
models.
We connect the epistemic interdependencies of machine

intelligence with political agency and democracy, equity, and
social tipping elements (discussed in the next section). We
illustrate an epistemic web basis to define desirable machine
intelligence for digitalization that balances social equity, stabilizes
political agency (and therefore democracy), and ensures climate
mitigation and adaptation goals are met through sustained
climate action, thus, potentially preventing irreversible social
tipping3,29,30. Digitalization should enable collective action (as
data for knowledge) to be transferred from the epistemic web of
planetary challenges for training the AI systems. Thus, enabling
knowledge generation from the data. This will define the true
scale of a human-in-the-loop system for planetary-level
digitalization.
Increasingly, the context of human-in-the-loop AI is gaining

critical importance, as it is beneficial to reduce biases when a
diverse group of humans with different identities, backgrounds,
and viewpoints, using collective intelligence31, participate in
machine intelligence system design26. Under the best circum-
stances, utilizing such collective intelligence for human-machine
collaboration and co-creation results in knowledge generation as
an epistemic web.
We present this design framework in Fig. 2, which emphasizes

that the epistemic web contains grounded and diverse knowledge

of social structures that are critical social tipping elements29. In the
social epistemic network (see Fig. 1), AI systems trained through
such an epistemic web can help reduce misinformation, remove
skepticism, and restore trust32. Thereby ensuring the stability of
socio-political institutions that are critical for determining
consensus for climate action.
When envisioning a climate action AI system, we establish that

such systems are driven by the need for accountability risk
reduction (see Table 2) that delivers a less biased AI, coupled with
the drive for planetary-scale digitalization that enables collective
climate action, which by itself is influenced by the epistemic web.
This epistemic web creates a more robust foundation for collective
decision-making and individual action, efforts that could come to
play a more important role in accelerating climate policies for
mitigation and adaptation that could contribute towards mini-
mizing the risks of irreversible social collapse.

Human-in-the-loop AI designed on social tipping points
The most pressing challenge in this context is the need for more
diverse and reliable datasets to build different and reliable
algorithms that represent grounded reality, as well as deliberate
decision-making on these algorithms, which is shaping current
debates on the urgent need for data justice and its agencies10.
For example, Schramowski et al.33 have shown that large

language models (LLMs) such as BERT, GPT-2, and GPT-3 trained
on unfiltered text corpora suffer from degenerated and biased
behavior. Nonetheless, the authors successfully demonstrated that
the human-corrected, pre-trained LLM could mitigate the
associated risks of toxic degeneration. They used a questionnaire
survey of 117 questions to create a human-in-the-loop design to
give the AI system a moral direction of what is right and wrong to
do. This characteristic of climate action AI systems is critical to
shaping the epistemic web that embeds knowledge layers of
social structures critical to social tipping points.
Such interactive learning of machine intelligence with human

intelligence is desirable to foster AI-driven climate action. This
human-machine interactivity is at the core of accountable AI
systems34 that can reason about social, cultural and moral norms
as critical social structure datasets for enabling climate mitigation
and adaptation consensus which do not exist currently35. An
attempt was made by Forbes et al.36 through the creation of a
large-scale social corpora called Social-Chem-101. Similarly, Colas
et al.37 conceptualized the immersion of autotelic agents into rich
sociocultural worlds for making AI systems more trustworthy
(Autotelic agents are intrinsically motivated learning agents that
can learn to represent, generate, select and solve their own
problems).
As a timely case study for generative AI, reinforcement learning

through human feedback (RLHF) in ChatGPT shows that human
intelligence can be integrated with machine intelligence to design
specific reward models for the AI system. This can be leveraged to
improve the trustworthiness of machine intelligence systems
through a human-centered design approach38 for fine-tuning
RLHF that asks what is desirable in the current megatrend of
digital transformation of economies and societies. Such applica-
tions of human-in-the-loop design show opportunities for
contextualizing machine intelligence for system-scale behavioral
climate action that prevents social tipping points (STPs, see
Box 1)32. In Box 2, we present a theoretical scoping of data
representing social structural layers of social tipping elements
(STEs).
It is not yet known how LLM-based human-in-the-loop AI

systems like ChatGPT can support climate mitigation and
adaptation, especially across the STEs. One recent example is
the creation of ClimateBERT, where researchers fine-tuned a LLM
using the IPCC reports for improving public understanding of
climate risks and making climate information more accessible to
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the wider community39. However, caution should be taken to
remove existing biases and uncertainties in machine intelligence
design and operations. For instance, researchers at DeepMind
recently unveiled a taxonomy of risks posed by LLMs, which are
used to train generative AI40, including: i) discrimination, hate
speech, and exclusion; ii) information hazards; iii) misinformation
harms; iv) malicious uses; v) human-computer interaction harms;
and vi) environmental and socio-economic harms. A part of this
problem is that such LLM-based AI systems are far from
trustworthy AI systems, as their interpretability and explainability
are still exclusively dependent on their pre-training datasets from
internet sources like Wikipedia, News, and BookCorpus databases.
This triangulates our focus on the need to align with an epistemic
web that represents reliable and diverse human knowledge and
perspectives.

Co-producing knowledge for climate action and a less biased
AI
Present-day AI is less trustworthy for decision-making, especially
when it relates to climate mitigation and adaptation efforts. We
synthesized the accountability risks associated with such systems
in Table 2, as well as the need to act on biased programming,
biased algorithms, and biased datasets for a more trustworthy
climate action AI. For example, in the previous section, we
emphasized that biased AI-led climate modeling can lead to
inaccurate forecasting and impact assessment, which will affect
decision-making. To correct such biases, the AI systems require
humans-in-the-loop, especially to produce and feed the training
data into the algorithms at the initial stage of model develop-
ment26. This calls for sincere efforts towards embedding data
justice in the pretraining datasets.
In this purview, we argue that a human-in-the-loop design of

the climate action AI is critical that embraces diversity in
perspectives and knowledge from engineers, social scientists,
philosophers, industry practitioners, policymakers and the pub-
lic26. For example, the concept of trustworthy AI that is humanistic,
just, and ethical is at the core of a desirable machine intelligence
system’s design19. We expand this argument for a human-in-the-
loop climate action AI.
However, the notion of algorithmic trust is subjective to the

context (as illustrated in Table 2) and emphasizes the need for the
ML/AI experts to relate how their metrics of trust impact trust by
individuals and the public41,42. This makes fairness-aware machine
learning (ML) a difficult challenge as the measurement parameters
of fairness in terms of bias and related notions are still not clearly
understood. For instance, Narayanan43 has identified 21 defini-
tions of fairness in the literature, which cannot necessarily all be
obtained at the same time.
Two widely used definitions that have been widely incorporated

into ML pipelines are those of individual fairness, which states that
individuals who are similar should be treated similarly, and, group
fairness, which states that demographic groups should, on the
whole, receive similar decisions44,45. It is important to understand
what assumptions are reasonable in a given context before
developing and deploying fair mechanisms (i.e., contextualiza-
tion); without this work, incorrect assumptions could lead to unfair
mechanisms44,46.
Bridging such an epistemic gap associated with the meaning of

fairness is critical if climate action AI systems are to design and
implement climate mitigation and adaptation strategies. FAccT
scholars have proposed various solutions to establish a subset of
fairness notions41,42,47. One approach that is most relevant to our
paper’s scoping is to reduce the bias in the pre-training dataset,
known as debiasing data, which can fulfill the objectives of data
justice10.
A critical step towards debiasing pretraining datasets is creating

data-centric AI that emphasizes more accountable and context-Ta
b
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specific datasets related to climate action. FAccT literature stresses
the need for ‘social transparency’ in making AI systems
trustworthy by aligning efforts needed to establish organizational
and regulatory ecosystems for the assurance of trustworthy AI in
the public domain (e.g., the MATCH model)48–50. Moreover,
literature at the intersection of social science and data science
shows that a data justice lens is instrumental in bringing social
transparency (which improves trustworthiness)10–12.
In Fig. 3, we highlight that for debiasing the pretraining datasets

of a climate action AI, we must create a self-sustaining and
interactive mechanism of ‘data from knowledge’ and ‘knowledge
from data’. The ‘data’ in this case must contain multi-layered
information on climate change impacts, mitigation, and adapta-
tion strategies at an anthropocene scale, which can then generate
the needed ‘knowledge’ base for appropriate and contextualized
climate action for the avoidance of irreversible social tipping, as
discussed earlier.
Here, we synthesize the desired data justice characteristics of a

less biased climate action AI that embeds the knowledge of
societal structural layers (see Fig. 2) by leveraging existing social
justice dimensions of instrumentality (fair ends), distribution (fair
allocation), and procedure (fair means) that correspond to the
data diversity and inclusion needs through recognition, owner-
ship, structure and space, as illustrated in Table 3. For example, a
lack of data justice and its contextualization in most climate-
vulnerable regions of the world pose a significant risk of training a
biased AI that can virtually hallucinate during decision-making
applications. We are already experiencing hallucinatory results
with ChatGPT.
In Table 3, we connect these characteristics to the specific

requirements of a less biased climate action AI that have
applications in climate modeling, energy management, city
planning, carbon capture and storage, and collective intelligence
(as illustrated in Box 2).
Researchers are finding innovative ways to produce data-centric

infrastructure to support this goal. For example, African AI
researchers have established a common AI dataset repository for
their local context, COCO-Africa51. MasakhaNER provides a large
curated dataset of ten African languages with named-entity
annotations52. Such initiatives are still very early, and more effort is
needed to mainstream them, especially along the five data justice
characteristics levers.
Without diversity and the inclusion of a full range of

populations, we risk the development of biased algorithms20

and, subsequently, a biased epistemic web. Moreover, there is an
added risk of failing to fulfill the AI talent pool and missing its
broader societal benefit towards solving planetary challenges like

climate change, as discussed above. Using AI for climate action
(mitigation and adaptation) is especially challenging as it can be a
double-edged sword that may increase greenhouse gas emissions
and worsen overall planetary health, which we discuss from a
social tipping point lens. This effect is due to embedded biases
and injustices in the training datasets used in the design of
present-day generative AI systems.

CONCLUSION
We conceptualized the co-production of an epistemic web of
planetary challenges based on Renn’s epistemology8 for aligning
desirable machine intelligence that captures the closely inter-
twined social, semiotic, and semantic network dimensions of
present human knowledge that inform current generation pre-
trained AI models. This epistemic web can help reduce account-
ability risks17 associated with machine learning and AI models
while correcting algorithm-driven polarization for climate action32,
leading to collective consensus for climate adaptation and
mitigation policies. We envisaged leveraging the recent advances
in human-in-the-loop AI through political agencies and demo-
cratic decision-making2. However, existing embedded inequalities
associated with AI system fairness, ethics, and biases must be
addressed.
The need of the hour is to be sensitive to digital inequalities and

injustices within the machine intelligence community, especially
when AI is used as an instrument for addressing planetary health
challenges like climate change. That is where the role of social
science, philosophy and the humanities becomes even more
critical. A recent AI community review53 touched on this theme,
specifically focusing on academic data science researchers.
Bridging such a divide and debiasing datasets should be a core
component of a desirable machine intelligence-driven digitaliza-
tion system. Otherwise, the pre-trained datasets will remain biased
and overrepresent certain groups. Thus, leading to a biased
climate action AI.
Similarly, there is strong evidence of structural inequalities in

climate action (mitigation and adaptation) between and within
countries. It is even more prominent in vulnerable and resource-
constrained communities in the Global South. Such inequalities, if
sustained, are estimated to have catastrophic outcomes impacting
societal collapse and planetary stability, including not fulfilling any
climate mitigation pathways29.
Better aligning less-biased AI with climate protection and

respecting planetary boundaries also creates an unprecedented
opportunity to act on global injustices and embed positive data
justice thinking in the current wave of digitalization. This

Box 2: Societal structure data layers in social tipping elements for climate action AI applications

Application areas

Climate Modeling Knowledge of custom, norms, religion, political institutions, individual and group identity shapes consensus for mitigation and
adaptation actions using AI.

Energy
Management

Reflect human behavioral attributes of energy consumption at scale and its contextualization with energy justice dimensions.

Renewable Energy Data concerning production and demand forecasting, grid stability and market allocations at a granular and socio-economic
interactive scale.

Climate adaptation Epistemic knowledge representation from vulnerable and marginal communities improves the diversity and inclusivity of climate
impact datasets.

Carbon capture Socio-economic data on carbon offset impacts across local, national and regional scales.

Cities Large-scale behavioral datasets about urban adaptation and resilience strategies grounded in localized knowledge of customs,
culture and norms.

Collective
intelligence

Information about the socio-political consensus drivers for climate action, including countering mechanisms for dis- and
misinformation, polarization across cultures and norms.
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encompasses ensuring that the benefits of digitalization redress
existing injustices, that vulnerable groups are more involved in
standard-setting and policymaking and that disadvantaged
groups, in particular, have access to open data. It also suggests
that ownership and exploitation of data expand to include civil
society and communities themselves (e.g., via cooperatives and
trust arrangements), the active participation of users, and the
promotion of broadband internet access as a public good rather
than a private commodity.
As machine intelligence increasingly impacts society, diversity

and inclusion are growing concerns. Therefore, the co-creation
and co-production of relevant knowledge, infrastructure, and

human resources must be a desirable machine intelligence design
priority that defines an epistemic web of collective action for
addressing planetary challenges.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Received: 17 January 2023; Accepted: 24 July 2023;

Table 3. Data justice characteristics for more equitable climate action AI.

Social justice
characteristic

Application to data justice for a less biased human-in-the-loop AI Implications for a climate action AI design

Injustice issues Justice measures

Instrumental (fair
ends)

Inequitable distribution of the
benefits or risks of data sharing or
AI programming.

Guaranteeing the rewards of AI reduces
lessen rather than worsen economic and
social vulnerability.

Inclusive and diverse pre-training datasets
create more accurate and efficient climate
models that can help in better vulnerability
estimation, leading to improved climate
mitigation and adaptation planning at
urban, regional and national scales.

Procedural (fair
means)

Exclusion of key stakeholders from
data discussions and obfuscation of
biases within AI programming.

Ensuring that individuals and groups have a
meaningful voice in the design and
operation of AI systems, including the right
to consent (or withdraw consent) for the
use of their personal data.

Effective consensus generation for climate
action by leveraging diverse and context-
specific collective intelligence.
Improved renewable energy forecasting and
energy management in a changing weather
context that promotes energy justice in
vulnerable areas.

Distributive (fair
distribution)

Consolidation of intellectual
property and big data among
corporate or technology elites

Maintaining open and accessible data, and
community based ownership platforms
(e.g., cooperatives, community interest
companies) and prioritizing minority or
vulnerable groups in digitalization
processes and outcomes.

Better identification of climate vulnerability
groups and their social structures, resulting
in better mitigation and adaptation
measures across diverse population groups.
Enables robust decision-making and
accurate estimation of the distributive
impact of disruptive climate technologies
associated with carbon capture and storage.

Recognition (fair
voice)

Discrimination against particular
demographic or indigenous groups
and failure to respect privacy

Including groups in design and governance
of data systems. Providing stronger
accountability measures.

Enables collective intelligence at the pre-
training stage, which can embed valuable
grounded knowledge and perceptions of
climate change impacts. It further
strengthens an epistemic web of planetary
health challenges.
Climate models become more grounded
and context-driven, leading to better
forecasting and disaster preparedness.

Spatial justice (fair
geography)

Uneven siting and location of
digital infrastructure, as well as
uneven access to data.

Providing access to digital infrastructure
and resources as a common pool and open
resource rather than a restricted product,
improving accessibility for all stakeholders.

Climate models become spatially effective
across varying granularities. It enables
better mitigation and adaptation planning
in vulnerable areas, as well as improved
disaster resilience.
Collective intelligence gets strengthened
and streamlined due to the shrinkage of the
global digital divide.
Cities are planned with greater emission
reduction potential. Social structures are
made more resilient through diverse and
inclusive people-centric datasets, leading to
the efficient use of collective intelligence.
Better energy management and renewable
energy forecasting across geographical
scales will lead to improved accountability
for emission reduction actions.

Source: Authors’ synthesis from refs. 10–12,63–73.
The social justice characteristics and references in this table is based in work comparing data justice with energy justice done originally by Max Lacey-Barnacle
and Adrian Smith as part of the Responsive Organizing for Low Emission Societies (Economic and Social Research Council Grant Agreement No. ES/V01403X/
1), and which we have adapted and modified for this paper.
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