Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reward system activation improves recovery from acute myocardial infarction

Abstract

Psychological processes have a crucial role in the recovery from acute myocardial infarction (AMI), yet the underlying mechanisms of these effects remain elusive. Here we demonstrate the impact of the reward system, a brain network associated with motivation and positive expectations, on the clinical outcomes of AMI in mice. Chemogenetic activation of dopaminergic neurons in the reward system improved the remodeling processes and vascularization after AMI, leading to enhanced cardiac performance compared to controls. These effects were mediated through several physiological mechanisms, including alterations in immune activity and reduced adrenergic input to the liver. We further demonstrate an anatomical connection between the reward system and the liver, functionally manifested by altered transcription of complement component 3, which in turn affects vascularization and recovery from AMI. These findings establish a causal connection between a motivational brain network and recovery from AMI, introducing potential therapeutic avenues for intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effects of VTA activation on left-ventricular function after AMI.
Fig. 2: Effects of VTA activation on scar tissue formation and the immune response.
Fig. 3: Cardiac proteomic analysis.
Fig. 4: VTA neurons are anatomically connected to the liver.
Fig. 5: C3 involvement in the beneficial effects of VTA activation on cardiac recovery.

Similar content being viewed by others

Data availability

The source data generated and analyzed during the current study are included in the main article and associated files or available in the figshare repository (https://figshare.com/projects/Reward_System_Activation_Improves_Recovery_from_Acute_Myocardial_Infarction/203841)78. The MS proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD043448. Other information is available from the corresponding authors upon reasonable request. The UniProt database, available at https://www.uniprot.org/, facilitated the interpretation of the proteomics data by providing insights into protein functions and their primary cell synthesis. Source data are provided with this paper.

References

  1. Khan, M. A. et al. Global epidemiology of ischemic heart disease: results from the Global Burden of Disease Study. Cureus 12, 9349 (2020).

    Google Scholar 

  2. Virani, S. S. et al. Heart disease and stroke statistics—2021 update: a report from the American Heart Association. Circulation 143, e254–e743 (2021).

    Article  PubMed  Google Scholar 

  3. Swirski, F. K. & Nahrendorf, M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 18, 733–744 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Ahmed, M. S., Jadhav, A. B., Hassan, A. & Meng, Q. H. Acute phase reactants as novel predictors of cardiovascular disease. ISRN Inflamm. 2012, 953461 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arif, M. et al. Integrative transcriptomic analysis of tissue-specific metabolic crosstalk after myocardial infarction. eLife 10, e66921 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaplan, A. et al. Cerebral blood flow alteration following acute myocardial infarction in mice. Biosci. Rep. 38, BSR20180382 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sutton, M. G. & Sharpe, N. Left ventricular remodeling after myocardial infarction pathophysiology and therapy clinical cardiology: new frontiers. Circulation 101, 2981–2988 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Carney, R. M. & Freedland, K. E. Depression and coronary heart disease. Nat. Rev. Cardiol. 14, 145–155 (2017).

    Article  PubMed  Google Scholar 

  9. Dhar, A. K. & Barton, D. A. Depression and the link with cardiovascular disease. Front. Psychiatry 7, 33 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nemeroff, C. B. & Goldschmidt-Clermont, P. J. Heartache and heartbreak—the link between depression and cardiovascular disease. Nat. Rev. Cardiol. 9, 526–539 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Meijer, A. et al. Prognostic association of depression following myocardial infarction with mortality and cardiovascular events: a meta-analysis of 25 years of research. Gen. Hosp. Psychiatry 33, 203–216 (2011).

    Article  PubMed  Google Scholar 

  12. Rozanski, A., Bavishi, C., Kubzansky, L. D. & Cohen, R. Association of optimism with cardiovascular events and all-cause mortality: a systematic review and meta-analysis. JAMA Netw. Open 2, e1912200 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Silverman, A. L., Herzog, A. A. & Silverman, D. I. Hearts and minds: stress, anxiety, and depression: unsung risk factors for cardiovascular disease. Cardiol. Rev. 27, 202–207 (2019).

    Article  PubMed  Google Scholar 

  14. van Melle, J. P. et al. Prognostic association of depression following myocardial infarction with mortality and cardiovascular events: a meta-analysis. Psychosom. Med. 66, 814–822 (2004).

    Article  PubMed  Google Scholar 

  15. Everson-Rose, S. A. & Lewis, T. T. Psychosocial factors and cardiovascular diseases. Annu. Rev. Public Health 26, 469–500 (2005).

    Article  PubMed  Google Scholar 

  16. Bremner, J. D. et al. Brain mechanisms of stress and depression in coronary artery disease. J. Psychiatr. Res. 109, 76–88 (2019).

    Article  PubMed  Google Scholar 

  17. Hu, H. Reward and aversion. Annu. Rev. Neurosci. 39, 297–324 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ben-Shaanan, T. L. et al. Activation of the reward system boosts innate and adaptive immunity. Nat. Med. 22, 940–944 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Ben-Shaanan, T. L. et al. Modulation of anti-tumor immunity by the brain’s reward system. Nat. Commun. 9, 2723 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kayama, T., Ikegaya, Y. & Sasaki, T. Phasic firing of dopaminergic neurons in the ventral tegmental area triggers peripheral immune responses. Sci. Rep. 12, 1447 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu, X.-R. et al. Activation of dopaminergic VTA inputs to the mPFC ameliorates chronic stress-induced breast tumor progression. CNS Neurosci. Ther. 27, 206–219 (2021).

    Article  PubMed  Google Scholar 

  23. Prabhu, S. D. & Frangogiannis, N. G. The biological basis for cardiac repair after myocardial infarction. Circ. Res. 119, 91–112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reichert, K. et al. Murine left anterior descending (LAD) coronary artery ligation: an improved and simplified model for myocardial infarction. J. Vis. Exp. 2017, 55353 (2017).

    Google Scholar 

  25. Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lang, C. I. et al. Expedient assessment of post-infarct remodeling by native cardiac magnetic resonance imaging in mice. Sci. Rep. 11, 11625 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang, F. et al. Myocardial infarction and cardiac remodelling in mice. Exp. Physiol. 87, 547–555 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Dick, S. A. et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 20, 29–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Ziegler, K. A. et al. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice. Cardiovasc. Res. 114, 291–299 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Baik, J-H. Stress and the dopaminergic reward system. Exp. Mol. Med. 52, 1879–1890 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Keren, H. et al. Reward processing in depression: a conceptual and meta-analytic review across fMRI and EEG studies. Am. J. Psychiatry 175, 1111–1120 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ng, T. H., Alloy, L. B. & Smith, D. V. Meta-analysis of reward processing in major depressive disorder reveals distinct abnormalities within the reward circuit. Transl. Psychiatry 9, 293 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Takagawa, J. et al. Myocardial infarct size measurement in the mouse chronic infarction model: comparison of area- and length-based approaches. J. Appl. Physiol. 102, 2104–2111 (2007).

    Article  PubMed  Google Scholar 

  34. Sun, K., Li, Y.-Y. & Jin, J. A double-edged sword of immuno-microenvironment in cardiac homeostasis and injury repair. Signal Transduct. Target Ther. 6, 79 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vagnozzi, R. J. et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature 577, 405–409 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Bajpai, G. et al. Tissue resident CCR2 and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res. 124, 263–278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hofmann, U. et al. Molecular cardiology activation of CD4 T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation 125, 1652–1663 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Santos-Zas, I. et al. Cytotoxic CD8+ T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling. Nat. Commun. 12, 1483 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Simões, F. C. et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat. Commun. 11, 600 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Forte, E. et al. Dynamic interstitial cell response during myocardial infarction predicts resilience to rupture in genetically diverse mice. Cell Rep. 30, 3149–3163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khalil, H. et al. Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J. Clin. Invest. 127, 3770–3783 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tøllefsen, I. M. et al. High levels of interleukin-6 are associated with final infarct size and adverse clinical events in patients with STEMI. Open Heart 8, e001869 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Anzai, T. Inflammatory mechanisms of cardiovascular remodeling. Circ. J. 82, 629–635 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Frangogiannis, N. G. Transforming growth factor-β in myocardial disease. Nat. Rev. Cardiol. 19, 435–455 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Broch, K. et al. Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 77, 1845–1855 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Weirather, J. et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 115, 55–67 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Dunkelberger, J. R. & Song, W.-C. Complement and its role in innate and adaptive immune responses. Cell Res. 20, 34–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. West, E. E. & Kemper, C. Complosome—the intracellular complement system. Nat. Rev. Nephrol. 19, 426–439 (2023).

    Article  PubMed  Google Scholar 

  50. Zhang, C. et al. Complement C3a signaling facilitates skeletal muscle regeneration by regulating monocyte function and trafficking. Nat. Commun. 8, 2078 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Strey, C. W. et al. The proinflammatory mediators C3a and C5a are essential for liver regeneration. J. Exp. Med. 198, 913–923 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wysoczynski, M. et al. Complement component 3 is necessary to preserve myocardium and myocardial function in chronic myocardial infarction. Stem Cells 32, 2502–2515 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Jeon, H. et al. Activation of the complement system in an osteosarcoma cell line promotes angiogenesis through enhanced production of growth factors. Sci. Rep. 8, 5415 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Markiewski, M., Daugherity, E., Karbowniczek, M. & Reese, B. The role of complement in angiogenesis. Antibodies 9, 67 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Roumenina, L. T., Daugan, M. V., Petitprez, F., Sautès-Fridman, C. & Fridman, W. H. Context-dependent roles of complement in cancer. Nat. Rev. Cancer 19, 698–715 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Lubbers, R., van Essen, M. F., van Kooten, C. & Trouw, L. A. Production of complement components by cells of the immune system. Clin. Exp. Immunol. 188, 183–194 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nielsen, J. B. et al. Loss-of-function genomic variants highlight potential therapeutic targets for cardiovascular disease. Nat. Commun. 11, 6417 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, S. Q. et al. Cardioprotective proteins upregulated in the liver in response to experimental myocardial ischemia. Am. J. Physiol. Heart Circ. Physiol. 303, H1446–H1458 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Cao, Y. et al. Liver-heart cross-talk mediated by coagulation factor XI protects against heart failure. Science 377, 1399–1406 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. La Fleur, S. E., Kalsbeek, A., Wortel, J. & Buijs, R. M. Polysynaptic neural pathways between the hypothalamus, including the suprachiasmatic nucleus, and the liver. Brain Res. 871, 50–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Buijs, R. M. et al. The suprachiasmatic nucleus balances sympathetic and parasympathetic output to peripheral organs through separate preautonomic neurons. J. Comp. Neurol. 464, 36–48 (2003).

    Article  PubMed  Google Scholar 

  62. Stanley, S. et al. Identification of neuronal subpopulations that project from hypothalamus to both liver and adipose tissue polysynaptically. Proc. Natl Acad. Sci. USA 107, 7024–7029 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guyenet, P. G. & Stornetta, R. L. Rostral ventrolateral medulla, retropontine region and autonomic regulations. Auton. Neurosci. 237, 102922 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Wu, X., Reboll, M. R., Korf-Klingebiel, M. & Wollert, K. C. Angiogenesis after acute myocardial infarction. Cardiovasc. Res. 117, 1257–1273 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Arnaoutova, I. & Kleinman, H. K. In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat. Protoc. 5, 628–635 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Wang, J. et al. Using an in vitro xenoantibody-mediated complement-dependent cytotoxicity model to evaluate the complement inhibitory activity of the peptidic C3 inhibitor Cp40. Clin. Immunol. 162, 37–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Abbate, A. et al. Interleukin-1 blockade inhibits the acute inflammatory response in patients with ST-segment-elevation myocardial infarction. J. Am. Heart Assoc. 9, e014941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Carnevale, D. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nat. Rev. Cardiol. 19, 379–394 (2022).

    Article  PubMed  Google Scholar 

  70. Dantzer, R. Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol. Rev. 98, 477–504 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Sternberg, E. M. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat. Rev. Immunol. 6, 318–328 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Frey, A. et al. Complement C3c as a biomarker in heart failure. Mediators Inflamm. 2013, 716902 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fang, Z. et al. The role of complement C3 in the outcome of regional myocardial infarction. Biochem. Biophys. Rep. 33, 101434 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ito, S. et al. The complement C3-complement factor D-C3a receptor signalling axis regulates cardiac remodelling in right ventricular failure. Nat. Commun. 13, 5409 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Heiberg, E. et al. Design and validation of Segment—freely available software for cardiovascular image analysis. BMC Med. Imaging 10, 1 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Azulay-Debby, H. Reward system activation improves recovery from acute myocardial infarction. figshare https://figshare.com/projects/Reward_System_Activation_Improves_Recovery_from_Acute_Myocardial_Infarction/203841 (2024).

Download references

Acknowledgements

We thank P. Hasson from the Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, O. Kobiler from the School of Medicine, Tel Aviv University, B. Englender and A. Kavushansky from the Rappaport Faculty of Medicine, Technion-Israel Institute of Technology for assistance with equipment, materials and mice. We thank Y. Kehat from the Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and J. Leor from the Sheba Medical Center, Tel‑Hashomer, Israel for their help in the study design. We thank the Rolls and Gepstein laboratory members and especially I. Huber, R. Yifa, D. Farfara, T. Koren, H. Hajjo, M. Amar, T. Bergman, T. Harran, I. Zalayat, M. Simons, M. Schiller and T. L. Ben-Shaanan for their help and discussion. We thank D. Carnevale from the Sapienza University of Rome, Italy, for her insightful comments. We thank S. Schwarzbaum for input and manuscript editing. L.G. is supported by the European Research Council (ERC) (2017-COG-773181-iPS-ChOp-AF). A.R. is supported by the Howard Hughes Medical Institute HHMI-Wellcome Trust, the Israel Science Foundation 1862/15, ERC 758952 and the Miriam and Sheldon G. Adelson Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

H.H., A.R. and L.G. developed the concept, designed the experiments and wrote the paper. H.H. led all the in vivo and in vitro experiments, supported by E.A., M.K. and M.G. H.H. collected and analyzed the data with the assistance of Y.A., S. Melamed and S. Merom. T.Z. performed the proteomic analysis. M.R., N.B. and H.A.-D. provided technical support.

Corresponding authors

Correspondence to L. Gepstein or A. Rolls.

Ethics declarations

Competing interests

We have filed a US Non-Provisional Patent jointly with the Technion and Rambam Medical Center (Ehrlich ref. 99473; TRDF ref. 2021095-02, Rambam ref. 9178). The named inventors are A.R., L.G., H.H. and H.A.-D. The proteomic analysis results detailed in the paper are part of the subject matter covered in the patent application. The other authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Aldons Lusis, Filip Swirski and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Effects of VTA activation on physiological parameters.

a, Representative composite micrograph demonstrating mCherry+ expression exclusively in the VTA and exclusively in TH+ cells, following DEADD injection. Scale bar, 1000µm. b, Quantification of TH+ cells in the right VTA area: 4 days post-AMI and daily CNO injection, 15 days post AMI and daily CNO injection and sham-AMI operated mice following 15 days of daily CNO injection (two-way ANOVA, followed by Tukey’s test; n=30). c, 15-day survival analysis of mice of control and VTA-Gq mice separated by sex using the log-rank test. d, LVEF of male mice on days 1 and 14 post-AMI. Comparison shows no difference between the groups on day 1 and on day 14 (two-way ANOVA mixed model, followed by Tukey’s test; n=16). e, LVEF of female mice on days 1 and 14 post-AMI. Comparison shows no difference between the groups on day 1 and on day 14 (two-way ANOVA mixed model, followed by Tukey’s test; n=14). f, Body weight of mice on day 1 and day 15 (two-way ANOVA mixed model with Benjamin, Krieger, and Yekutieli correction; n=24). g, Distance moved by mice within 30 minutes following CNO administration (two-tailed unpaired t-test; n=13). h, Time spent moving by mice within 30 minutes following CNO administration (two-tailed unpaired t-test; n=13). i, Lung weight of VTA-Gq and control mice, normalized either to body weight or to tibia length (two-tailed unpaired t-test; n=19). j, Heart weight, normalized either to body weight or to tibia length (two-tailed unpaired t-test; n=18). Data from individual mice are shown and values are represented as mean ± SEM. TH, tyrosine hydroxylase; VTA, Ventral tegmental area; SNC, substantia nigra pars compacta.

Source data

Extended Data Fig. 2 Effects of VTA activation on sham-AMI operated mice.

a, LVEF on postoperative days 1 and 14. Comparison shows no difference between groups on day 1 and day 14 (two-way ANOVA mixed model, followed by Tukey’s test; n=19). b, End-systolic volume on postoperative days 1 and 14. Comparison shows no difference between groups on day 1and day 14 (two-way ANOVA mixed model, followed by Tukey’s test; n=19). c, End-diastolic volume on postoperative days 1 and 14. Comparison shows no difference between the groups on day 1 and day 14 (two-way ANOVA mixed model, followed by Tukey’s test; n=19). d, Stroke volume on postoperative days 1 and 14. Comparison shows no difference between the groups on day 1 and day 14 (two-way ANOVA mixed model, followed by Tukey’s test; n=19). e, Masson trichrome staining of cardiac tissues of control and VTA-Gq mice, 15 days following sham-operation. Scale bar, 1000µm. f, Fibrosis area percentage in VTA-Gq and control mice (two-tailed unpaired t-test; n=8). g, Quantification of the number of vWF+ lumens (two-tailed unpaired t-test; n=10). h, Quantification of the number of α-SMA+vWF+ lumens (two-tailed unpaired t-test; n=10). i, Quantification of number of CD45+ cells from DAPI+ cells in sham-operated mice (two-tailed unpaired t-test; n=10). Data from individual mice are shown and values are represented as mean ± SEM. vWF, Von Willebrand factor; α-SMA, alpha smooth muscle actin.

Source data

Extended Data Fig. 3 Effects of VTA inhibition on cardiac structure.

a, Percentage of c-Fos+ cells from mCherry+ TH+ cells in mice following AMI and 15 days of daily CNO injection (control vs, VTA-Gq p<0.0001, control vs. VTA-Gi p=0.04; one-way ANOVA, followed by Tukey’s test; n=15). b, Midline length infract size analysis (two-tailed unpaired t-test; n=18). c, Masson trichrome staining of cardiac tissues of control and VTA-Gi mice 15 days following AMI. Scale bar, 1000µm. d, Fibrosis area percentage of control and VTA-Gi mice (two-tailed unpaired t-test; n=8). e, Quantification of the number of vWF+ lumens (two-tailed unpaired t-test; n=8). f, Quantification of the number of α-SMA+vWF+ lumens (two-tailed unpaired t-test; n=8). Data from individual mice are shown and values are represented as mean ± SEM. TH, tyrosine hydroxylase; vWF, Von Willebrand factor; α-SMA, alpha smooth muscle actin.

Source data

Extended Data Fig. 4 VTA activation following AMI does not affect bone-marrow.

a, Total count of CD45+ cells in bone marrow extracts isolated from the left femur and tibia (n=16). b, Percentage of CD45+ki-67+ cells in the bone marrow (n=16). c, ki-67+ Mean Fluorescence Intensity of CD45+ cells in the bone marrow (n=16). d, Percentage of Lin-Sca-1+c-kit+ cells in the bone marrow (n=16). e, Percentage of Lin-Sca-1+c-kit+CD34+ cells in the bone marrow (n=16). f, Percentage of Lin-Sca-1+c-kit+CD34+CD127+ cells in the bone marrow (n=16). g, Percentage of Lin-Sca-1-c-kit+ cells in the bone marrow (n=16). h, Percentage of Lin-Sca-1-c-kit+CD34+ cells in the bone marrow (n=16). i, Percentage of CD11b+Ly6G+ cells in the bone marrow (n=16). j, Percentage of CD11b+Ly6C+ cells in the bone marrow (n=16). k, Total count of CD45+ cells in 1ml of blood (n=22). Two-tailed unpaired t-test analysis was used; data from individual mice are shown, and values are represented as mean ± SEM.

Source data

Extended Data Fig. 5 Effects of VTA activation on cell condition.

a, Representative images of immunohistochemical staining of cardiac tissues of control and VTA-Gq mice on day 4 post-AMI for CD68, CD80, and CD206. Scale bar, 100µm. b, Percentage of CD80+ from CD68+ cells (two-tailed unpaired t-test; n=10). c, Percentage of CD206+ out of CD68+ cells (] two-tailed unpaired t-test with Welch’s correction; n=10). d, Representative images of CD4 immunohistochemical staining of cardiac tissues of control and VTA-Gq mice on day 4 post-AMI. Scale bar, 100µm. e, Quantification of CD4+ cells (two-tailed unpaired t-test with Welch’s correction; n=10). f, Percentage of CD4+ from CD45+ cells (two-tailed unpaired t-test with Welch’s correction; n=10). g, Representative images of immunohistochemical staining of cardiac tissues of control and VTA-Gq mice on day 4 post-AMI for CD8. Scale bar, 100µm. h, Quantification of CD8+ cells (two-tailed unpaired t-test with Welch’s correction; n=10), i, Percentage of CD8+ from CD45+ cells (two-tailed unpaired t-test with Welch’s correction; n=10). j, Representative images of TUNEL staining of cardiac tissues of control and VTA-Gq mice on day 4 post-AMI, arrows indicate TUNEL+ cells. k, Quantification of TUNEL+ cells from DAPI+ cells (two-tailed unpaired t-test; n=9). l, Quantification of TUNEL+ cells out of Troponin I+ cells (two-tailed unpaired t-test; n=9). Data from individual mice are shown and values are represented as mean ± SEM.

Source data

Extended Data Fig. 6 VTA neuronal tracing.

a, Representative micrographs demonstrating neurons expressing PRV in the liver. Scale bar, 100 µm; b, celiac ganglion. Scale bar, 1000 µm; and c, spinal cord. Scale bar, 100 µm. d, Representative composite micrograph of the brainstem nuclei demonstrating PRV+ cells following liver injection. Scale bar, 1000 µm. e, Representative composite micrograph of the brain VTA demonstrating PRV+ cells following spleen injection. Scale bar, 1000 µm. f, Relative spleen NA levels, day 4 post AMI (two-tailed unpaired t-test; n=11). Data from individual mice are shown, and values are represented as mean ± SEM. PRV, pseudorabies; TH, tyrosine hydroxylase; NA, noradrenaline; DMV, dorsal motor nucleus of the vagus; NTS, nucleus tractus solitarius; RVLM, rostral ventrolateral medulla; LC, locus coeruleus.

Source data

Extended Data Fig. 7 C3 is essential for the beneficial effect of VTA activation.

a, Representative images of tube formation assay of endothelial cells 3 hours after treatment with liver protein extract, plasma, and C3 inhibitor (Cp40). b, Total segment area; c, Total branching area; and d, Branching interval. Measurements were quantified using an image analysis tool (Multiple unpaired two-sided t-tests with Benjamin, Krieger, and Yekutieli correction; n=20). e, Representative short-axis ultrasound images of mice following LAD ligation on day 1 and day 14. f, Systolic left ventricular internal diameter on postoperative days 1 and 14 in control and VTA-Gq mice treated with saline vs. Cp40. Comparisons show no difference between groups on day 1 and a significant difference on day 14 (two-way ANOVA mixed model, followed by Tukey’s test; n=20). g, Diastolic left ventricular internal diameter on postoperative days 1 and 14 in control and VTA-Gq mice treated with saline vs. Cp40. Comparisons show no difference between groups on day 1 and a significant difference on day 14 (two-way ANOVA mixed model, followed by Tukey’s test; n=20). h, Quantification of the number of vWF+ lumens in control and VTA-Gq mice treated with Cp40 (two-tailed unpaired t-test; n=9). i, Quantification of the number of α-SMA+vWF+ lumens in control and VTA-Gq mice treated with Cp40 (two-tailed unpaired t-test; n=9). Data from individual mice are shown and values are represented as mean ± SEM.

Source data

Extended Data Table 1 Secreted proteins primarily synthesized by the liver, whose levels were upregulated in the proteomic analysis

Supplementary information

Supplementary Fig. 1

Flow cytometry gating strategy.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data and raw proteomics data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haykin, H., Avishai, E., Krot, M. et al. Reward system activation improves recovery from acute myocardial infarction. Nat Cardiovasc Res 3, 841–856 (2024). https://doi.org/10.1038/s44161-024-00491-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-024-00491-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing