Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Challenges and perspectives of heart repair with pluripotent stem cell-derived cardiomyocytes

Abstract

Here we aim at providing a concise but comprehensive overview of the perspectives and challenges of heart repair with pluripotent stem cell-derived cardiomyocytes. This Review comes at a time when consensus has been reached about the lack of relevant proliferative capacity of adult mammalian cardiomyocytes and the lack of new heart muscle formation with autologous cell sources. While alternatives to cell-based approaches will be shortly summarized, the focus lies on pluripotent stem cell-derived cardiomyocyte repair, which entered first clinical trials just 2 years ago. In the view of the authors, these early trials are important but have to be viewed as early proof-of-concept trials in humans that will hopefully provide first answers on feasibility, safety and the survival of allogeneic pluripotent stem cell-derived cardiomyocyte in the human heart. Better approaches have to be developed to make this approach clinically applicable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Engrafted cardiomyocytes electrically couple and actively support heart function.

Similar content being viewed by others

References

  1. Nabel, E. G. & Braunwald, E. A tale of coronary artery disease and myocardial infarction. N. Engl. J. Med. 366, 54–63 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. McDonagh, T. A. et al. Group ESCSD. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42, 3599–3726 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Goldenberg, B. Ueber Atrophie und Hypertrophie der Muskelfasern des Herzens. Arch. Pathol. Anat. Physiol. Klin. Med. 103, 88–130 (1886).

    Article  Google Scholar 

  4. Linzbach, A. J. Heart failure from the point of view of quantitative anatomy. Am. J. Cardiol. 5, 370–382 (1960).

    Article  CAS  PubMed  Google Scholar 

  5. Linzbach, A. J. Hypertrophy, hyperplasia and structural dilatation of the human heart. Adv. Cardiol. 18, 1–14 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. Soonpaa, M. H., Kim, K. K., Pajak, L., Franklin, M. & Field, L. J. Cardiomyocyte DNA synthesis and binucleation during murine development. Am. J. Physiol. 271, H2183–H2189 (1996).

    CAS  PubMed  Google Scholar 

  7. Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Olivetti, G. et al. Apoptosis in the failing human heart. N. Engl. J. Med. 336, 1131–1141 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Quaini, F. et al. Chimerism of the transplanted heart. N. Engl. J. Med. 346, 5–15 (2002).

    Article  PubMed  Google Scholar 

  10. Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Jeyaraman, M. M. et al. Autologous bone marrow stem cell therapy in patients with st-elevation myocardial infarction: a systematic review and meta-analysis. Can. J. Cardiol. 33, 1611–1623 (2017).

    Article  PubMed  Google Scholar 

  12. Blau, H. M., Brazelton, T. R. & Weimann, J. M. The evolving concept of a stem cell: entity or function? Cell 105, 829–841 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Dimmeler, S., Zeiher, A. M. & Schneider, M. D. Unchain my heart: the scientific foundations of cardiac repair. J. Clin. Invest. 115, 572–583 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Beltrami, A. P. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763–776 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Oh, H. et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. USA 100, 12313–12318 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laugwitz, K. L. et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature. 433, 647–653 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Planat-Benard, V. et al. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ. Res. 94, 223–229 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Condorelli, G. et al. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: Implications for myocardium regeneration. Proc. Natl Acad. Sci. USA 98, 10733–10738 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, Y. et al. Genetic lineage tracing of nonmyocyte population by dual recombinases. Circulation 138, 793–805 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Murry, C. E. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664–668 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Nygren, J. M. et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10, 494–501 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Laflamme, M. A., Myerson, D., Saffitz, J. E. & Murry, C. E. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ. Res. 90, 634–640 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Hocht-Zeisberg, E. et al. Cellular repopulation of myocardial infarction in patients with sex-mismatched heart transplantation. Eur. Heart J. 25, 749–758 (2004).

    Article  PubMed  Google Scholar 

  24. Partners HealthCare and Brigham and Women’s Hospital agree to pay $10 million to resolve research fraud allegations. US Attorney’s Office District of Massachusetts https://www.justice.gov/usao-ma/pr/partners-healthcare-and-brigham-and-women-s-hospital-agree-pay-10-million-resolve (2017).

  25. Eschenhagen, T. et al. Cardiomyocyte regeneration: a consensus statement. Circulation 136, 680–686 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Senyo, S. E. et al. Mammalian heart renewal by pre-existing cardiomyocytes. Nature 493, 433–436 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Vagnozzi, R. J. et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature 577, 405–409 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Sadek, H. & Olson, E. N. Toward the goal of human heart regeneration. Cell Stem Cell 26, 7–16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giacca, M. Fulfilling the promise of rna therapies for cardiac repair and regeneration. Stem Cells Transl. Med. 12, 527–535 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yamada, Y., Sadahiro, T. & Ieda, M. Development of direct cardiac reprogramming for clinical applications. J. Mol. Cell Cardiol. 178, 1–8 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Soonpaa, M. H., Koh, G. Y., Klug, M. G. & Field, L. J. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264, 98–101 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Kehat, I. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407–414 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kattman, S. J. et al. Stage-specific optimization of activin/nodal and bmp signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 8, 228–240 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Burridge, P. W. & Zambidis, E. T. Highly efficient directed differentiation of human induced pluripotent stem cells into cardiomyocytes. Methods Mol. Biol. 997, 149–161 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Breckwoldt, K. et al. Differentiation of cardiomyocytes and generation of human engineered heart tissue. Nat. Protoc. 12, 1177–1197 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Halloin, C., Coffee, M., Manstein, F. & Zweigerdt, R. Production of cardiomyocytes from human pluripotent stem cells by bioreactor technologies. Methods Mol. Biol. 1994, 55–70 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Buikema, J. W. et al. Wnt activation and reduced cell–cell contact synergistically induce massive expansion of functional human iPSC-derived cardiomyocytes. Cell Stem Cell 27, 50–63 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eschenhagen, T., Ridders, K. & Weinberger, F. How to repair a broken heart with pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol. 163, 106–117 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Weinberger, F. & Eschenhagen, T. Cardiac regeneration: new hope for an old dream. Annu. Rev. Physiol. 83, 59–81 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Shiba, Y. et al. Allogeneic transplantation of iPS cell-derived cardiomyocytes regenerates primate hearts. Nature 538, 388–391 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Chong, J. J. et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510, 273–277 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu, Y. W. et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat. Biotechnol. 36, 597–605 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Querdel, E. et al. Human engineered heart tissue patches remuscularize the injured heart in a dose-dependent manner. Circulation 143, 1991–2006 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Riegler, J. et al. Human engineered heart muscles engraft and survive long term in a rodent myocardial infarction model. Circ. Res. 117, 720–730 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015–1024 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Weinberger, F. et al. Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Sci. Transl. Med. 8, 363ra148 (2016).

    Article  PubMed  Google Scholar 

  49. Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–1575 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Lou, X. et al. N-cadherin overexpression enhances the reparative potency of human-induced pluripotent stem cell-derived cardiac myocytes in infarcted mouse hearts. Cardiovasc. Res. 116, 671–685 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Kobayashi, H. et al. Intracoronary transplantation of pluripotent stem cell-derived cardiomyocytes: inefficient procedure for cardiac regeneration. J. Mol. Cell Cardiol. 174, 77–87 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Li, J. et al. All roads lead to rome (the heart): cell retention and outcomes from various delivery routes of cell therapy products to the heart. J. Am. Heart Assoc. 10, e020402 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dow, J., Simkhovich, B. Z., Kedes, L. & Kloner, R. A. Washout of transplanted cells from the heart: a potential new hurdle for cell transplantation therapy. Cardiovasc. Res. 67, 301–307 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Harris, N. R. et al. The ebb and flow of cardiac lymphatics: a tidal wave of new discoveries. Physiol. Rev. 103, 391–432 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Kawaguchi, S. et al. Intramyocardial transplantation of human ips cell-derived cardiac spheroids improves cardiac function in heart failure animals. JACC Basic Transl. Sci. 6, 239–254 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  56. El-Nachef, D. et al. Engrafted human induced pluripotent stem cell-derived cardiomyocytes undergo clonal expansion in vivo. Circulation 143, 1635–1638 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Laflamme, M. A. et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am. J. Pathol. 167, 663–671 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fernandes, S. et al. Human embryonic stem cell-derived cardiomyocytes engraft but do not alter cardiac remodeling after chronic infarction in rats. J. Mol. Cell Cardiol. 49, 941–949 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Eschenhagen, T., Mummery, C. & Knollmann, B. C. Modelling sarcomeric cardiomyopathies in the dish: from human heart samples to iPSC cardiomyocytes. Cardiovasc. Res. 105, 424–438 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mitsutake, Y. et al. Improvement of local cell delivery using helix transendocardial delivery catheter in a porcine heart. Int. Heart J. 58, 435–440 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Nakamura, K. et al. Pharmacologic therapy for engraftment arrhythmia induced by transplantation of human cardiomyocytes. Stem Cell Rep. 16, 2473–2487 (2021).

    Article  CAS  Google Scholar 

  62. Nakajima, K. et al. Gelatin hydrogel enhances the engraftment of transplanted cardiomyocytes and angiogenesis to ameliorate cardiac function after myocardial infarction. PLoS ONE 10, e0133308 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Furuta, A. et al. Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo. Circ. Res. 98, 705–712 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Kawamura, M. et al. Enhanced survival of transplanted human induced pluripotent stem cell-derived cardiomyocytes by the combination of cell sheets with the pedicled omental flap technique in a porcine heart. Circulation 128, S87–S94 (2013).

    Article  PubMed  Google Scholar 

  65. Zimmermann, W. H. et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med. 12, 452–458 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Zhu, W., Zhao, M., Mattapally, S., Chen, S. & Zhang, J. Ccnd2 overexpression enhances the regenerative potency of human induced pluripotent stem cell-derived cardiomyocytes: remuscularization of injured ventricle. Circ. Res. 122, 88–96 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Zhao, M. et al. Cyclin d2 overexpression enhances the efficacy of human induced pluripotent stem cell-derived cardiomyocytes for myocardial repair in a swine model of myocardial infarction. Circulation 144, 210–228 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gabisonia, K. et al. Microrna therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569, 418–422 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gerbin, K. A., Mitzelfelt, K. A., Guan, X., Martinson, A. M. & Murry, C. E. Delta-1 functionalized hydrogel promotes hESC-cardiomyocyte graft proliferation and maintains heart function post-injury. Mol. Ther. Methods Clin. Dev. 17, 986–998 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shimizu, T. et al. Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng. 12, 499–507 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. von Bibra, C. et al. Human engineered heart tissue transplantation in a guinea pig chronic injury model. J. Mol. Cell Cardiol. 166, 1–10 (2022).

    Article  Google Scholar 

  72. Munarin, F., Kant, R. J., Rupert, C. E., Khoo, A. & Coulombe, K. L. K. Engineered human myocardium with local release of angiogenic proteins improves vascularization and cardiac function in injured rat hearts. Biomaterials 251, 120033 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ai, X. et al. Transient secretion of VEGF protein from transplanted hiPSC-CMs enhances engraftment and improves rat heart function post MI. Mol. Ther. 31, 211–229 (2023).

    Article  CAS  PubMed  Google Scholar 

  74. Cheng, Y. Y. et al. Metabolic changes associated with cardiomyocyte dedifferentiation enable adult mammalian cardiac regeneration. Circulation 146, 1950–1967 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sun, X. et al. Transplanted microvessels improve pluripotent stem cell-derived cardiomyocyte engraftment and cardiac function after infarction in rats. Sci. Transl. Med. 12, eaax2992 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. von Bibra, C. et al. Immature human engineered heart tissues engraft in a guinea pig chronic injury model. Dis. Model Mech. 16, 049834 (2023).

    Google Scholar 

  77. Dhahri, W. et al. In vitro matured human pluripotent stem cell-derived cardiomyocytes form grafts with enhanced structure and function in injured hearts. Circulation 145, 1412–1426 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Poch, C. M. et al. Migratory and anti-fibrotic programmes define the regenerative potential of human cardiac progenitors. Nat. Cell Biol. 24, 659–671 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ottaviani, D., Ter Huurne, M., Elliott, D. A., Bellin, M. & Mummery, C. L. Maturing differentiated human pluripotent stem cells in vitro: methods and challenges. Development https://doi.org/10.1242/dev.201103 (2023).

  80. Shiba, Y. et al. Electrical integration of human embryonic stem cell-derived cardiomyocytes in a guinea pig chronic infarct model. J. Cardiovasc. Pharmacol. Ther. 19, 368–381 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gao, L. et al. Large cardiac muscle patches engineered from human induced-pluripotent stem cell-derived cardiac cells improve recovery from myocardial infarction in swine. Circulation 137, 1712–1730 (2018).

    Article  PubMed  Google Scholar 

  82. Zhu, K. et al. Lack of remuscularization following transplantation of human embryonic stem cell-derived cardiovascular progenitor cells in infarcted nonhuman primates. Circ. Res. 122, 958–969 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Shiba, Y. et al. Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489, 322–325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shadrin, I. Y. et al. Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat. Commun. 8, 1825 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Studemann, T. et al. Contractile force of transplanted cardiomyocytes actively supports heart function after injury. Circulation 146, 1159–1169 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pecha, S. et al. Human iPS cell-derived engineered heart tissue does not affect ventricular arrhythmias in a guinea pig cryo-injury model. Sci. Rep. 9, 9831 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Romagnuolo, R. et al. Human embryonic stem cell-derived cardiomyocytes regenerate the infarcted pig heart but induce ventricular tachyarrhythmias. Stem Cell Rep. 12, 967–981 (2019).

    Article  Google Scholar 

  88. Selvakumar, D. et al. Cellular heterogeneity of pluripotent stem cell-derived cardiomyocyte grafts is mechanistically linked to treatable arrhythmias. Nat. Cardiovasc. Res. 3, 145–165 (2024).

    Article  Google Scholar 

  89. Caspi, O. et al. Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J. Am. Coll. Cardiol. 50, 1884–1893 (2007).

    Article  PubMed  Google Scholar 

  90. Blin, G. et al. A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J. Clin. Invest. 120, 1125–1139 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Itakura, G. et al. Fail-safe system against potential tumorigenicity after transplantation of ipsc derivatives. Stem Cell Rep. 8, 673–684 (2017).

    Article  CAS  Google Scholar 

  92. de Luzy, I. R. et al. Human stem cells harboring a suicide gene improve the safety and standardisation of neural transplants in parkinsonian rats. Nat. Commun. 12, 3275 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Meissner, T. B., Schulze, H. S. & Dale, S. M. Immune editing: overcoming immune barriers in stem cell transplantation. Curr. Stem Cell Rep. 8, 206–218 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Simpson, A., Hewitt, A. W. & Fairfax, K. A. Universal cell donor lines: a review of the current research. Stem Cell Rep. https://doi.org/10.1016/j.stemcr.2023.09.010 (2023).

  95. Hu, X. et al. Hypoimmune induced pluripotent stem cells survive long term in fully immunocompetent, allogeneic rhesus macaques. Nat. Biotechnol. 42, 413–423 (2023).

  96. Eschenhagen, T. & Weinberger, F. Heart repair with myocytes. Circ. Res. 124, 843–845 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Garreta, E., Sanchez, S., Lajara, J., Montserrat, N. & Belmonte, J. C. I. Roadblocks in the path of IPSC to the clinic. Curr. Transplant Rep. 5, 14–18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bogomiakova, M. E. et al. iPSC-derived cells lack immune tolerance to autologous NK-cells due to imbalance in ligands for activating and inhibitory NK-cell receptors. Stem Cell Res. Ther. 14, 77 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Deuse, T. et al. De novo mutations in mitochondrial DNA of iPSCs produce immunogenic neoepitopes in mice and humans. Nat. Biotechnol. 37, 1137–1144 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Schweitzer, J. S. et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N. Engl. J. Med. 382, 1926–1932 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our work on this topic was supported by a Late Translational Research Grant from the German Centre for Cardiovascular Research (DZHK), (81×2710153 to T.E.), the European Research Council (ERC-AG IndivuHeart to T.E.), the German Research Foundation (DFG, WE5620/3-1 to F.W. and T.E.) and the Werner Otto Stiftung (F.W.). Additionally, we have received funding from the European Union’s Horizon 2020 research and innovation program (874764 to T.E.) and the European Union’s Horizon 2020 FetOpen RIA (964800; to F.W.).

Author information

Authors and Affiliations

Authors

Contributions

T.E. drafted the manuscript. F.W. provided substantial contributions to its content. T.E. and F.W. reviewed and edited the manuscript.

Corresponding author

Correspondence to Thomas Eschenhagen.

Ethics declarations

Competing interests

T.E. and F.W. contribute in a structured partnership between Evotec AG and the University Medical Center Hamburg-Eppendorf (UKE) to originate a pluripotent stem cell-based remuscularization approach. They have no financial interest and did not obtain consultations fees.

Peer review

Peer review information

Nature Cardiovascular Research thanks Mauro Giacca and Richard Lee for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eschenhagen, T., Weinberger, F. Challenges and perspectives of heart repair with pluripotent stem cell-derived cardiomyocytes. Nat Cardiovasc Res 3, 515–524 (2024). https://doi.org/10.1038/s44161-024-00472-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-024-00472-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing