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The BulkECexplorer compiles endothelial 
bulk transcriptomes to predict functional 
versus leaky transcription

James T. Brash1, Guillermo Diez-Pinel    1, Chiara Colletto2, 
Raphael F. P. Castellan1, Alessandro Fantin    1,2  & Christiana Ruhrberg    1 

Transcriptomic data can be mined to understand the molecular activity of 
cell types. Yet, functional genes may remain undetected in RNA sequencing 
(RNA-seq) experiments for technical reasons, such as insufficient read 
depth or gene dropout. Conversely, RNA-seq experiments may detect 
lowly expressed mRNAs thought to be biologically irrelevant products of 
leaky transcription. To represent a cell type’s functional transcriptome 
more accurately, we propose compiling many bulk RNA-seq datasets 
into a compendium and applying established classification models to 
predict whether detected transcripts are likely products of active or 
leaky transcription. Here, we present the BulkECexplorer (bulk RNA-seq 
endothelial cell explorer) compendium of 240 bulk RNA-seq datasets from 
five vascular endothelial cell subtypes. This resource reports transcript 
counts for genes of interest and predicts whether detected transcripts are 
likely the products of active or leaky gene expression. Beyond its usefulness 
for vascular biology research, this resource provides a blueprint for 
developing analogous tools for other cell types.

RNA sequencing (RNA-seq) has emerged as a leading method to inter-
rogate the transcriptome of cell populations. Single-cell RNA-seq 
(scRNA-seq) compendia provide useful resources to distinguish dif-
ferent cell types through their transcriptomic signature and to compare 
the expression patterns of genes across a range of cell types within 
organs1. By contrast, bulk RNA-seq is widely used to determine average 
transcript levels in a cell population, for example, to compare tran-
scriptomic changes within a cell type of interest after experimental 
manipulation2 or to correlate transcriptomic and proteomic data3,4. 
More recently, bulk RNA-seq and scRNA-seq data have been combined 
to map the tumor microenvironment5.

A wealth of data on the vascular endothelial cell (EC) transcriptome 
has been generated using RNA-seq3,6,7 and can be mined, for example, 
through the EndoDB portal8, to generate new insights into EC biology. 
Considering the plethora of proteins that have been implicated in EC 
signaling pathways, there may be value in examining EC RNA-seq data 

to confirm that the genes coding for pathway-implicated proteins 
are indeed expressed in specific endothelial subtypes (for example, 
ECs of different organs). Although this effort is likely redundant for 
proteins whose function is defined within a range of EC subtypes, it 
may be worthwhile for proteins whose roles in ECs are less clear or are 
controversial. However, some functional genes may not be detected 
in any individual RNA-seq assay for technical reasons, such as insuf-
ficient read depth9,10 or gene dropout in scRNA-seq11,12. Thus, multiple 
RNA-seq resources must be examined to gain an accurate overview of 
the EC transcriptome.

Transcriptomic analysis can be complicated by the presence of 
low-abundance transcripts that are proposed to be the products of 
leaky transcription9,13,14. Unlike more moderately expressed genes, 
leakily transcribed genes are not associated with active chromatin 
markers15 and are not thought to be functional within the assayed cell 
type9,13,16. Instead, leaky transcription likely arises when an inactive gene 
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resides near a highly expressed gene that imparts a ‘transcriptional rip-
ple effect’ (refs. 14,17,18). Several computational methods have been 
proposed for identifying leaky transcripts in bulk RNA-seq data9,13,19,20. 
However, to the best of our knowledge, no study has systematically 
applied these methods to a collection of bulk RNA-seq datasets for 
one cell type, nor has it been examined whether this approach could 
be used to systematically distinguish actively transcribed from leakily 
transcribed genes in ECs.

Here, we have compiled a compendium of 240 publicly available 
bulk RNA-seq datasets from five human and mouse EC subtypes that 
are commonly used for vascular biology research. Beyond providing a 
convenient resource for summarizing transcript counts from datasets 
that meet strict inclusion criteria for data quality and EC identity, we 
have applied previously validated classification models to these data-
sets to predict whether detected transcripts are likely the products of 
active or leaky transcription. This freely available resource is termed 
the BulkECexplorer (bulk RNA-seq EC explorer) and can be explored 
without prior bioinformatics expertise. We have illustrated the utility of 
the BulkECexplorer by interrogating a gene family with known vascular 
functions and evaluated the predictive value of our tool with a system-
atic confusion matrix-based approach. We propose the BulkECexplorer 
as a convenient and reliable resource for evaluating whether genes of 
interest are actively expressed in primary human or mouse ECs to help 
prioritize genes for further functional investigation.

Results
BulkECexplorer construction
Bulk RNA-seq provides an average measure of gene expression in a 
cell population, but some expressed genes may not be detected in any 
single experiment for technical reasons. For this reason, we compiled 
publicly available endothelial bulk RNA-seq data into a compendium 
for a more accurate overview of gene expression. Thus, we queried the 
European Nucleotide Archive (ENA) for bulk RNA-seq data of five EC 
subtypes commonly used for vascular biology research: human umbili-
cal vein ECs (HUVECs), human dermal microvascular ECs (HDMECs), 

Fig. 1 | BulkECexplorer online app display. The image shows a snapshot of the 
output of the BulkECexplorer when queried for a gene of interest (for example, 
SRC). The blue section displays the gene detection rate and expression range. Top 
left box, stacked bar chart depicting the number of datasets with SRC >0 TPM, 
resolved by EC subtype. The percentage of datasets with SRC >0 TPM in each EC 
subtype is reported below each bar. The percentage of datasets with SRC >0 TPM 
across all datasets, independently of subtype, is reported above the bar graph. 
Top right box, boxplots of SRC TPM values for individual datasets, resolved by 
EC subtype, including the median (center line). The bottom boxes show the 
corresponding data with a default ‘>1 TPM’ expression threshold that can be 
customized. The red dashed line (bottom right box) indicates the 1 TPM gene 
expression threshold. The green section summarizes data obtained by predicting 
leaky versus active genes using GMMs. Left box, stacked bar chart depicting the 
number of datasets in which SRC expression was classified as active, leaky or 
undetermined, resolved by EC subtype. The percentage of datasets in which SRC 
expression was classified as active in each EC subtype is reported below each 
bar. The percentage of datasets in which SRC expression was classified as active 
versus leaky across all datasets is reported above the bar chart. Right box, GMM 
for a representative HUVEC dataset; expression values for three core EC genes 
are indicated. The cyan section summarizes data obtained by predicting leaky 
versus active genes using zTPM expression standardization for each dataset. Left 
box, stacked bar chart depicting the number of datasets in which SRC expression 
was above the −2.38 zTPM threshold, resolved by EC subtype. The percentage 
of datasets in which SRC was detected above the threshold in each EC subtype is 
reported below each bar. The percentage of datasets in which SRC was detected 
above the threshold across all datasets is reported above the bar chart. Right box, 
boxplots of SRC zTPM values for individual datasets, resolved by EC subtype, 
including the median (center line). The red dashed line indicates the −2.38 zTPM 
gene expression threshold. The orange section provides a summary by cell type 
for the number of datasets analyzed per EC subtype alongside outputs for the 
analysis of TPM values and the GMM versus zTPM predictions.

http://www.nature.com/natcardiovascres


Nature Cardiovascular Research | Volume 3 | April 2024 | 460–473 462

Article https://doi.org/10.1038/s44161-024-00436-w

primary mouse lung ECs, primary mouse brain ECs and primary mouse 
retina ECs. Our search returned 195 sequencing projects, each contain-
ing multiple RNA-seq runs. After imposing strict exclusion criteria  
(Methods), a total of 264 RNA-seq runs with unique sample identi-
fiers were downloaded and aligned to the human or mouse genome, 
as appropriate (Supplementary Table 1). After quantifying transcript 
abundance, 24 datasets were excluded from analysis because they 
lacked (or had low levels of) transcripts for the core endothelial  
markers KDR and CDH5, comprised low read numbers, or had poor 
read alignment. Thus, we selected a total of 240 endothelial bulk 
RNA-seq datasets from 59 sequencing projects (Supplementary Table 1)  
and compiled them into a compendium that is searchable through 
an online interface termed the BulkECexplorer (https://ruhrberglab.
shinyapps.io/BulkECexplorer/). For each queried gene, the BulkEC-
explorer reports the number and proportion of datasets containing 
transcripts and their expression range, both per EC subtype and across 
all datasets (Fig. 1, blue section). The BulkECexplorer also enables the 
presentation of the corresponding values with a manually adjustable 
TPM (transcripts per million) threshold (Fig. 1, blue section).

As bulk RNA-seq can detect lowly expressed transcripts that may 
be the nonfunctional products of leaky transcription, Gaussian mixture 
models (GMMs) and the zFPKM algorithm have been used to predict leaky 
versus active transcripts in bulk RNA-seq data from several different  
non-EC types9,13,14. Here, we have applied these classification models to 
all eligible datasets in the BulkECexplorer (Methods). The GMM- and 
TPM-based predictive data of leaky versus active transcription are 
reported for each queried gene individually per EC subtype and across 
all datasets analyzed (Fig. 1, green and cyan sections, respectively). 
A summary table displays the uninterpreted expression data in TPM 
alongside predictive data per EC subtype (Fig. 1, orange section). All 
data are downloadable in a graphic (.png, .tiff, .pdf) or tabular format.

To illustrate the utility of the BulkECexplorer, we examined the 
expression of SRC family kinases (SFKs), which were selected as a 
use case because some family members have experimentally proven 
endothelial roles, whereas others are deemed specific to hemat-
opoietic cell types. For example, signaling through the SFKs SRC, 
YES1, FYN and LYN has been described in all EC subtypes included in 
the BulkEC explorer, including HUVECs21,22, HDMECs23, mouse lung 
ECs21,22,24, mouse brain ECs25 and mouse retina ECs26,27. By contrast, 
the SFKs FGR, LCK, HCK and BLK are expressed and functional in 

hematopoietic cells28–32. Thus, we compared the detection of endothe-
lial and hematopoietic SFKs in scRNA-seq datasets of multiple organs 
to BulkECexplorer results. Next, we further investigated whether the 
BulkECexplorer accurately predicts which SFKs are functional in ECs.

SFK detection in endothelial scRNA-seq datasets
We first examined scRNA-seq-based SFK detection in brain, heart and 
lung ECs using the EC atlas33 and Tabula Muris34 before corroborat-
ing findings with the Mouse Vascular Single Cells database6. We also 
extended our analysis to scRNA-seq datasets from the human der-
mis35 and trachea36. In all these organs, YES1, SRC, FYN and LYN have 
functions in ECs, including the regulation of angiogenesis or vascular 
permeability23,25,37.

The EC atlas was obtained by sequencing fluorescence-activated 
cell sorting (FACS)-isolated platelet and EC adhesion molecule 1 
(PECAM1)-positive ECs33. Yes1, Fyn and Lyn were detected in 12–30% 
of brain, lung and heart EC populations, whereas transcripts for Fgr, 
Hck, Lck and Blk were not identified in these populations (Tables 1 
and 2). Unexpectedly, ECs with Src transcripts were not identified in 
the heart or lung; they were rare in the brain, where they also had low 
Src transcript levels (Tables 1 and 2). In Tabula Muris, whole-organ 
single-cell suspensions were analyzed by FACS/Smart-seq2 and a 
droplet-based approach with 10x Genomics; here, we analyzed the 
FACS/Smart-seq2-based dataset because it has superior transcriptome 
coverage per cell compared to the droplet dataset34. Tabula Muris 
also contains trachea data, which are not included in the EC atlas. For 
each organ, ECs were identified as described38. Yes1, Fyn and Lyn were 
detected in 17–45% of mouse brain, lung and heart ECs and in 41–50% 
of mouse trachea ECs (Tables 1 and 2 and Fig. 2a–c). In most organs, Fgr 
and Blk were detected in only approximately 1%, and Hck and Lck were 
detected in 3–5% of ECs (Tables 1 and 2 and Fig. 2a–d). The proportion of  
ECs with detectable Src was similarly low (Src detection rate: 5.6% 
in brain ECs, 1.2% in lung ECs, 0.5% in heart ECs, 1.8% in trachea ECs; 
Table 1 and Fig. 2a–d). In the lung, heart and trachea, this propor-
tion was almost as low as that of ECs expressing Klf1, an erythroid 
marker used as an example for a gene not expected to be transcribed in  
ECs (Table 1 and Fig. 2b–d). We then interrogated lung and brain 
scRNA-seq data from the Mouse Vascular Single Cells database through 
its online interface6 (data discoverable at http://betsholtzlab.org/
VascularSingleCells/database.html). We again observed a higher  

Table 1 | Prevalence of SFK expression in ECs from scRNA-seq data

Dataset name Species Organ Method EC selection No. of
cells

Pecam1 Yes1 Src Fyn Lyn Fgr Hck Lck Blk Klf1

EC atlas Mm Brain Droplet (10x) FACS 3,724 79.08 11.73 1.45 13.53 14.34 ND ND ND ND ND

EC atlas Mm Lung Droplet (10x) FACS 5,152 84.96 12.09 ND 15.47 30.20 ND ND ND ND ND

EC atlas Mm Heart Droplet (10x) FACS 4,525 72.04 15.47 ND 20.57 20.66 ND ND ND ND ND

Pecam1 Yes1 Src Fyn Lyn Fgr Hck Lck Blk Klf1

Tabula Muris Mm Brain Smart-seq2 Seurat 733 90.45 22.37 5.59 32.06 33.70 0.41 3.14 3.00 1.36 0.27

Tabula Muris Mm Lung Smart-seq2 Seurat 698 96.13 16.91 1.15 20.34 35.24 0.86 2.58 5.16 0.14 0.14

Tabula Muris Mm Heart Smart-seq2 Seurat 1,376 89.03 22.02 0.51 34.01 44.91 0.58 3.85 5.31 1.02 0.15

Tabula Muris Mm Trachea Smart-seq2 Seurat 112 100.00 50.00 1.79 41.96 47.32 1.79 0.89 3.57 3.57 0.89

PECAM1 YES1 SRC FYN LYN FGR HCK LCK BLK KLF1

Not applicable Hs Dermis Droplet (10x) FACS 47,668 79.56 25.48 0.14 20.32 14.75 5.63 0.14 0.02 0.02 ND

PECAM1 YES1 SRC FYN LYN FGR HCK LCK BLK KLF1

Human Cell Landscape Hs Trachea Microwell Seurat 2,029 72.70 75.21 11.34 5.47 3.55 2.27 0.15 0.05 0.05 ND

% ECs with detectable transcript levels

Lowest value 75th percentile Highest value

The table shows the percentage of ECs with detectable transcript levels for SFKs relative to the core EC marker PECAM1 and the non-EC, erythrocyte marker KLF1 in mouse and human ECs 
from the indicated organs in the indicated scRNA-seq datasets. EC selection was achieved either by FACS or through clustering with Seurat. Mm, Mus musculus; Hs, Homo sapiens; ND, not 
detected.
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proportion of ECs with Src transcripts and higher average levels of  
Src transcripts in the brain than in the lung; however, the number of 
ECs with detectable Src transcripts and the average transcript counts 
were very low compared to data for Yes1, Fyn or Lyn.

Human adult dermal EC scRNA-seq data were obtained from 
FACS-isolated PECAM1-positive dermal ECs, which form a larger cluster 
of blood vascular ECs and a smaller cluster of lymphatic vascular ECs35. 
We readily detected YES1 in ECs of both clusters, but SRC transcripts 
were rarely detected and mostly resided in the lymphatic rather than 
blood vascular EC cluster (Tables 1 and 2 and Fig. 2e). Transcripts for 
FYN, LYN and FGR were readily detected in dermal ECs, similar to YES1; 
in contrast, HCK, LCK and BLK were poorly detected, similar to SRC 
(Fig. 2e and Tables 1 and 2). In the human trachea dataset36, we selected 
the EC cluster according to its expression of core endothelial genes, 
including PECAM1 (Tables 1 and 2). YES1 was detected in most ECs, but 
SRC, FYN and LYN were detected in much fewer ECs (detection rates: 
YES1 75.2%, SRC 11.3%, FYN 5.5% and LYN 3.6%; Table 1). Although SRC 
was detected in more ECs than other SFK genes, except YES1 (Table 1), 
the average SRC transcript levels were lower than those for YES1, FYN, 
LYN and FGR and more similar to those for HCK, LCK and BLK (Table 2).

Taken together, mining of mouse and human scRNA-seq EC data-
sets showed that YES1, LYN and FYN were widely expressed in ECs, 
whereas SRC transcripts were detected at low levels in only a few brain 
ECs and at even lower levels and more rarely in ECs of other organs. 
Notably, SRC transcripts were lacking from the EC atlas, except in 
the brain dataset. These findings were surprising due to SRC’s widely 
accepted endothelial functions25,39,40. Therefore, we interrogated the 
BulkECexplorer for endothelial expression of SFKs, including SRC.

SFK detection in endothelial bulk RNA-seq datasets
Consistent with scRNA-seq analysis, the BulkECexplorer robustly 
detected FYN, LYN and YES1 in all five EC subtypes, with FYN and YES1 
detected in all 240 datasets and LYN detected in 239 of the 240 datasets 
(Fig. 3a and see data in the BulkECexplorer). Despite a low detection 
rate in scRNA-seq analyses, SRC transcripts were detected in the vast 
majority (234/240) of BulkECexplorer datasets, albeit with varying 
expression levels (Fig. 3a,b; data resolved by EC subtype). In mouse 
brain and retina EC datasets, Src transcript levels were similar to those 
of Yes1; in contrast, SRC transcript levels were lower than those of YES1 
in human ECs and most mouse lung EC datasets (Fig. 3b). In 5 of the 24 
lung EC datasets, 5 of the 54 brain EC datasets and 6 of the 15 HDMEC 

datasets, SRC was expressed at <1 TPM, which is a commonly used, albeit 
heuristic, threshold when selecting genes for downstream analysis. The 
six datasets lacking SRC transcripts were derived from primary mouse 
brain and lung ECs (Fig. 3a,b).

We next used the BulkECexplorer to examine the expression of 
hematopoietic SFKs with no known function in ECs. FGR, HCK and LCK 
were detected in 53.8%, 32.5% and 39.2% of ECs, respectively, although 
at <1 TPM for most datasets (FGR 210/240, HCK 192/240, LCK 200/240). 
Nevertheless, some datasets contained a higher number of transcripts 
for these SFKs, including FGR in HDMEC datasets, HCK in retina datasets 
and LCK in lung datasets (data discoverable in the BulkECexplorer). The 
functional relevance of this EC subtype-specific transcript enrichment 
is unknown. Unexpectedly, the B cell-specific SFK BLK28 was detected 
in 30% of BulkECexplorer datasets, but at low levels (<1 TPM), except in 
five human datasets with a transcript level of 1–2.5 TPM (Fig. 3b). This 
distribution was somewhat similar to that of KLF1, which was detected 
in 15.8% of BulkECexplorer datasets, mostly at low levels (<1 TPM)  
(Fig. 3b). Low expression of genes in cells in which they are not expected 
to function has previously been attributed to ‘leaky’ transcription, pos-
sibly driven by the expression of nearby highly expressed genes9,13,14.

In summary, our SFK analysis corroborates that the BulkEC-
explorer allows comparing gene expression between EC subtypes, 
including reporting the expression characteristics of transcripts that 
have a low detection rate with scRNA-seq. On the one hand, our analysis 
confirmed that SRC is robustly expressed in ECs despite poor detection 
by scRNA-seq analysis. On the other hand, the detection of >0 TPM  
as a measure of gene expression could not reliably predict whether  
low transcript levels in ECs, such as those for hematopoietic genes, 
reflect leaky transcription of nonfunctional genes.

SFK transcript classification with the BulkECexplorer
To predict whether transcripts are products of active or leaky transcrip-
tion, we applied GMM classification13 and the zTPM9 algorithm to the 
BulkECexplorer datasets. The GMM classification approach is based on 
prior work showing that the mixture of protein-coding transcripts from 
leakily and actively transcribed genes produces a bimodal distribution 
of transcript abundance in a homogeneous population of mammalian 
cells13. Actively expressed genes form a dominant Gaussian distribution 
in the higher expression range, whereas leakily expressed genes form a 
less prominent Gaussian distribution in the lower expression range13. 
The overlap between the two distributions produces a dominant right 

Table 2 | Average transcript levels for SFKs in ECs from scRNA-seq compendia

Dataset name Species Organ Method EC selection No. of
cells

Pecam1 Yes1 Src Fyn Lyn Fgr Hck Lck Blk Klf1

EC atlas Mm Brain Droplet (10x) FACS 3,724 6.7179 0.4745 0.0474 0.4938 0.5524 ND ND ND ND ND

EC atlas Mm Lung Droplet (10x) FACS 5,152 11.3680 0.5605 ND 0.6237 1.4795 ND ND ND ND ND

EC atlas Mm Heart Droplet (10x) FACS 4,525 8.4348 0.8162 ND 1.1266 1.1512 ND ND ND ND ND

Pecam1 Yes1 Src Fyn Lyn Fgr Hck Lck Blk Klf1

Tabula Muris Mm Brain Smart-seq2 Seurat 733 0.8609 0.1577 0.0813 0.6224 0.6411 0.0055 0.0142 0.0019 0.0003 0.0011

Tabula Muris Mm Lung Smart-seq2 Seurat 698 4.3473 0.1959 0.0288 0.4622 1.2627 0.0005 0.0013 0.0141 0.0000 0.0128

Tabula Muris Mm Heart Smart-seq2 Seurat 1,376 11.3991 0.4123 0.0028 1.2679 1.8057 0.0001 0.0015 0.0138 0.0002 0.0001

Tabula Muris Mm Trachea Smart-seq2 Seurat 112 14.7314 0.7976 0.0048 0.8905 1.3022 0.0285 0.0001 0.0070 0.0009 0.0002

PECAM1 YES1 SRC FYN LYN FGR HCK LCK BLK KLF1

Not applicable Hs Skin Droplet (10x) FACS 47,668 8.0312 0.8740 0.0041 0.6546 0.4780 0.1588 0.0040 0.0006 0.0006 ND

PECAM1 YES1 SRC FYN LYN FGR HCK LCK BLK KLF1

Human Cell Landscape Hs Trachea Microwell Seurat 2,029 9.8724 3.6929 0.0895 0.6189 0.3905 0.2931 0.0111 0.0030 0.0090 ND

Average normalised gene expression

Lowest value 75th percentile Highest value

The table shows the average transcript levels for SFKs relative to the core EC marker PECAM1 and the non-EC, erythrocyte marker KLF1 across all cells in the EC cluster in mouse and human 
ECs from the indicated organs. EC selection was achieved either by FACS or through clustering with Seurat. Normalization of gene expression was performed with Seurat.
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peak with a characteristic ‘left shoulder’ instead of two readily discern-
ible distributions13. We established that such bimodal distributions 
were observable in EC bulk RNA-seq data (Fig. 4a, top left). As done for 
other cell types9,13,14, the parameters of the two transcript distributions 
can be estimated by fitting a two-component GMM to the expression 
data of each BulkECexplorer dataset individually.

We could fit a two-component GMM to 98% of HDMEC and HUVEC 
datasets and 61% of mouse EC datasets (examples in Fig. 4a; total: 
198/240 datasets). A further 23% of mouse datasets presented a bimodal 
distribution with some degree of a left shoulder, but a third component 
was required to fit a GMM; these datasets were excluded from further 
analysis because the nature of a third Gaussian distribution is undefined 
within the context of leaky versus active transcription. Other mouse  
EC datasets appeared unimodal, without evidence of a left shoulder;  

as a unimodal distribution can be due to transcripts from a contami-
nating cell type13,41, these datasets may reflect the technical pitfalls 
of separating a relatively small EC population from other dominant 
cell types in small mouse organs. Thus, we restricted our analysis to 
the 198 human and mouse datasets (hereafter referred to as ‘eligible’ 
datasets) with a bimodal transcript distribution to which we could  
fit a two-component GMM, indicative of leaky and active expression  
distributions. In each dataset, we classified genes as actively expressed 
if the probability of belonging to the high distribution, termed 
P(active), was >0.67, as leakily expressed if P(active) was <0.33, and as 
undetermined if P(active) was between these thresholds. The ‘unde-
termined’ classification was applied to genes for which the classifica-
tion was probabilistically less definitive, that is, P(active) < 0.67 and 
P(leaky) > 0.33.
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Fig. 2 | SFK transcript detection in EC scRNA-seq data from mouse and human 
organs. a–d, Analysis of Tabula Muris scRNA-seq data from mouse adult brain 
(a), lung (b), heart (c) and trachea (d). e, Analysis of scRNA-seq data of FACS-
captured PECAM1-positive cells from the human adult dermis. After the selection 
of the EC subsets, UMAP and violin plots were generated to compare Yes1, Src, 
Fyn, Lyn, Fgr, Hck, Lck and Blk transcript levels; the violin plots also show Pecam1 

and Klf1 transcript levels as positive and negative EC markers (for raw data, see 
the corresponding source data file). Each data point represents the value for one 
cell. ND, not detected. arEC, arterial EC; alvEC, alveolar EC; bEC, blood EC; cEC, 
cardiac EC; EcC, endocardial cell; lyEC, lymphatic EC; mEC, microvascular EC; 
vEC, venous EC.
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Similar to the established EC marker PECAM1, FYN and LYN  
were classified as actively expressed in 198 of 198 datasets, whereas  
YES1 and SRC were classified as actively expressed in most eligible data-
sets in which they were expressed (197/198 and 184/194, respectively)  

(Fig. 4b; data resolved per EC type). Thus, BulkECexplorer GMM  
analysis correctly classified SFKs with known EC functionality as 
actively expressed, including SRC. We next examined hematopoietic  
SFKs for which the BulkECexplorer had detected low-level EC 
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Fig. 3 | SFK transcript detection in bulk RNA-seq data from primary human 
and mouse ECs. Number of datasets analyzed across EC subtypes for each of the 
five indicated genes, n = 240. a, Stacked bar charts depicting the total number 
of datasets and the frequency at which transcripts for the indicated genes were 
detected (>0 TPM) or not detected (0 TPM), resolved by EC subtype (HUVEC 
n = 128, HDMEC n = 15, mouse lung EC n = 24, mouse brain EC n = 54, mouse retina 
EC n = 19). b, Transcript levels for the indicated genes with expression >0 TPM 

in each dataset for the indicated EC subtypes, including boxplots to illustrate 
the median (center line) and interquartile range (box limits) (for n, see the 
corresponding source data file); each data point represents one dataset. The 
red dashed line indicates the 1 TPM threshold, a commonly used albeit heuristic 
transcript level above which a gene is considered to be expressed at a level that 
may be biologically relevant.
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expression in some datasets and found that BulkECexplorer GMM 
analysis largely classified these genes, when they were detected, as not 
actively expressed in ECs. Thus, FGR was classified as actively expressed 

in 6.9% of 102, HCK in 28.3% of 53 and LCK in 16.7% of 66 datasets in 
which they were detected (data discoverable in the BulkECexplorer). 
Transcripts from the B cell gene BLK28 were classified as active in only 
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Fig. 4 | GMM-based classification predicts that SRC but not BLK is actively 
expressed in ECs. a, Illustrative kernal density estimates (KDEs) of log2-
transformed TPM values for protein-coding genes in the bulk RNA-seq data 
from the indicated datasets. Expectation maximization was used to estimate the 
parameters of the low and high Gaussian distributions (predicted leaky versus 
active transcription), represented by black and gold fit curves, respectively. 
The log2(TPM) and P(active) values for PECAM1, YES1, SRC and BLK in each 
dataset are indicated together with the P(leaky) values for BLK. The illustrative 
HUVEC dataset is also shown without the estimated Gaussian distributions to its 

transcript distribution (top left). b, Stacked bar charts depicting the number of 
datasets per EC subtype in which the indicated genes were classified by the GMM 
method as active, leaky or undetermined, resolved by EC subtype; lung, brain and 
retina EC data were obtained from mouse datasets. The percentage of datasets 
in which each gene was classified as actively expressed is reported for each EC 
subtype below each bar (number of eligible, bimodally distributed datasets: 
PECAM1 n = 198, YES1 n = 198, SRC n = 194, BLK n = 64, KLF1 n = 30). Note that only 
datasets with a transcript level of >0 TPM are classified; therefore, datasets not 
shown have a transcript level of <0 TPM.
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Fig. 5 | zTPM standardization predicts that SRC but not BLK is actively 
expressed in ECs. Number of datasets analyzed across EC subtypes for each 
of the five genes, n = 220. a, Stacked bar charts depicting the total number of 
datasets per EC subtype in which each indicated gene was detected (>−2.38 
zTPM) or not detected (≤−2.38 zTPM) above the previously determined active 
expression threshold of −2.38 zTPM for HUVECs. The percentage of datasets in 
which the indicated gene was expressed above the threshold is reported below 
each bar for the corresponding EC subtype. HUVEC n = 127, HDMEC n = 14, mouse 

lung EC n = 15, mouse brain EC n = 46, mouse retina EC n = 18. b, zTPM values for 
the indicated genes in each dataset with expression >0 TPM, split by EC subtype. 
The TPM values for each dataset are available in the corresponding source data 
file. Each data point represents one dataset; values are shown together with 
boxplots to illustrate the median (center line) and interquartile range (box limits) 
(for n, see the corresponding source data file). The red dashed line indicates the 
−2.38 zTPM threshold above which a gene is considered actively expressed in 
HUVECs. Lung, brain and retina EC data are from mouse datasets.
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1.6% of 64 datasets in which they were detected, similar to KLF1 (Fig. 4b; 
data resolved per EC type). Other examples of non-EC genes that were 
detected in some bulk RNA-seq EC datasets but then largely classified 
as not actively expressed include another erythroid gene (RHD), ocular 
genes (LENEP, CRYBB2), osteoblast genes (BGLAP, DMP1) and several 
sex cell-specific genes (DDX4, GDF9, YBX2, SPACA4) (data discoverable 
in the BulkEC explorer). These findings support the validity of the GMM 
approach for classifying active versus leaky gene expression in EC bulk 
RNA-seq data.

The zFPKM algorithm provides an alternative method for  
predicting whether transcripts in bulk RNA-seq data are products of 
active or leaky transcription9. With this algorithm, gene expression  
values (in fragments per kilobase million (FPKM)) are transformed  
into z scores (zFPKM) based on the parameters of an active expression 
Gaussian distribution fitted around the peak of the gene expression 
distribution for protein-coding genes9 (Methods). Thus, zFPKM pro-
vides a standardized measure of gene expression relative to the global 
pattern of gene expression in a dataset9. In the original study describing 
the zFPKM algorithm9, epigenomic and RNA-seq data from the ENCODE 
project were used to calculate a selection of cell-specific zFPKM thresh-
olds at which genes are more frequently associated with active rather 
than repressive chromatin markers indicative of actively transcribed 
versus leakily transcribed genes, respectively42,43. For HUVECs, the 
only EC type for which the zFPKM threshold has been determined, the 
threshold was −2.38 zFPKM (ref. 9). The strong correlation between 
zTPM and zFPKM values (Extended Data Fig. 1) allowed us to adopt 
the −2.38 threshold after the zTPM transformation of each BulkEC-
explorer dataset (Methods). PECAM1 and FYN exceeded the −2.38 
zTPM threshold in all eligible datasets (220/220), YES1 and LYN in 99.5% 
(219/220) and SRC in 94.5% (208/220) (Fig. 5a,b and data discoverable 
in the BulkECexplorer). By contrast, FGR, HCK, LCK and BLK exceeded 
this threshold in only 6.4%, 19.1%, 12.3% and 5%, respectively, and KLF1 
transcripts in only 0.5% of the datasets in which their transcripts were 
detected (Fig. 5a,b and data discoverable in the BulkECexplorer).

In summary, transcripts for hematopoietic SFKs were either not 
detected by the BulkECexplorer or, when detected, predominantly  
classified as the products of leaky transcription in ECs. Instead, SRC  
was classified as actively expressed, similar to YES1, FYN and LYN,  
agreeing with known EC functions. Therefore, the use case of the SFKs 
reinforces that the BulkECexplorer helps predict whether EC tran-
scripts poorly detected by scRNA-seq or detected at low levels by bulk 
RNA-seq are likely functional in ECs.

Systematic evaluation of BulkECexplorer transcript 
classification
Next, we compared the predictive value of the BulkECexplorer’s GMM- 
and zTPM-based classifications to classifications based on transcript 
levels alone (‘transcript level >0 TPM’ and the commonly used but 
heuristic threshold ‘transcript level >1 TPM’). For this, we built a confu-
sion matrix with widely used markers for ECs (‘actual positives’, n = 37) 
versus non-EC populations, including immune cells, neurons, glial cells 
and bone cells (‘actual negatives’, n = 109; Supplementary Table 2). We 
scored the BulkECexplorer predictions of actively expressed (‘predicted 
positives’) and leakily expressed (‘predicted negatives’) genes against 
these 146 markers in all gene–dataset combinations across all eligible 
datasets for each classification approach (Supplementary Table 3).  
Genes with TPM = 0 were scored as predicted negatives, whereas 
gene–dataset combinations classified by GMM as ‘undetermined’ 
were excluded (but are included in the BulkECexplorer online results).  
As the four classification methods assessed here each draw on a  
varying number of eligible datasets (see above), the reported perfor-
mance results are valid only in the context of the BulkECexplorer.

In our primary analysis, all four classification approaches had 
similarly high ‘sensitivity’ scores (true positive rate; Table 3). Using 
detection alone for classification (transcript >0 TPM) had the lowest 

‘specificity’ scores (true negative rate; Table 3), presumably because 
this classification returns many genes with very low transcript levels 
that belong to the leaky EC transcriptome. Indeed, we detected tran-
scripts for 19,436 genes out of a possible total of 19,878 protein-coding 
genes in the BulkECexplorer’s HUVEC datasets. Compared to ‘transcript 
>0 TPM’, the GMM, zTPM and ‘transcript >1 TPM’ approaches had 
higher specificity scores (true negative rate; Table 3), with reduced 
false-positive rates across all EC subtypes and for each EC subtype 
individually (Extended Data Figs. 2–4). Although the GMM classifica-
tion performed slightly better than the zTPM and ‘transcript >1 TPM’ 
classifications (Table 3), the confusion matrix scores suggest that  
the GMM, zTPM and ‘transcript >1 TPM’ approaches can all be used to 
predict leakily expressed genes without substantial losses in identify-
ing actively expressed genes.

A conceptual limitation of accurately selecting markers for  
the actual negatives list is the uncertainty of whether a marker for 
another cell type is indeed nonfunctional in ECs. For example, we 
a priori excluded the neural marker nestin (Nes) because we know that it 
is present in embryonic and neovascular ECs in vivo44,45. As the BulkEC-
explorer consistently detected robust transcript levels for Nes and  
several other non-EC markers in our list of actual negatives (Extended 
Data Table 1 and Extended Data Figs. 2–4), we cross-referenced our 
actual negatives list against a published HUVEC proteome46. Tran-
scripts from six genes in our list were present in the HUVEC proteome, 
namely the adipose marker PNPLA2, the smooth muscle marker TAGLN, 
and the neuroglial markers MAP2, GAD1, GLUL and GAPDHS (Extended 
Data Table 1). BulkECexplorer analysis corroborated that PNPLA2, 
TAGLN, MAP2 and GLUL transcripts were expressed at levels >10 TPM 
in HUVECs and also classified these genes as actively expressed in one 
or more of the other EC subtypes (Extended Data Table 1). After remov-
ing these HUVEC proteome-expressed markers from the actual nega-
tives list for a refined assessment, specificity was increased across all  
classification approaches for all EC subtypes (Table 3).

Overall, specificity scores (Table 3) were higher for HUVECs, 
HDMECs and mouse lung ECs than for ECs from the mouse brain or 
retina, where ECs interact with neurons, glia and pericytes in the neu-
rovascular unit47 and also with microglia48. Notably, several known 
markers for these EC-interacting cell types were present in brain and 
retina EC datasets at levels predicted to reflect active transcription, 
such as the microglia marker ITGAM, the astrocyte marker GFAP, the 
oligodendrocyte marker OPALIN and the neural cell marker SOX2; 
in contrast, they were not detected or were predicted to be leakily 
expressed in cultured human ECs (Extended Data Table 1). Moreover, 
pericyte and/or vascular smooth muscle cell markers, such as DES, 
were detected in mouse brain, retina and lung ECs at levels predicted 
to reflect active transcription (Extended Data Table 1). The presence 
of transcripts from EC-interacting cell types may reflect EC dataset 
contamination with parenchymal cells or may corroborate the idea 
that ECs endogenously contain transcripts typical of neighboring cell 
types7. To model the predictive functionality of the tool with these fac-
tors isolated, we removed markers for EC-interacting cell types from the 
list of ‘negative’ genes for a third run and observed increased specificity 
scores for all EC subtypes, with scores for mouse brain and retina ECs 
now more similar to those for lung and cultured ECs (Table 3). These 
findings advocate further investigation to understand why transcripts 
of EC-interacting cell types can be abundant in EC bulk RNA-seq data.

Discussion
Here, we show that the BulkECexplorer provides an effective tool to 
interrogate gene expression data across five EC subtypes commonly 
used for functional studies in vascular biology research. Supporting 
its reliability, the BulkECexplorer consistently detected transcripts for 
SFKs with known EC functions (YES1, SRC, FYN and LYN), although SRC 
was expressed at lower levels than YES1, LYN or FYN in some EC subtypes, 
consistent with prior microarray analysis49. For SRC, BulkECexplorer 
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analysis returned different results to scRNA-seq datasets, which lacked 
counts for SRC transcripts or detected them either at very low levels or 
infrequently in ECs from most organs, despite SRC’s well-established EC 
functions. Thus, we suggest that the BulkECexplorer can complement 
scRNA-seq-based analysis of EC gene expression while also providing 
insight into gene expression in EC subtypes not typically analyzed 
by scRNA-seq but commonly used for in vitro research (for example, 
HDMECs, HUVECs).

An interesting observation was the low-level expression of non-EC 
SFKs within many datasets of the BulkECexplorer. Furthermore, the 
detection of protein-coding transcripts for 19,436 genes across 128 
HUVEC datasets in the BulkECexplorer was reminiscent of the prior 
finding that >20,000 protein-coding or processed transcripts were 
detected in B cell bulk RNA-seq data10. These observations agree with 
the idea that most genes can be transcribed in a given cell type50. Such 
expansive gene expression may appear difficult to reconcile with the 
concept of a cell-specific transcriptome unless it is considered that 
many unexpected transcripts are detected at very low levels. Thus, 
protein-coding transcripts in a homogeneous cell population can  
be assigned to a higher-expressed (HE) class encoding the functional 
proteome of that cell type and a lower-expressed (LE) class that is pro-
posed to be nonfunctional and caused by leaky transcription, akin to 
biological noise9,13. A two-class model for gene expression is supported 
by epigenomic and proteomic evidence, which shows that LE genes, 
unlike HE genes, lack epigenetic markers of active transcription9,51 
and that their protein products are poorly detected by mass spectro-
metry16,52,53. Notably, a two-class gene expression distribution, as shown 

here for ECs, has previously been reported for a range of other cell  
types and in multiple species, including normal fibroblasts, epithelial 
cells, immune cells, neurons and transformed cell lines9,13,15,16,51–55.

Applying GMM- or zTPM-based approaches to BulkECexplorer 
datasets to predict whether genes belong to the HE (active) or LE 
(leaky) distributions classified SRC transcription as active and not 
leaky, although some heterogeneity was observed for HDMECs and 
lung ECs. By contrast, the B cell SFK BLK was consistently classified as 
nonexpressed or leakily expressed in ECs, similar to erythroid, osteo-
blast, ocular and sex cell genes. These findings are analogous to prior 
studies reporting that LE cluster transcripts include markers of cell 
types other than the one under investigation13,16. Pseudobulk analysis 
of scRNA-seq data is increasingly used to account for cell-to-cell het-
erogeneity in transcription and to overcome challenges in transcript 
detection at the single-cell level56. When pseudobulk analysis or emerg-
ing scRNA-seq techniques with higher sensitivity detect unexpected 
transcripts, implementing methods analogous to those used in the 
BulkECexplorer may help predict which transcripts arise from leaky 
versus active transcription.

To evaluate systematically the predictive performance of the GMM 
and zTPM tools included in the BulkECexplorer, we used a confusion 
matrix-based approach to score against established EC and non-EC 
markers. Without notable loss of sensitivity, the GMM- and zTPM-based 
approaches scored better for specificity than classifying genes based 
on transcript detection alone (>0 TPM) and slightly better than setting 
an expression threshold of >1 TPM. The results of this comparison, 
therefore, provide a rationale for using the 1 TPM threshold to predict 

Table 3 | Predictive performance of the BulkECexplorer

EC subtype Classifier Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
>0 TPM 1.00 0.56 1.00 0.58 1.00 0.70
>1 TPM 0.98 0.79 0.98 0.82 0.98 0.90
GMM 0.99 0.84 0.99 0.87 0.99 0.94
zTPM 0.99 0.79 0.99 0.82 0.99 0.90
>0 TPM 1.00 0.62 1.00 0.65 1.00 0.71
>1 TPM 0.98 0.89 0.98 0.92 0.98 0.94
GMM 0.99 0.90 0.99 0.93 0.99 0.95
zTPM 0.99 0.88 0.99 0.91 0.99 0.93
>0 TPM 1.00 0.62 1.00 0.64 1.00 0.71
>1 TPM 0.97 0.86 0.97 0.89 0.97 0.92
GMM 0.98 0.86 0.98 0.89 0.98 0.92
zTPM 0.98 0.80 0.98 0.83 0.98 0.87
>0 TPM 1.00 0.62 1.00 0.64 1.00 0.75
>1 TPM 0.98 0.80 0.98 0.82 0.98 0.88
GMM 0.97 0.85 0.97 0.87 0.97 0.93
zTPM 0.98 0.80 0.98 0.82 0.98 0.88
>0 TPM 0.99 0.44 0.99 0.46 0.99 0.68
>1 TPM 0.99 0.64 0.99 0.66 0.99 0.85
GMM 0.99 0.67 0.99 0.70 0.99 0.90
zTPM 0.99 0.62 0.99 0.64 0.99 0.83

1.00 0.37 1.00 0.39 1.00 0.60

0.99 0.48 0.99 0.51 0.99 0.75

1.00 0.62 1.00 0.65 1.00 0.90

>0 TPM

>1 TPM

GMM

zTPM 0.97 0.58 0.97 0.61 0.97 0.85

Lowest value Highest value
50%

Original list (146 markers)Subtype and classification method
Refined list (140 markers)—
removal of actual negatives
present in the HUVEC proteome

Revised list (86 markers)—
removal of markers for host cells
interacting with ECs

All

HUVEC

HDMEC

Mouse lung EC

Mouse brain EC

Mouse retina EC

The table shows specificity and sensitivity metrics calculated for known EC-functional genes (actual positives) and known non-EC genes (actual negatives) with the GMM or zTPM 
classification models and thresholds of >0 TPM or >1 TPM. Each eligible dataset for each of the four classification approaches was treated as an individual test (n = 240 for transcript level >0 
TPM or >1 TPM, n = 220 for zTPM, n = 198 for GMM). Original run: n = 37 actual positives and n = 109 actual negatives; refined run after subtracting six HUVEC proteome-expressed genes from the 
list of actual negatives: n = 37 actual positives and n = 103 actual negatives; amended run after subtracting markers of neural, glial, mural and myeloid cells from the list of actual negatives: 
n = 37 actual positives and n = 49 actual negatives.
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which genes are actively transcribed when GMM and zTPM models 
are unavailable. Nevertheless, the four classification approaches  
individually have potential weaknesses for interpreting bulk RNA-seq 
data. Using 0 TPM as a threshold for classification returns many genes 
with very low transcript levels, most of which likely belong to the leaky 
transcriptome. GMM classification cannot evaluate all datasets (that 
is, exclusion of those that are not bimodal), and gene–dataset combi-
nations around the intersection of the LE and HE distributions cannot  
be confidently classified as ‘active’ or ‘leaky’ (reported as ‘undeter-
mined’ by the BulkECexplorer). zTPM classification depends on pre-
existing work correlating chromatin accessibility and gene expression 
data to determine the threshold for active gene expression in a given 
cell type; here, we have applied the threshold previously obtained for 
HUVECs to other EC subtypes, but we cannot exclude that it may vary 
somewhat between subtypes. To overcome the individual limitations 
of each classification method, the BulkECexplorer returns their results 
alongside each other, both graphically and numerically (in a summary 
table). Therefore, viewing results with the ‘transcript >0 TPM’ threshold 
identifies datasets completely lacking transcripts for a gene of inter-
est from those that contain any level of transcript. In contrast, the 
GMM and zTPM approaches help predict whether transcript levels are  
likely biologically relevant. Thus, simultaneously applying multiple 
classification approaches can help overcome the potential weaknesses 
of individual approaches for transcript classification.

Transcripts typical of EC-associated cell types were detected 
across EC subtypes in the BulkECexplorer. Thus, we should consider 
that ECs freshly isolated from mouse organs for bulk RNA-seq might 
be contaminated by EC-associated cell types not fully dissociated 
from ECs during sample preparation. Notwithstanding the technical 
challenge of preventing such contamination, an alternative explana-
tion arises from a prior study that correlated bulk and scRNA-seq data 
from lung, brain and heart ECs to conclude that the endothelium 
genuinely expresses some transcripts characteristic of parenchymal 
cells7. The prevalence of host organ transcripts in ECs can be readily 
surveyed with the BulkECexplorer. A lower number of non-EC tran-
scripts in HUVEC datasets may reflect that culture methods remove 
transcripts from non-EC contaminants while also eliminating host 
organ context. These considerations highlight the importance of 
interrogating bulk RNA-seq data alongside scRNA-seq and proteomic 
data to evaluate the extent of host cell transcriptional mimicry while 
considering the technical challenge of obtaining a pure EC popula-
tion for bulk RNA-seq.

In summary, the BulkECexplorer interrogates endothelial gene 
expression data through an online interface that is readily accessible 
without prior bioinformatics expertise. By predicting which EC genes 
are expressed at biologically relevant levels, including in EC subtypes 
commonly used for in vitro research, BulkECexplorer analysis will 
synergize with scRNA-seq-based analysis to help prioritize genes for 
functional studies. Such knowledge should be helpful when designing 
interventional studies in vitro, for example, when candidate genes 
have been identified through genome-wide association studies or 
two-hybrid assays. Interrogating the BulkECexplorer may also help 
affirm the EC expression of genes whose transcripts are not read-
ily detected in scRNA-seq datasets for technical reasons and can be 
combined with scRNA-seq to investigate unexpected EC transcripts. 
Beyond the usefulness for the wider vascular community, our resource 
provides a blueprint for developing analogous tools for other cell types.

Methods
Bulk RNA-seq dataset selection
Bulk RNA-seq datasets were retrieved from the ENA in July 2020. To 
identify relevant datasets, we queried the archive for the following 
terms: ‘HUVEC’, ‘HDMEC’, ‘HMVEC’ (human microvascular EC), ‘dermal  
endothelial’, ‘retinal endothelial cells’, ‘brain endothelial cells’ and 
‘mouse lung endothelial cells’. Our queries returned 195 RNA-seq  

projects whose datasets we individually examined to determine their 
suitability for our analysis. Only datasets generated by bulk or RiboTag 
RNA-seq were retained for analysis. We included only mouse datasets 
for brain, retina and lung ECs. A small number of projects that con-
tained datasets with multiple run identifiers were excluded to simplify 
and streamline the downstream analysis. We also excluded datasets 
that were erroneously tagged as endothelial but did not include an EC 
type or were ambiguous in their description. As we wished to examine 
the ‘basal’ transcriptome of ECs, we excluded datasets from rapidly 
growing and remodeling embryos. For the same reason, we excluded 
datasets from cells that had been stimulated (for example, with a small 
molecule or by hypoxia) and/or had been genetically or functionally 
modified (for example, by gene deletion, protein overexpression or 
immortalization). However, we retained datasets in these projects 
that were derived from control cells (for example, vehicle-stimulated 
or small interfering RNA control-transfected ECs). A total of 264  
datasets with a unique identifier passed this exclusion stage  
(Supplementary Table 1). After alignment and transcript quantifica-
tion, we further excluded datasets that did not express >1 TPM of the 
core endothelial markers KDR and CDH5. We additionally excluded 
the project PRJEB14163, which contained datasets with absent or low 
KDR expression and low read number. A total of 240 datasets with a 
unique identifier from 59 projects passed this exclusion stage and  
were processed for further analysis (Supplementary Table 1).

Bulk RNA-seq transcript quantification
FASTQ files were downloaded from the ENA. Reads were aligned to 
the Genome Reference Consortium Human Build 38 patch release 
13 (GRCh38.p13) and Mouse Build 38 patch release 6 (GRCm38.p6), 
as appropriate, using HISAT2 (version 2.1.0)57. Transcript abundance 
was quantified using StringTie (version 2.1.3)58 with the reference 
annotation file Homo_sapiens.GRCh38.100.gtf or Mus_musculus.
GRCm38.100.gtf, as appropriate (Ensemble). Transcript abundance 
was recorded as TPM. All subsequent RNA-seq analyses were performed 
in RStudio using R (version 3.6.1).

Prediction of active versus leaky transcription based on GMMs
For each RNA-seq dataset in the BulkECexplorer, we log2-transformed 
its TPM values for all protein-coding genes. We then used the R package 
‘Mixtools’ (version 1.2.0) and the ‘normalmixEM’ function for expec-
tation maximization to estimate the parameters of the two Gaussian 
distributions, termed the active and leaky distributions (μ1,σ1 and μ2,σ2, 
where μ = mean, σ = s.d.). For each dataset, the ‘normalmixEM’ function 
returned a class of ‘mixEM’ data, which included both the parameters of 
the fitted Gaussian distributions (μ, σ) and the posterior probabilities 
for each gene belonging to each component (that is, probability of a 
gene belonging to either the active or leaky Gaussian distribution). As 
this method was applied to each dataset individually, the model was 
optimized to each dataset’s transcript distribution within the para-
meters of a two-component GMM. We used the probability of belonging 
to the higher Gaussian distribution, termed P(active), to classify genes 
as either likely actively expressed (P(active) > 0.67) or likely leakily 
expressed (P(active) < 0.33). Genes with a P(active) value between these 
thresholds were assigned as undetermined. Datasets that displayed 
an apparent unimodal log2(TPM) distribution without a left shoulder  
or required fitting with more than two components/distributions  
were excluded from this analysis because low- and high-expression 
gene clusters could not be readily identified (n = 42 excluded, n = 198 
analyzed; Supplementary Table 1). The BulkECexplorer online dis-
play provides the resulting information for each EC subtype as the 
total number of datasets in which a queried gene is classified as leaky, 
undetermined or active as a stacked bar chart and numerically in  
the summary table. The percentage of datasets in which the gene  
was classified as active for that EC subtype is listed below the cor-
responding bar. The percentage of datasets in which the gene was 
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classified as active or leaky for all EC subtypes combined is shown 
above the bar graph.

Prediction of active versus leaky transcription based on zTPM 
scores
zTPM scores were calculated using the zFPKM function in the R ‘zFPKM’ 
package9. Briefly, this function takes gene expression data in TPM or 
FPKM form and calculates the distribution of expression values by the 
kernel density estimate (KDE). The function then builds a half-Gaussian 
distribution to the right of the KDE peak, assigning μ as the KDE maxi-
mum. The half-Gaussian is mirrored to create a full Gaussian distribu-
tion, and the parameters of this full Gaussian distribution are used to 
standardize gene expression values to a z score termed zFPKM or zTPM, 
depending on the original unit of gene expression value. Correlation 
analysis between zTPM and zFPKM was performed with R ‘cor.test’. 
zFPKM thresholds for selecting genes with biologically relevant levels 
of expression have been published for a range of cell types, and we used 
the threshold for HUVECs in our analysis (−2.38 zFPKM)9. Datasets that 
displayed an apparent unimodal log2(TPM) distribution without evi-
dence of a left shoulder were excluded from this analysis because the 
zTPM transformation relies on identifying a high-expression Gaussian 
distribution (n = 20 excluded, n = 220 included; Supplementary Table 1).  
The BulkECexplorer online display provides the resulting information 
for each EC subtype as the total number of datasets in which a queried 
gene is classified as expressed above a −2.38 zTPM threshold, both as 
a stacked bar chart and in numerical form in the summary table. The 
percentage of datasets in which the gene was classified as expressed 
above the threshold is listed below the corresponding bar. The percent-
age of datasets in which the gene was classified as expressed above the 
threshold across all EC subtypes is shown above the bar graph.

Evaluation of predictive performance
We evaluated the predictive performance of the BulkECexplorer with 
a confusion matrix (Supplementary Table 3). As the BulkECexplorer 
does not provide a single summary classification for a gene of interest 
across all datasets but instead classifies each gene within each dataset, 
we considered the individual gene classifications from each data-
set (gene–dataset combinations) as predicted values. Thus, BulkEC-
explorer data from each of the four classification methods (‘transcript 
>0 TPM’, ‘transcript >1 TPM’, GMM and zTPM) were used as the input, 
whereby genes with TPM = 0 were considered predicted negatives. 
Gene–dataset combinations that were classified as ‘undetermined’ by 
the GMM method were not included in the confusion matrix analysis. 
The predicted values were tested against a set of actual positive markers 
(n = 37) and a set of actual negative markers (n = 109). Actual positive 
markers were selected as genes with established expression and func-
tion within ECs (Supplementary Table 2). Actual negative markers were 
selected as known markers of non-EC cell types, including neurons, 
bone cells, germ cells, adipose cells, immune cells, ocular cells, skele-
tal muscle cells, epithelial cells, pericytes and smooth muscle cells 
(Supplementary Table 2). Sensitivity was calculated as the number of 
correctly predicted positives over the total number of gene–dataset 
combinations for actual positive markers. Specificity was calculated 
as the number of correctly predicted negatives over the total number 
of gene–dataset combinations for actual negative markers. These 
performance metrics were calculated for each classification method 
separately, both for all EC subtypes together and for the individual 
EC subtypes. After identifying six presumed actual negative mark-
ers in the HUVEC proteome (Extended Data Table 1), the list of actual 
negative markers was refined for a second run (n = 103; actual posi-
tive markers retained as n = 37). A third run was carried out after the 
removal of markers of EC-interacting cell types (Extended Data Table 1)  
from the list of actual negative markers (n = 49; actual positive markers  
retained as n = 37). Analyses included all datasets eligible for each 
classification method (threshold n = 240, zTPM n = 220, GMM n = 198).

BulkECexplorer app
The R ‘Shiny’ (version 1.7.4.1) and ‘shinydashboard’ (version 0.7.2)  
packages were used to create the BulkECexplorer Web application 
(https://ruhrberglab.shinyapps.io/BulkECexplorer).

scRNA-seq analysis
Raw count data for the EC atlas33 were downloaded from the EC atlas 
Shiny app (https://endotheliomics.shinyapps.io/ec_atlas/). R objects 
containing count data from Tabula Muris34 were downloaded from 
https://figshare.com/articles/dataset/Robject_files_for_tissues_ 
processed_by_Seurat/5821263. The human dermal EC dataset was 
downloaded from the BIG Data Center (https://bigd.big.ac.cn/)35, and 
the human trachea dataset was downloaded from the Human Cell Land-
scape project in the Gene Expression Omnibus of the National Center 
for Biotechnology Information (https://www.ncbi.nlm.nih.gov/geo/)36. 
Analyses were performed with RStudio (version 1.3.1056) using R  
(version 4.2.0). The raw gene expression matrices (unique molecular 
identifier counts per gene per cell) were filtered, normalized and clus-
tered using the R package Seurat (version 3.2.3)59,60. Cells containing 
<200 feature counts were omitted, except for the Tabula Muris data R 
objects, which had been preprocessed to exclude cells with <500 feature 
counts. Genes detected in fewer than three cells were removed. Down-
stream analysis included data normalization (‘LogNormalize’ method 
and scale factor of 10,000) and variable gene detection (‘vst’ selection 
method, returning 2,000 features per dataset). For each organ, ECs 
were identified as described38. Principal component (PC) analysis was 
performed on variable genes, and the optimal number of PCs for each 
dataset was chosen using the elbow plot. The selected PCs were used 
for Louvain graph-based clustering at a resolution of 0.3. Uniform 
Manifold Approximation and Projection (UMAP) was chosen as a non-
linear dimensionality reduction method, and each relevant gene was 
then examined using the ‘FeaturePlot’ and ‘VlnPlot’ functions. Cluster  
cell identity was assigned by manual annotation based on known 
marker genes, followed by a subset selection of clusters containing 
PECAM1-positive ECs.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Publicly available datasets were analyzed in this study: adult mouse 
scRNA-seq (https://tabula-muris.ds.czbiohub.org/; GSE109774), adult 
mouse EC scRNA-seq (EC atlas; https://endotheliomics.shinyapps.io/
ec_atlas/; E-MTAB-8077), human dermal EC scRNA-seq (https://bigd.
big.ac.cn/; PRJCA002692), human trachea EC scRNA-seq (Human Cell 
Landscape; https://db.cngb.org/search/?q=CNP0000325; GSE134355). 
For bulk RNA-seq datasets retrieved from the ENA, dataset identifiers 
can be found in Supplementary Table 1. Data supporting the findings 
in this study are included in the main article or associated files (Sup-
plementary Tables 2 and 3 and source data for Figs. 2–5). Source data 
are provided with this paper.

Code availability
Code is available at https://github.com/ruhrberg.
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Extended Data Fig. 1 | zTPM correlates with zFPKM. Correlation of zTPM and 
zFPKM units for a selection of 146 vascular, neuronal, glial, immune and bone 
genes from 220 bulk RNA-seq datasets (unimodal datasets were not analysed). 
R, Pearson correlation coefficient, two sided p value 0 TPM were plotted 

(n = 18784). The red stippled line indicates the published threshold for leaky gene 
expression of −2.38 zFKPM for HUVEC is transposed into a corresponding TPM 
threshold.
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Extended Data Fig. 2 | False positive detection by the four BulkECexplorer 
classification methods. The false positive rate for each of the 1st run actual 
negative markers (n = 109) is shown for each of the classification methods and 

across all eligible datasets in the BulkECexplorer (transcript level >0 TPM, 
transcript level >1 TPM, GMM, zTPM). Gene names are shown adjacent to the  
Y axis alongside their median TPM.
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Extended Data Fig. 3 | False positive detection based on transcript 
abundance alone, resolved by EC subtype. The false positive rate for each of 
the 1st run actual negative markers (n = 109) for each of the five EC subtypes and 

across all eligible datasets in the BulkECexplorer, using the ‘transcript level >0 
TPM’ (a) and ‘transcript level >1 TPM’ (b) approaches. Gene names are shown 
adjacent to the Y axis alongside their median TPM.
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Extended Data Fig. 4 | False positive detection with GMM and zTPM 
approaches, resolved by EC subtype. The false positive rate for each of the 
1st run actual negative markers (n = 109) for the five EC subtypes and across 

all eligible datasets in the BulkECexplorer using the GMM (a) and zTPM (b) 
approaches. Gene names are shown adjacent to the Y axis alongside their  
median TPM.
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Extended Data Table 1 | Detection of selected EC and non-EC markers in the HUVEC proteome and BulkECexplorer 
transcriptomes.

HUVEC HDMEC Lung  
EC

Brain 
EC

Retina 
EC HUVEC HDMEC Lung  

EC
Brain 

EC
Retina 

EC HUVEC HDMEC Lung  
EC

Brain 
EC

Retina 
EC

Protein 
levels 
(Log2 
iBAQ) 

KDR ECs (pan) transmembrane 
receptor 21.15 108.9 104.6 80.1 288.0 280.9 100 100 100 100 100 100 100 100 100 100 used as selection criterion for dataset 

inclusion

CDH5 ECs (pan) junctional 
protein 24.30 822.1 204.7 728.1 191.8 240.8 100 100 100 100 100 100 100 100 100 100 used as selection criterion for dataset 

inclusion

PECAM1 ECs (pan) junctional 
protein 25.32 573.7 715.3 501.4 708.2 281.0 100 100 100 100 100 100 100 100 100 100 positive control for BulkECexplorer 

analysis

TEK ECs (pan) transmembrane 
receptor 19.87 67.1 61.9 99.8 278.4 215.8 100 100 100 100 100 100 100 100 100 100

ERG ECs (pan) transcription 
factor 22.39 134.2 100.4 111.4 75.3 76.3 100 100 100 100 100 100 100 100 100 100

PDGFB ECs (pan) secreted factor 20.69 97.1 77.4 138.6 154.2 228.2 100 100 100 100 100 100 100 100 100 100

VWF ECs (pan) secreted factor 24.91 926.6 541.8 52.7 103.1 206.9 100 100 92 98 100 100 100 93 98 100

CLDN5 ECs (pan) junctional 
protein ND 101.3 488.8 486.5 3755.1 889.9 98 100 100 100 100 100 100 100 100 100

TAL1 ECs (pan) transcription 
factor ND 30.0 15.2 11.7 7.0 12.4 100 100 100 98 86 100 100 100 98 100

KLF4 ECs transcription 
factor ND 2.6 4.2 41.2 215.1 42.9 53 71 100 100 100 84 86 100 100 100 sheer stress regulator, low levels in 

static EC cultures

PLVAP ECs fenestrae and 
caveolae ND 13.6 66.9 231.4 15.9 8.3 90 86 100 95 86 98 100 100 93 72 fenestrated EC marker, low levels in 

blood brain and retina barrier ECs

MFSD2A ECs (brain, 
retina)

transmembrane 
transporter ND 2.7 2.3 1.2 401.4 151.9 65 64 25 95 100 84 93 47 96 100 blood brain and retina barrier EC marker

LENEP ocular lens protein ND 0.1 0.2 0.2 0.6 0.8 0 0 0 18 0 0 7 7 39 11

BGLAP osteoblast secreted factor ND 0.1 0.4 0.5 0.3 0.6 2 14 0 0 0 6 43 0 7 0

SPACA4 sex cell transmembrane 
receptor ND 0.1 0.1 0.4 0.2 0.7 0 0 0 0 0 0 14 7 2 0

MYOG skeletal 
muscle

transcription 
factor ND 0.1 0.0 0.0 0.4 0.2 0 0 0 0 0 0 0 0 2 0

CDH1 Epithelial 
cells

junctional 
protein ND 0.0 4.4 24.6 1.4 0.3 0 43 8 35 0 0 43 20 39 6

KLF1 Erythroid 
cells

transcription 
factor ND 0.1 0.1 0.4 0.3 0.9 0 0 0 0 0 0 0 0 2 0 used as negative control for 

BulkECexplorer analysis

ITGAM Myeloid 
cells

transmembrane 
receptor ND 0.1 0.1 0.7 1.2 68.1 1 0 17 30 100 2 0 40 37 78 marker of EC interacting cell type

GFAP Astrocytes cytoskeleton ND 0.1 0.1 0.1 12.4 4.7 1 0 0 73 14 1 0 0 83 89 marker of EC interacting cell type

OPALIN Olygodendr
ocytes

transmembrane 
protein ND 0.0 0.0 0.0 3.6 0.0 0 0 0 45 0 0 0 0 46 0 marker of EC interacting cell type

SOX2 Neural cells transcription 
factor ND 0.1 0.0 0.8 5.9 6.7 3 0 8 73 43 7 7 7 78 100 marker of EC interacting cell type

DES PCs/SMCs cytoskeleton ND 0.1 0.0 11.5 7.0 0.8 0 0 50 85 0 0 0 53 91 17 marker of EC interacting cell type

PNPLA2 adipose 
tissue enzyme 16.62 59.6 64.5 26.7 80.3 38.3 100 100 100 100 100 100 100 100 98 100 non-EC marker expressed in all 

BulkECexplorer EC subtypes

TAGLN PCs/SMCs cytoskeleton 26.43 10.1 31.6 74.3 21.9 4.0 98 93 75 93 43 100 100 80 93 78 non-EC marker expressed in most 
BulkECexplorer EC subtypes

MAP2 Neural cells cytoskeleton 20.33 10.7 2.3 0.3 4.2 219.8 96 79 40 75 100 100 100 47 91 100 non-EC marker expressed in most 
BulkECexplorer EC subtypes

GAD1 Neural cells enzyme 14.51 0.1 0.1 0.1 3.3 48.7 0 0 0 63 100 0 0 7 80 94 non-EC marker  expressed in some 
BulkECexplorer EC subtypes

GLUL Neural cells enzyme 18.51 51.4 53.8 92.2 899.8 899.3 100 100 100 100 100 100 100 100 100 100 non-EC marker  expressed in all 
BulkECexplorer EC subtypes

GAPDHS Neural cells enzyme 25.85 0.1 0.3 0.7 0.7 5.6 0 0 14 0 17 0 0 20 11 67 not in BulkECexplorer: proteome 
misidentified?

NES Neural cells cytoskeleton 26.35 142.5 68.3 68.0 119.4 44.7 100 100 100 100 100 100 100 100 100 100 non-EC marker expressed in all 
BulkECexplorer EC subtypes

1https://www.proteinatlas.org/; https://www.uniprot.org/
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Median in TPM GMM classification (% datasets with 
active expression in eligible datasets)

zTPM analysis (% datasets with active 
expression in eligible datasets)
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symbol

Expected 
cell type1 Protein info1

HUVEC 
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BulkECexplorer-constituent EC subtypes

Protein and transcript levels for the indicated genes, as detected in a published HUVEC proteome and in BulkECexplorer, respectively, together with their GMM- and zTPM-based 
classification. The table broadly groups genes as follows: expressed in EC (EC genes) and expressed in cells other than ECs (non-EC genes), including markers of non-EC-genes that interact 
with ECs (non-EC genes, EC interacting cells). Note markers for presumed non-ECs for which EC expression was identified here (presumed non-EC genes, EC expression). Information on the 
cellular profile of gene expression and gene product function were confirmed by surveying the Human Protein Atlas (https://www.proteinatlas.org/) and UniProt (https://www.uniprot.org/).
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