Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cardiovascular effects of the post-COVID-19 condition

Abstract

Throughout the COVID-19 pandemic, the new clinical entity of the post-COVID-19 condition, defined as a multisystemic condition of persistent symptoms following resolution of an acute severe acute respiratory syndrome coronavirus 2 infection, has emerged as an important area of clinical focus. While this syndrome spans multiple organ systems, cardiovascular complications are often the most prominent features. These include, but are not limited to, myocardial injury, heart failure, arrhythmias, vascular injury/thrombosis and dysautonomia. As the number of individuals with the post-COVID-19 condition continues to climb and overwhelm medical systems, summarizing existing information and knowledge gaps in the complex cardiovascular effects of the post-COVID-19 condition has become critical for patient care. In this Review, we explore the current state of knowledge of the post-COVID-19 condition and identify areas where additional research is warranted. This will provide a framework for better understanding the cardiovascular manifestations of the post-COVID-19 condition with a focus on pathophysiology, diagnosis and management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cardiovascular complications in the post-COVID-19 condition.
Fig. 2: Pathophysiology of POTS in the post-COVID-19 condition.

Similar content being viewed by others

References

  1. Yuki, K., Fujiogi, M. & Koutsogiannaki, S. COVID-19 pathophysiology: a review. Clin. Immunol. 215, 108427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Davis, H. E., McCorkell, L., Vogel, J. M. & Topol, E. J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21, 133–146 (2023). This comprehensive review of long COVID highlights important underlying pathophysiology and includes detailed information on both cardiac and noncardiac effects of this condition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thaweethai, T. et al. Development of a definition of postacute sequelae of SARS-CoV-2 infection. JAMA https://doi.org/10.1001/jama.2023.8823 (2023).

  4. Bonilla, H. et al. Therapeutic trials for long COVID-19: a call to action from the interventions taskforce of the RECOVER initiative. Front. Immunol. 14, 1129459 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Phetsouphanh, C. et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 23, 210–216 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Wiersinga, W. J., Rhodes, A., Cheng, A. C., Peacock, S. J. & Prescott, H. C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 324, 782–793 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Long, B. et al. Clinical update on COVID-19 for the emergency clinician: presentation and evaluation. Am. J. Emerg. Med. 54, 46–57 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Tsampasian, V. et al. Risk factors associated with post-COVID-19 condition: a systematic review and meta-analysis. JAMA Intern. Med. 183, 566–580 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dessie, Z. G. & Zewotir, T. Mortality-related risk factors of COVID-19: a systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect. Dis. 21, 855 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lundberg, D. J. et al. COVID-19 mortality by race and ethnicity in US metropolitan and nonmetropolitan areas, March 2020 to February 2022. JAMA Netw. Open 6, e2311098 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Minhas, A. S. et al. The role of sex and inflammation in cardiovascular outcomes and mortality in COVID-19. Int. J. Cardiol. 337, 127–131 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Al-Aly, Z., Bowe, B. & Xie, Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat. Med. 28, 1461–1467 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tenforde, M. W. et al. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network - United States, March–June 2020. MMWR Morb. Mortal Wkly Rep. 69, 993–998 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hu, B., Guo, H., Zhou, P. & Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19, 141–154 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Zaim, S., Chong, J. H., Sankaranarayanan, V. & Harky, A. COVID-19 and multiorgan response. Curr. Probl. Cardiol. 45, 100618 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sette, A. & Crotty, S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell 184, 861–880 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wong, K. et al. COVID-19 associated vasculitis: a systematic review of case reports and case series. Ann. Med. Surg. 74, 103249 (2022).

    Article  Google Scholar 

  18. Long, B., Brady, W. J., Koyfman, A. & Gottlieb, M. Cardiovascular complications in COVID-19. Am. J. Emerg. Med. 38, 1504–1507 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Luo, W., Liu, X., Bao, K. & Huang, C. Ischemic stroke associated with COVID-19: a systematic review and meta-analysis. J. Neurol. 269, 1731–1740 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. World Health Organization. A clinical case definition of post-COVID-19 condition by a Delphi consensus. https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_COVID-19_condition-Clinical_case_definition-2021.1 (2021).

  21. Xie, Y., Xu, E., Bowe, B. & Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 28, 583–590 (2022). This unique article utilized a large national database to highlight the heightened risk of several cardiovascular complications following COVID-19 infection, which helps frame the importance of a solid knowledge base in this topic for healthcare providers.

  22. Gluckman, T. J.et al. 2022 ACC Expert Consensus Decision Pathway on cardiovascular sequelae of COVID-19 in adults: myocarditis and other myocardial involvement, post-acute sequelae of SARS-CoV-2 infection, and return to play: a report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 79, 1717–1756 (2022). This important expert consensus document discusses different phenotypes of post-COVID-19 condition cardiovascular disease and provides recommendations on screening for myocardial involvement.

    Article  PubMed  Google Scholar 

  23. Khan, M. S. et al. Cardiovascular implications of COVID-19 versus influenza infection: a review. BMC Med. 18, 403 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chimenti, C. et al. Intramyocyte detection of Epstein–Barr virus genome by laser capture microdissection in patients with inflammatory cardiomyopathy. Circulation 110, 3534–3539 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Deumer, U.-S. et al. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): an overview. J. Clin. Med. 10, 4786 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zheng, Y. -Y., Ma, Y. -T., Zhang, J. -Y. & Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 17, 259–260 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Raman, B., Bluemke, D. A., Lüscher, T. F. & Neubauer, S. Long COVID: post-acute sequelae of COVID-19 with a cardiovascular focus. Eur. Heart J. 43, 1157–1172 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bonaventura, A. et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 21, 319–329 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Beyerstedt, S., Casaro, E. B. & Rangel, É. B. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis. 40, 905–919 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pretorius, E. et al. Persistent clotting protein pathology in long COVID/post-acute sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc. Diabetol. 20, 172 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Osiaevi, I. et al. Persistent capillary rarefication in long COVID syndrome. Angiogenesis 26, 53–61 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Patel, M. A. et al. Elevated vascular transformation blood biomarkers in long-COVID indicate angiogenesis as a key pathophysiological mechanism. Mol. Med. 28, 122 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Proal, A. D. & VanElzakker, M. B. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms. Front. Microbiol. 12, 698169 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Naveed, Z. et al. Association of COVID-19 infection with incident diabetes. JAMA Netw Open 6, e238866 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mohiuddin Chowdhury, A. T. M. et al. Clinical characteristics and the long-term post-recovery manifestations of the COVID-19 patients—a prospective multicenter cross-sectional study. Front. Med. 8, 663670 (2021).

    Article  Google Scholar 

  36. Gyöngyösi, M. et al. Long COVID and the cardiovascular system-elucidating causes and cellular mechanisms in order to develop targeted diagnostic and therapeutic strategies: a joint Scientific Statement of the ESC Working Groups on Cellular Biology of the Heart and Myocardial and Pericardial Diseases. Cardiovasc. Res. 119, 336–356 (2023). This is a thorough Scientific Statement describing long COVID epidemiology, diagnosis, pathophysiology, and management with specific emphasis on the cardiovascular system.

    Article  PubMed  Google Scholar 

  37. Miglis, M. G. et al. A case report of postural tachycardia syndrome after COVID-19. Clin. Auton. Res. 30, 449–451 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Kanjwal, K., Jamal, S., Kichloo, A. & Grubb, B. P. New-onset postural orthostatic tachycardia syndrome following coronavirus disease 2019 infection. J. Innov. Card. Rhythm Manag. 11, 4302–4304 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ishibashi, Y., Yoneyama, K., Tsuchida, T. & Akashi, J. Y. Post-COVID-19 postural orthostatic tachycardia syndrome. Intern. Med. 60, 2345 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. O’Sullivan, J. S., Lyne, A. & Vaughan, C. J. COVID-19-induced postural orthostatic tachycardia syndrome treated with ivabradine. BMJ Case Rep. 14, e243585 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schofield, J. R. Persistent antiphospholipid antibodies, mast cell activation syndrome, postural orthostatic tachycardia syndrome and post-COVID syndrome: 1 year on. Eur. J. Case Rep. Intern. Med. 8, 002378 (2021).

    PubMed  PubMed Central  Google Scholar 

  42. Johansson, M. et al. Long-haul post-COVID-19 symptoms presenting as a variant of postural orthostatic tachycardia syndrome: the Swedish experience. JACC Case Rep. 3, 573–580 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Blitshteyn, S. & Whitelaw, S. Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: a case series of 20 patients. Immunol. Res. 69, 205–211 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bosco, J. & Titano, R. Severe post-COVID-19 dysautonomia: a case report. BMC Infect. Dis. 22, 214 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wallukat, G. et al. Functional autoantibodies against G-protein-coupled receptors in patients with persistent long-COVID-19 symptoms. J. Transl. Autoimmun. 4, 100100 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Buoite Stella, A. et al. Autonomic dysfunction in post-COVID patients with and witfhout neurological symptoms: a prospective multidomain observational study. J. Neurol. 269, 587–596 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Shouman, K. et al. Autonomic dysfunction following COVID-19 infection: an early experience. Clin. Auton. Res. 31, 385–394 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Campen, C. L. M. C., van, Rowe, P. C. & Visser, F. C. Orthostatic symptoms and reductions in cerebral blood flow in long-haul COVID-19 patients: similarities with myalgic encephalomyelitis/chronic fatigue syndrome. Medicina 58, 28 (2021).

    Article  PubMed  Google Scholar 

  49. Novak, P. et al. Multisystem involvement in post-acute sequelae of coronavirus disease 19. Ann. Neurol. 91, 367–379 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jamal, S. M. et al. Prospective evaluation of autonomic dysfunction in post-acute sequela of COVID-19. J. Am. Coll. Cardiol. 79, 2325–2330 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Eldokla, A. M. & Ali, S. T. Autonomic function testing in long-COVID syndrome patients with orthostatic intolerance. Auton. Neurosci. 241, 102997 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Campen, C. L. M. Cvan & Visser, F. C. Long-haul COVID patients: prevalence of POTS are reduced but cerebral blood flow abnormalities remain abnormal with longer disease duration. Healthcare 10, 2105 (2022).

    Article  PubMed  Google Scholar 

  53. Kwan, A. C. et al. Apparent risks of postural orthostatic tachycardia syndrome diagnoses after COVID-19 vaccination and SARS-Cov-2 Infection. Nat. Cardiovasc. Res. 1, 1187–1194 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chung, T. H. & Azar, A. Autonomic nerve involvement in post-acute sequelae of SARS-CoV-2 syndrome (PASC). J. Clin. Med. 12, 73 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Eslami, M. et al. Postural orthostatic tachycardia syndrome and orthostatic hypotension post COVID-19. Infect. Disord. Drug Targets 23, e100622205846 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Hira, R. et al. Objective hemodynamic cardiovascular autonomic abnormalities in post-acute sequelae of COVID-19. Can. J. Cardiol. 39, 767–775 (2023).

    Article  PubMed  Google Scholar 

  57. Zanin, A. et al. Parasympathetic autonomic dysfunction is more often evidenced than sympathetic autonomic dysfunction in fluctuating and polymorphic symptoms of ‘long-COVID’ patients. Sci. Rep. 13, 8251 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. González-Hermosillo G, J. A. et al. Exaggerated blood pressure elevation in response to orthostatic challenge, a post-acute sequelae of SARS-CoV-2 infection (PASC) after hospitalization. Auton. Neurosci. 247, 103094 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chen, X. C. et al. Reproducibility of head-up tilt-table testing for eliciting susceptibility to neurally mediated syncope in patients without structural heart disease. Am. J. Cardiol. 69, 755–760 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Pavri, B. B., Ruskin, J. N. & Brooks, R. The yield of head-up tilt testing is not significantly increased by repeating the baseline test. Clin. Cardiol. 19, 494–496 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Lamarre-Cliche, M. & Cusson, J. The fainting patient: value of the head-upright tilt-table test in adult patients with orthostatic intolerance. CMAJ 164, 372–376 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Abbate, G. et al. Postural orthostatic tachycardia syndrome after COVID-19: a systematic review of therapeutic interventions. J. Cardiovasc. Pharmacol. 82, 23–31 (2023).

    Article  CAS  PubMed  Google Scholar 

  63. Low, P. A. et al. Comparison of the postural tachycardia syndrome (POTS) with orthostatic hypotension due to autonomic failure. J. Auton. Nerv. Syst. 50, 181–188 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Goldstein, D. S. et al. Cardiac sympathetic dysautonomia in chronic orthostatic intolerance syndromes. Circulation 106, 2358–2365 (2002).

    Article  PubMed  Google Scholar 

  65. Bonyhay, I. & Freeman, R. Sympathetic nerve activity in response to hypotensive stress in the postural tachycardia syndrome. Circulation 110, 3193–3198 (2004).

    Article  PubMed  Google Scholar 

  66. Peltier, A. C. et al. Distal sudomotor findings in postural tachycardia syndrome. Clin. Auton. Res. 20, 93–99 (2010).

    Article  PubMed  Google Scholar 

  67. Jacob, G. et al. Abnormal norepinephrine clearance and adrenergic receptor sensitivity in idiopathic orthostatic intolerance. Circulation 99, 1706–1712 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Haensch, C.-A., Tosch, M., Katona, I., Weis, J. & Isenmann, S. Small-fiber neuropathy with cardiac denervation in postural tachycardia syndrome. Muscle Nerve 50, 956–961 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Goldstein, D. S. et al. Neurocirculatory abnormalities in chronic orthostatic intolerance. Circulation 111, 839–845 (2005).

    Article  PubMed  Google Scholar 

  70. Muenter Swift, N., Charkoudian, N., Dotson, R. M., Suarez, G. A. & Low, P. A. Baroreflex control of muscle sympathetic nerve activity in postural orthostatic tachycardia syndrome. Am. J. Physiol. Heart. Circ. Physiol. 289, H1226–H1233 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Garland, E. M., Raj, S. R., Black, B. K., Harris, P. A. & Robertson, D. The hemodynamic and neurohumoral phenotype of postural tachycardia syndrome. Neurology 69, 790–798 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Joseph, P. et al. Insights from invasive cardiopulmonary exercise testing of patients with myalgic encephalomyelitis/chronic fatigue syndrome. Chest 160, 642–651 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shah, B. et al. Heart rate variability as a marker of cardiovascular dysautonomia in post-COVID-19 syndrome using artificial intelligence. Indian Pacing Electrophysiol. J. 22, 70–76 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  74. Marques, K. C., Quaresma, J. A. S. & Falcão, L. F. M. Cardiovascular autonomic dysfunction in ‘Long COVID’: pathophysiology, heart rate variability, and inflammatory markers. Front. Cardiovasc. Med. 10, 1256512 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  75. NIH National Library of Medicine. ClinicalTrials.gov. Efficacy and safety study of efgartigimod in adults with post-COVID-19 POTS. https://clinicaltrials.gov/ct2/show/NCT05633407

  76. Lala, A. et al. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. J. Am. Coll. Cardiol. 76, 533–546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kini, A. et al. Types of myocardial injury and mid-term outcomes in patients with COVID-19. Eur. Heart J. Qual. Care Clin. Outcomes 7, 438–446 (2021).

    Article  PubMed  Google Scholar 

  78. Metkus, T. S. et al. Myocardial Injury in severe COVID-19 compared with non-COVID-19 acute respiratory distress syndrome. Circulation 143, 553–565 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Giustino, G. et al. Characterization of myocardial injury in patients with COVID-19. J. Am. Coll. Cardiol. 76, 2043–2055 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Minhas, A. S. et al. Myocardial work efficiency, a novel measure of myocardial dysfunction, is reduced in COVID-19 patients and associated with in-hospital mortality. Front. Cardiovasc. Med. 8, 667721 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Deitelzweig, S. et al. Thrombotic and bleeding events, mortality, and anticoagulant use among 546,656 hospitalized patients with COVID-19 in the United States: a retrospective cohort study. J. Thromb. Thrombolysis 53, 766–776 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wei, Z.-Y., Geng, Y.-J., Huang, J. & Qian, H.-Y. Pathogenesis and management of myocardial injury in coronavirus disease 2019. Eur. J. Heart Fail. 22, 1994–2006 (2020).

    Article  CAS  PubMed  Google Scholar 

  83. Petersen, S. E. et al. Cardiovascular magnetic resonance for patients with COVID-19. JACC Cardiovasc. Imaging 15, 685–699 (2022).

    Article  PubMed  Google Scholar 

  84. Goerlich, E. et al. Multimodality imaging for cardiac evaluation in patients with COVID-19. Curr. Cardiol. Rep. 23, 44 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Kravchenko, D. et al. Cardiac MRI in patients with prolonged cardiorespiratory symptoms after mild to moderate COVID-19. Radiology 301, E419–E425 (2021).

    Article  PubMed  Google Scholar 

  86. Puntmann, V. O. et al. Long-term cardiac pathology in individuals with mild initial COVID-19 illness. Nat. Med. 28, 2117–2123 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Artico, J. et al. Myocardial involvement after hospitalization for COVID-19 complicated by troponin elevation: a prospective, multicenter, observational study. Circulation 147, 364–374 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Giustino, G. et al. Coronavirus and cardiovascular disease, myocardial injury, and arrhythmia: JACC Focus Seminar. J. Am. Coll. Cardiol. 76, 2011–2023 (2020). This paper outlines in great detail the mechanisms of myocardial injury in COVID-19 and discusses the clinical impact of these complications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cooper, L. T. Myocarditis. N. Engl. J. Med. 360, 1526–1538 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Trachtenberg, B. H. & Hare, J. M. Inflammatory cardiomyopathic syndromes. Circ. Res. 121, 803–818 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Friedrich, M. G. et al. Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. J. Am. Coll. Cardiol. 53, 1475–1487 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Aretz, H. T. et al. Myocarditis. A histopathologic definition and classification. Am. J. Cardiovasc. Pathol. 1, 3–14 (1987).

    CAS  PubMed  Google Scholar 

  93. Caforio, A. L. P. et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 34, 2636–2648, 2648a–2648d (2013).

  94. Boehmer, T. K. et al. Association between COVID-19 and myocarditis using hospital-based administrative data - United States, March 2020–January 2021. MMWR Morb. Mortal. Wkly Rep. 70, 1228–1232 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Halushka, M. K. & Vander Heide, R. S. Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 postmortem examinations. Cardiovasc. Pathol. 50, 107300 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Patel, P. et al. Clinical characteristics of multisystem inflammatory syndrome in adults: a systematic review. JAMA Netw. Open 4, e2126456 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Centers for Disease Control and Prevention (CDC). Multisystem Inflammatory Syndrome in Adults (MIS-A) Case Definition and Information for Healthcare Providers (2023).

  98. Rajpal, S. et al. Cardiovascular magnetic resonance findings in competitive athletes recovering from COVID-19 infection. JAMA Cardiol. 6, 116–118 (2021).

    PubMed  Google Scholar 

  99. Clark, D. E. et al. Cardiovascular magnetic resonance evaluation of soldiers after recovery from symptomatic SARS-CoV-2 infection: a case-control study of cardiovascular post-acute sequelae of SARS-CoV-2 infection (CV PASC). J. Cardiovasc. Magn. Reson. 23, 106 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Peretto, G. et al. Ventricular arrhythmias in myocarditis: characterization and relationships with myocardial inflammation. J. Am. Coll. Cardiol. 75, 1046–1057 (2020).

    Article  PubMed  Google Scholar 

  101. Isakadze, N. et al. C-reactive protein elevation is associated With QTc interval prolongation in patients hospitalized with COVID-19. Front. Cardiovasc. Med. 9, 866146 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ruberg, F. L. et al. Utilization of cardiovascular magnetic resonance (CMR) imaging for resumption of athletic activities following COVID-19 infection: an expert consensus document on behalf of the American Heart Association Council on Cardiovascular Radiology and Intervention (CVRI) Leadership and endorsed by the Society for Cardiovascular Magnetic Resonance (SCMR). J. Cardiovasc. Magn. Reson. 24, 73 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hendren, N. S., Grodin, J. L. & Drazner, M. H. Unique patterns of cardiovascular involvement in coronavirus disease-2019. J. Card. Fail. 26, 466–469 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 79, e263–e421 (2022).

    Article  PubMed  Google Scholar 

  105. Satoskar, M. A. et al. Improving risk prediction for pulmonary embolism in COVID-19 patients using echocardiography. Pulm. Circ. 12, e12036 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Coromilas, E. J. et al. Worldwide survey of COVID-19-associated arrhythmias. Circ. Arrhythm. Electrophysiol. 14, e009458 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Desai, A. D., Boursiquot, B. C., Melki, L. & Wan, E. Y. Management of arrhythmias associated with COVID-19. Curr. Cardiol. Rep. 23, 2 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Driggin, E. et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J. Am. Coll. Cardiol. 75, 2352–2371 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Goerlich, E. et al. Left atrial function in patients with coronavirus disease 2019 and its association with incident atrial fibrillation/flutter. J. Am. Soc. Echocardiogr. 34, 1106–1109 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Dixit, N. M., Churchill, A., Nsair, A. & Hsu, J. J. Post-acute COVID-19 syndrome and the cardiovascular system: what is known? Am. Heart J. Plus 5, 100025 (2021).

    PubMed  PubMed Central  Google Scholar 

  111. Musikantow, D. R. et al. Atrial fibrillation in patients hospitalized with COVID-19: incidence, predictors, outcomes, and comparison to influenza. JACC Clin. Electrophysiol. 7, 1120–1130 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Al-Aly, Z., Xie, Y. & Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 594, 259–264 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  113. Huseynov, A., Akin, I., Duerschmied, D. & Scharf, R. E. Cardiac arrhythmias in post-COVID syndrome: prevalence, pathology, diagnosis, and treatment. Viruses 15, 389 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ingul, C. B. et al. Cardiac dysfunction and arrhythmias 3 months after hospitalization for COVID-19. J. Am. Heart Assoc. 11, e023473 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  115. National Institute for Health and Care Excellence. Myalgic encephalomyelitis (or encephalopathy)/chronic fatigue syndrome: diagnosis and management (NICE, 2021).

  116. Centers for Disease Control and Prevention (CDC). Treatment of ME/CFS | Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) (2021).

  117. Wright, J., Astill, S. L. & Sivan, M. The relationship between physical activity and long COVID: a cross-sectional study. Int. J. Environ. Res. Public Health 19, 5093 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Olshansky, B. et al. Postural orthostatic tachycardia syndrome (POTS): a critical assessment. Prog. Cardiovasc. Dis. 63, 263–270 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Yancy, C. W. et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation 136, e137–e161 (2017).

    Article  PubMed  Google Scholar 

  120. Gulati, M. et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 144, e368–e454 (2021).

    PubMed  Google Scholar 

  121. Collet, J.-P. et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 42, 1289–1367 (2021).

    Article  PubMed  Google Scholar 

  122. Leitman, M. et al. The effect of hyperbaric oxygen therapy on myocardial function in post-COVID-19 syndrome patients: a randomized controlled trial. Sci. Rep. 13, 9473 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Forshaw, D. et al. STIMULATE-ICP: a pragmatic, multi-centre, cluster randomised trial of an integrated care pathway with a nested, phase III, open label, adaptive platform randomised drug trial in individuals with Long COVID: a structured protocol. PLoS ONE 18, e0272472 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Du, Y., Zhang, J., Wu, L. J., Zhang, Q. & Wang, Y. X. The epidemiology, diagnosis and prognosis of long-COVID. Biomed. Environ. Sci. 35, 1133–1139 (2022).

    CAS  PubMed  Google Scholar 

  125. Han, Q., Zheng, B., Daines, L. & Sheikh, A. Long-term sequelae of COVID-19: a systematic review and meta-analysis of one-year follow-up studies on post-COVID symptoms. Pathogens 11, 269 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Peluso, M. J. et al. SARS-CoV-2 and mitochondrial proteins in neural-derived exosomes of COVID-19. Ann. Neurol. 91, 772–781 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Galán, M. et al. Persistent overactive cytotoxic immune response in a Spanish cohort of individuals with long-COVID: identification of diagnostic biomarkers. Front. Immunol. 13, 848886 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Esfandyarpour, R., Kashi, A., Nemat-Gorgani, M., Wilhelmy, J. & Davis, R. W. A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Proc. Natl Acad. Sci. USA 116, 10250–10257 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Xie, Y., Choi, T. & Al-Aly, Z. Association of treatment with nirmatrelvir and the risk of post-COVID-19 condition. JAMA Intern. Med. 183, 554–564 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Xie, Y., Choi, T. & Al-Aly, Z. Molnupiravir and risk of post-acute sequelae of COVID-19: cohort study. BMJ 381, e074572 (2023).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper. A.G.H., W.S.P. and E.G. created the review structure and outline. E.G., T.H.C., G.H.H., T.S.M., N.A.G. and A.G.H. all drafted respective review sections. E.G. compiled and finalized the manuscript. All authors assisted with editing the manuscript.

Corresponding author

Correspondence to Allison G. Hays.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Valentina Puntmann, Ziyad Al-Aly and Sameer M. Jamal for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goerlich, E., Chung, T.H., Hong, G.H. et al. Cardiovascular effects of the post-COVID-19 condition. Nat Cardiovasc Res 3, 118–129 (2024). https://doi.org/10.1038/s44161-023-00414-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-023-00414-8

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research